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Abstract

Numerical simulations of the hydrodynamics of a %uidized bed are carried out to investigate the complex interaction between the gas and
the solid particles, and to explore the utility of a reduced-order model based on the proper orthogonal decomposition (POD). The behavior
of a %uidized bed is modeled using a “two-%uid” theory, which involves conservation of mass, momentum, energy and species equations
for the two interpenetrating continua. These equations are solved using a numerical algorithm that employs a conservative discretization
scheme with mixed implicit and explicit formulations. We conducted simulations of gas–solid interaction in a narrow (two-dimensional)
bed =lled with sand particles which was uniformly %uidized at minimum %uidization but with additional air %ow through a central nozzle.
Aided by the proper orthogonal decomposition, spatial dominant features are identi=ed and separated from the spatio-temporal dynamics of
the simulations. The most dynamic region of the gas–solid interaction is con=ned to the central channel caused by the jet. The %ow within
this structure is successfully captured by a few POD eigenfunctions. Phase-space plots further indicate the existence of low-dimensional
dynamics within the central channel. This conclusion supports the validity of a reduced-order model for %uidized beds, which can then
be constructed by projecting the governing equations onto the POD modes, as it is commonly done in the Galerkin method.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Over the past decades, scientists and engineers have con-
ducted an enormous amount of research, both experimental
and theoretical, to understand the %uidization phenomenon,
in which solid particles acquire %uid-like properties as a re-
sult of being levitated by %uid %ow. A realistic model of
%uidized-bed reactors must capture the eCects of hydrody-
namics, heat transfer, and reaction kinetics. Most models
of these reactors have been based on empirical correlations.
More recently, computational models have also been devel-
oped. Such models are derived from the conservation laws
for mass, momentum, energy and species. The resulting
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governing equations consist of large and strongly coupled
systems of partial diCerential equations (PDEs).
Due to the high dimensionality of the PDEs that govern

the transport phenomena in %uidized beds, it is not feasible
to use analytical methods to solve these equations. Numer-
ical methods are used instead to simulate the %uidization
phenomena.The advent of high-performance computers and
the development of advanced algorithms have allowed sig-
ni=cant improvements in the accuracy of numerical simula-
tions. From these simulations, however, it is rather diGcult
to identify dominant spatial features of the underlying gas–
solid dynamics and to relate these features to speci=c inter-
action terms in the models. Another drawback is the relative
long time that is required to numerically solve the PDEs.
This is a problem particularly for on-line model-based di-
agnostics and control. To address the above issues, we ex-
plore in this work the development of a reduced-order model
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using the technique of proper orthogonal decomposition
(POD).
In this study, using the MFIX code (Syamlal, 1998;

Syamlal, Rogers, & O’Brien, 1994), a two-%uid hydrody-
namic model is used to simulate a two-dimensional bed
=lled with sand particles. This bed is uniformly aerated
across the bottom at minimum %uidization. Additional air
is injected through a central nozzle to produce a jet. POD is
used to extract the dominant spatial features directly from
the numerical simulations. For instance, we are particu-
larly interested in determining whether low-dimensional
attractors can capture the overall features of bed dynam-
ics. Because of the central jet, the motion of the bed is
most signi=cant in a central channel. The gas-particle %ow
within this structure is successfully captured by a few POD
eigenfunctions, approximately six modes. Reconstructions
with more modes capture higher-dimensional features such
as %ow along the sides of the channel.
A reduced-order model can then be constructed through

a Galerkin method, in which the PDE model is projected
onto the set of POD eigenfunctions to yield a system of or-
dinary diCerential equations. To the best of our knowledge,
this method has not been applied to large systems of PDEs
such as the one employed in this work. The reduced-order
model has the potential to help us further investigate, at near
real-time speeds, how %uids and solids interact when they
are in contact with each other and how to control the interac-
tion. Understanding this interaction can signi=cantly impact
the use of %uidization in engineering applications that in-
clude: petroleum distillation, coal combustion, coating (met-
als/polymers), solidi=cation, and cracking of hydrocarbons
in chemical reactors.
A quantitative comparison between the results of numeri-

cal simulations and experimental data is also very important.
Such comparisons can be challenging, however, because
the chaotic nature of the %uidization phenomenon makes it
diGcult to quantitatively compare instantaneous values of
transient simulations with experiments. Additionally, cer-
tain variables such as void fraction are not readily available
in the experiments. Halow, Fasching, Nicoletti, and Spenik
(1993), however, have developed a method for measuring
voidage distributions in %uidized beds using capacitance
imaging. The ability of POD to reduce experimental and nu-
merical data can be exploited to extract information from
both experiments and simulations that could be systemati-
cally compared for validation purposes. The purpose of the
present work, however, is not to validate the results of nu-
merical simulations based on the two-%uid model against
experimental data, but to investigate the validity and merits
of the POD based solely on snapshots generated by numer-
ical simulations.
This paper is organized as follows. Section 2 presents a

brief introduction to the %uidization phenomenon and a de-
scription of a two-%uid model that we employ to simulate
gas–solid interactions. Section 3 presents basic ideas and
properties of the proper orthogonal decomposition relevant

to this work. In particular, a theoretical description and a
computational implementation for numerical simulations or
experimental data are provided. Section 4 describes the re-
sults of applying the proper orthogonal decomposition to
computer simulations of the two-%uid hydrodynamic model.
The results support the existence of low-dimensional dy-
namics and suggest that building reduced-order models via
Galerkin methods can be successful. This latter task is part
of future work.

2. Fluidized beds

2.1. The =uidization phenomenon

Fluidization is the phenomenon in which a bed of solid
particles acquire %uid-like properties (Fan & Zhu, 1997;
Garg & Pritchett, 1975; Gidaspow, 1994; Gidaspow &
Ettehadieh, 1983) due to the interstitial upward %ow of a
%uid through the bed. At low %ow rates, the %uid percolates
through the void spaces between the solids, which remains
a packed bed; the forces acting on the bed due to the %ow
of the %uid is less than the weight of the bed. When the
%ow rate is increased above the minimum %uidization ve-
locity, the solids become levitated due to the interaction
between the %uid and the particles and the bed behaves
like a %uid; it becomes %uidized. For most gas-particle sys-
tems, once this threshold is reached, voids that are shaped
like bubbles, form and rise through the bed with vigorous
motion and extensive coalescence and splitting (Boemer,
Qi, & Renz, 1997; Clift & Grace, 1985; Gera & Gautam,
1994, 1995; Zenz, 1968). If the %uid %ow rate is further
increased beyond the terminal velocity of the particles then
the solids will be swept out of the container. For the parti-
cles studied in this work, Geldart Group B, bubbles are the
major observable feature of the bed at the %uid velocities
considered.

2.2. Governing equations

A complete description of the dynamics of solid particles
suspended by the %uid can be achieved by coupling the
Navier–Stokes equations for the %uid phase and the New-
tonian equations for the solids (Patankar, Singh, Joseph,
Glowinski, & Pan, 2000). This approach requires an enor-
mous amount of computational time even with present
computer technology. For practical purposes, a two-%uid
hydrodynamic model is used to simulate gas–solid in-
teractions (Anderson & Jackson, 1967; Gidaspow, 1994;
Jackson, 1997). A computer code that solves the coupled
PDEs of this model has been developed over the past 15
years at NETL (Syamlal et al., 1994). Based on funda-
mental laws of conservation of mass and momentum, the
model describes the %ow of dense or dilute %uid–solid mix-
tures. The model consists of the following system of partial
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diCerential equations:

Conservation of mass
Gas mass balance:

@
@t
(�g�g) +∇ • (�g�g̃vg) = 0: (1)

Solids mass balance:

@
@t
(�s�s) +∇ • (�s�s̃vs) = 0:

Conservation of momentum
Gas momentum balance:

@
@t
(�g�g̃vg) +∇ • (�g�g̃vg̃vg)

= − �g∇Pg +∇ • QQ�g + Fgs(̃vs − ṽg) + �g�gg̃:

Solids momentum balance:

@
@t
(�s�s̃vs) +∇ • (�s�s̃vs̃vs)

= − �s∇Pg −∇ • QQSs − Fgs(̃vs − ṽg) + �s�sg̃; (2)

where �; �, and ṽ denote the volume fraction, density, and
velocity; the subscripts g and s denote the gas phase and
solids phase, respectively.
On the right in the gas momentum equation, the =rst

term represent the normal surface forces, the second term
the shear surface force. In the solids momentum equation,
the =rst term on the right is due to the buoyant force of the
%uid. The last two terms in both equations represent the drag
force between the %uid and solids phases and gravitational
body forces. No eCects of stress in the granular phase were
included in these calculations, except for the solids pressure.

2.3. Numerical simulations

The numerical algorithm used to solve hydrodynamic
model equations (1) and (2) was developed at the Depart-
ment of Energy’s National Energy Technology Laboratory
(Syamlal, 1998; Syamlal et al., 1994). The computer code,
called MFIX (multiphase %ow with interphase exchanges),
is written in FORTRAN 90 and has the following capa-
bilities: three-dimensional Cartesian and cylindrical coordi-
nate systems, uniform or nonuniform grids, energy balances
and gas and solids species balances. The output of the code
includes time-dependent information on pressure, tempera-
ture, composition and velocity distribution in the reactors.
MFIX uses a staggered grid arrangement. The equations

for scalar quantities (pressure, void fraction, temperature and
mass fraction) are solved on the main grid. The equations
for the velocity vector components are solved on staggered
grids. Scalars are stored at cell centers and the components of
velocity vector are stored at cell faces. The convective terms
in mass and momentum equations can be diCerentiated using

=rst- or second-order accurate diCerence schemes. MFIX
uses a mixed implicit and explicit formulation.

3. Proper orthogonal decomposition

The proper orthogonal decomposition is a well-known
technique for determining an optimal basis for the recon-
struction of a data set (Karhunen, 1946; Loeve, 1955). The
POD has been used in various disciplines that include %uid
mechanics (Berkooz, Holmes, & Lumley, 1993; Holmes,
Lumley, & Berkooz, 1996; Lumley, 1967), identi=cation
and control in chemical engineering (Graham, Lane, & Luss,
1993), oceanography (Preisendorfer, 1988), image process-
ing (Pratt, 1991) and %utter prediction (Pettit & Beran,
2000). Depending on the discipline, the POD is also known
as Karhunen–LoSeve decomposition, principal components
analysis, singular systems analysis and singular value de-
composition. This section reviews the de=nitions and prop-
erties of the proper orthogonal decomposition relevant to
this work and discusses how the method can be applied to
computer simulations in order to separate spatial and tem-
poral behavior.

3.1. Theoretical aspects

Let us consider a sequence of numerical and/or ex-
perimental observations represented by scalar functions
u(x; ti); i = 1; : : : ; M . These functions are assumed to form
a linear (M �= ∞) in=nite-dimensional Hilbert space L2

(Riesz & Sz.-Nagy, 1990) on a domain D which is a
bounded subset of Rn, and they are parametrized by ti
which represents time. The time-average of the sequence,
de=ned by

Qu(x) = 〈u(x; ti)〉= 1
M

M∑
i=1

u(x; ti) (3)

is assumed to be zero, without loss of generality. The
proper orthogonal decomposition extracts time-independent
orthonormal basis functions, �k(x), and time-dependent
orthonormal amplitude coeGcients, ak(ti), such that the
reconstruction

u(x; ti) =
M∑
k=1

ak(ti)�k(x); i = 1; : : : ; M (4)

is optimal in the sense that the average least-squares trun-
cation error

jm =
〈∣∣∣∣∣
∣∣∣∣∣u(x; ti)−

m∑
k=1

ak(ti)�k(x)

∣∣∣∣∣
∣∣∣∣∣
2〉

(5)

is a minimum for any given number m6M of basis func-
tions over all possible sets of orthogonal functions. Here
‖ · ‖ is the L2-norm ‖f‖2 = (f;f), where (·; ·) denotes
the standard Euclidean inner product. The functions �k(x)
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are called empirical eigenfunctions, coherent structures, or
POD modes.
Optimality property (5) is equivalent to =nding functions

� that maximize the normalized average projection of u
onto �

max
�∈L2(D)

〈|(u; �)|2〉
‖�‖2 ; (6)

where | · | denotes the modulus. Optimum condition (6)
reduces to the eigenvalue problem (Berkooz et al., 1993)∫
D
〈u(x)u∗(y)¿�(y) dy = ��(x); (7)

where x; y∈D. Consequently, the optimal basis functions
{�k} are the eigenfunctions of integral equation (7), whose
kernel is the averaged autocorrelation function

〈u(x)u∗(y)〉 ≡ R(x; y):

In practice, the state of a numerical model is only available
at discrete spatial grid points, so that the observations
that form the data set are vectors rather than contin-
uous functions. In other words, D = (x1; x2; : : : ; xN ),
where xj is the jth grid point and u(x; ti) is the vector
ui = [u(x1; ti); u(x2; ti); : : : ; u(xN ; ti)]T. The data set can be
obtained from numerical simulation, experimental investi-
gation or a combination of the numerical and experimental
results. In the discrete case, the autocorrelation function is
replaced by the tensor product matrix

R(x; y) =
1
M

M∑
i=1

ui uTi : (8)

More importantly, it can also be shown that the eigenvec-
tors of the R(x; y) matrix yield the eigenfunctions �k(x),
which can be computed with the algorithm presented in
Section 3.2.

3.2. Computational implementation: method of snapshots

A popular technique for =nding the eigenvectors of
Eq. (8) is the method of snapshots developed by Sirovich
(1987). It was introduced as an eGcient method when the
resolution of the spatial domain (N ) is higher than the num-
ber of observations (M). The method of snapshots is based
on the fact that the data vectors, ui, and the eigenvectors �k ,
span the same linear space (Holmes et al., 1996; Sirovich,
1987). This implies that the eigenvectors can be written as
a linear combination of the data vectors

�k =
M∑
i=1

vki ui ; k = 1; : : : ; M: (9)

After substitution in the eigenvalue problem, R(x; y)�(y)=
��(x), the coeGcients vki are obtained from the solution of

Cv = �v; (10)

where vk = (vk1 ; : : : ; v
k
M ) is the kth eigenvector of Eq. (10),

and C is a symmetric M × M matrix de=ned by [Cij] =
(1=M)(ui ; uj). Here (·; ·) denotes the standard vector inner
product, (ui ; uj) = u(x1; ti)u(x1; tj) + · · ·+ u(xN ; ti)u(xN ; tj).
In this way the eigenvectors of the N ×N matrix R (8) can
be found by computing the eigenvectors of anM×M matrix
C (10), a preferable task if N � M . The results presented
in Section 4 were obtained with an implementation of the
method of snapshots. An iterative QR method (Stewart &
Leyk, 1994) was used to compute the eigenvectors of the
symmetric matrix C from Eq. (10).
Once the POD modes are computed, the Galerkin proce-

dure can be applied to reduce a set of PDEs to a smaller set
of ODEs. Given a PDE model of the form @u=@t = F(u),
the Galerkin procedure consists of using the POD decom-
position of u shown in Eq. (4) to generate a reduced set of
ODEs by solving the equations(
�j;

M∑
k=1

dak
dt

�k(x)− F

(
M∑
k=1

ak(ti)�k(x)

))
= 0;

j = 1; : : : ; M:

Note that the dependent variables of the set of ODEs are the
POD amplitude coeGcients. For further details, the reader
is referred to Fletcher (1984).

3.3. Properties of the proper orthogonal decomposition

Since the kernel is Hermitian, R(x; y)=R∗(y; x), accord-
ing to the Riesz Theorem (Riesz & Sz.-Nagy, 1990), it ad-
mits a diagonal decomposition of the form

R(x; y) =
M∑
k=1

�k�k(x)�∗
k (y): (11)

This fact is particularly useful when =nding the POD modes
analytically. They can be read from diagonal decomposi-
tion (11). The temporal coeGcients, ak(ti), are calculated
by projecting the data set on each of the eigenfunctions

ak(ti) = (u(x; ti); �k(x)); i = 1; : : : ; M: (12)

It can be shown that both temporal coeGcients and eigen-
functions are uncorrelated in time and space, respectively
(Holmes et al., 1996; Sirovich, 1987). That is, the following
orthogonality properties hold:

(i) �∗
j (x)�k(x) = "jk ,

(ii) 〈aj(ti)a∗k (ti)〉= "jk�j,

where "jk represents the Kronecker delta function.
Property (ii) is obtained when the terms in diagonal

decomposition (11) are compared with the expression
R(x; y) =

∑〈aj(ti)a∗k (ti)〉�j(x)�∗
k (y). The nonnegative

and self-adjoint properties of R(x; y) imply that all eigen-
values are nonnegative and can be ordered accordingly:
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�1¿ �2 · · ·¿ �k¿ · · ·¿ 0. Statistically speaking, �k rep-
resents the variance of the data set in the direction of the
corresponding POD mode, �k(x). In physical terms, if u
represents a component of a velocity =eld, then �k mea-
sures the amount of kinetic energy captured by the respec-
tive POD mode, �k(x). In this sense, the energy measures
the contribution of each mode to the overall dynamics.
The total energy captured in a proper orthogonal decom-

position of a numerical or experimental data set is de=ned
as the sum of all eigenvalues

E =
m∑
k=1

�k : (13)

The relative energy captured by the kth mode, Ek , is de-
=ned by

Ek =
�k∑m
j=1 �j

: (14)

Note that the cumulative sum of relative energies,
∑

Ek ,
approaches one as the number of modes in the reconstruction
increases.

Fig. 1. Simulation of %uidization with a central jet. Gas is injected into a two-dimensional %uidized bed =lled with sand particles. Time evolves from
left to right: (a) �g: volume fraction of %uid phase, (b) Pg: gas pressure, (c) Ps: solids pressure, (d) vg: gas velocity along the y-axis.

Table 1
System parameters

Parameter Value

Particles dimension 500 �m
Particles density 2610 kg=m3

Gas temperature 297 K
Gas pressure 101 kPa
Bed size 0:39 m width ×0:58 m height
Grid size 128× 108

4. Results

The MFIX code was used to simulate the %uidization
phenomenon in a two-dimensional bed =lled with sand
particles. This %uidization process has been experimentally
investigated by Gidaspow (1994). The bed was %uidized
uniformly at minimum %uidization, with additional gas
injected through a central jet. The parameters used in the
numerical simulation are presented in Table 1.
The central jet produces a spatio-temporal %ow pat-

tern that is easier to analyze than that with uniform ex-
cess gas %ow through the distributor. Fig. 1 depicts the
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Fig. 2. Mean and POD spatial features extracted from simulations of Fig. 1: (a) �g: volume fraction of %uid phase, (b) Pg: gas pressure, (c) Ps: solids
pressure, (d) vg: gas velocity along the y-axis.

spatio-temporal evolution of several of the dependent vari-
ables of the model. �g is the voidage, the local volume frac-
tion of the %uid phase, which describes the fraction of the
bed occupied by the intersticial gas; Pg is the gas pressure;
Ps is the solids phase pressure, and vg is the component
of the gas velocity in the vertical direction. No scales are
shown for these variables. The =gure is intended to present
the time evolution of these variables.
Fig. 2 shows the 10 most energetic spatial modes (includ-

ing the mean) obtained after applying the proper orthogonal
decomposition to simulations shown in Fig. 1. Observe that
the time-average of each variable, which can be considered
mode �0, has an approximate re%ective symmetry, which
mimics the symmetry of the experiment. More remarkable
is the fact that the re%ective symmetry appears even though
none of the time instantaneous snapshots have this symme-
try, as is shown in Fig. 1(a). Shading in this and other simi-
lar =gures is done such that high-quantity values are colored
red, low-quantity values are colored blue, and intermediate
values are colored through a linear interpolation between
red and blue.

Recall that the motivation for applying the proper or-
thogonal decomposition is to obtain information about the
long-term behavior of the %uidized-bed system. Suppose
that this behavior is captured by an attractor, denoted by
A (see Hale (1980) for a precise de=nition). Assume that
g(x; ti); i = 1; : : : ; M , represents the scalar spatio-temporal
measurements produced by numerical simulations or ex-
perimental work. In practice, one must =rst compute the
time-average

Qg(x) =
1
M

M∑
i=1

g(x; ti);

in order to produce a new set of measurements, u(x; ti) =
g(x; ti)− Qg(x), with zero average. Let % denote the symme-
try group of the system of interest. The symmetries of the
attractor form a subgroup of % de=ned by

%(A) = {&∈% | &A=A}: (15)

Dellnitz, Golubitsky, and Nicol (1994) made the crit-
ical observation that symmetries of attractors of partial
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Fig. 3. Sequence of reconstructions (rec.) with successively higher-order POD modes for the simulations shown in Fig. 1. Time is held =xed at t = 100.
Level of detail increases from right to left, with the highest-order reconstruction next to the original image. (a) �g: Volume fraction of %uid phase, (b)
Pg: gas pressure, (c) Ps: solids pressure, (d) vg: gas velocity along the y-axis.

diCerential equations, such as two-%uid model equations
(1) and (2), appear as symmetries of the time-average,
Qg(x), independently of the symmetries of the instanta-
neous scalar =eld g(x; ti). Unfortunately, the converse is
not always true. The symmetries of the time-average do
not necessarily re%ect the symmetries of the underlying
attractor. This implies that reduced-order models obtained
via Galerkin projections from partial diCerential equations
onto POD modes might lead to ordinary diCerential equa-
tions with more symmetry than is present in an actual nu-
merical simulation or experimental investigation (Dellnitz
et al., 1994). There are, however, various methods which
ensure that the reduced Galerkin models can retain the same
symmetry properties of the original system. For instance,
Sirovich (1987) has proposed that data sets be enlarged by
symmetry operations prior to performing the POD decompo-
sition. Dellnitz et al. (1994) have also proposed a method for
constructing an appropriate reduced-order model by com-
bining the POD decomposition with the computation of the
symmetry type of the underlying attractor using detectives.
An additional procedure, called “template =tting”, has also
been proposed more recently (Rowley & Marsden, 2000).

These procedures will be taken into consideration in future
work.
As shown in Fig. 2, the time-average and the POD modes

of all representative variables have a channel structure where
the main %ow motion is con=ned. Computer animations
of the reconstructed %ow with increasing numbers of POD
modes, from one to 10 (including the time-average), were
performed and compared with the original simulations. Vi-
sual inspection of these animations reproduce the overall
motion through the middle of the channel structure. For
example, Fig. 3 shows a time snapshot of various recon-
structions with successively higher-order POD modes of the
variables shown in Fig. 1. Each reconstructed snapshot (rec.
1–9) was computed using a partial sum m¡M of Eq. (4),
with time held =xed at t = 100. As the number of modes
increases, each individual reconstructed image shows less
re%ectional symmetry. In addition, high-dimensional fea-
tures, such as motion along the sides of the channel, become
more visible. In the particular case of gas pressure, Pg, the
time-average and the =rst four POD modes reveal a layer
structure with diCerent pressure values that run from the bot-
tom to the middle of the bed. A careful examination of POD
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Fig. 4. POD energy spectrum of some representative spatio-temporal variables: (a) �g, (b) Pg, (c) Ps, (d) vg.

reconstructions indicates, however, that the circular features
that appear in some of the modes are physically related to the
burst of gas pressure that emanates from the nozzle located
at the bottom-center of the bed. Both the channel structure
of the %ow and the layer structure of gas pressure are con-
sistent with reported experimental work (Kuipers, Tammes,
Prins, & van Swaaij, 1992).
The POD energy spectrum of the sampled variables is

shown in Fig. 4. The spectrum of gas pressure shows that
more than 85% of the POD energy is captured by the =rst
two modes, which form a layer structure. We can also ob-
serve that the POD energy increases rapidly as the num-
ber of modes increases. Such rapid roll-oC of energy can
be attributed to the fact that spatial variations in gas pres-
sure are relatively close to its time-average; the gas pressure
is inherently spatially averaged. This conclusion strongly
suggests that the spatio-temporal dynamics of gas pressure
is low dimensional, which is encouraging with respect to
building a reduced-order model. The spectra of the other
variables show that more modes are necessary in order to

Table 2
POD energy vs number of modes for �g; Pg; Ps and Vg

POD energy (%) Number of modes

�g Pg Ps Vg

80 34 2 14 40
85 43 3 20 68
90 77 4 34 123
95 214 5 70 356
99 480 20 395 490

capture high-dimensional features of their dynamics, such
as details of the %ow near the walls. The number of modes
necessary to capture various levels of the POD energy are
shown in Table 2. The exact number of modes employed in
Galerkin reductions is typically chosen based on empirical
considerations. Some authors (Sirovich, 1987) recommend
a nominal criterion of using as many modes as necessary
to capture 99% of the energy, though there are cases where
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Fig. 5. Time evolution of POD amplitude coeGcients in the 10-mode decomposition of the gas jet simulation: (a) �g, (b) Pg, (c) Ps, (d) vg.

a 75% cut-oC suGces to capture low-dimensional eCects
only (Palacios, Gunaratne, Gorman, & Robbins, 1998). In
our case, =nding an energy cut-oC depends greatly on how
important the high-dimensional wall eCects are. On the other
hand, if the priority is to construct a model that can capture
the overall dynamics within the central channel, then fewer
modes might be adequate. This issue will be further inves-
tigated in future work.
In order to choose a set of orthogonal POD modes for the

Galerkin reduction or projection, we should consider =rst
that the simulations of Fig. 1 were obtained by integrating

two-%uid models (1) and (2) over a rectangular domain of
124×108 grid points, which can be considered as R124×108.
Since the POD modes obtained from these simulations are
orthonormal bases of R124×108, then in principle, we could
use the modes from any particular variable to represent the
other variables. However, this was not attempted in this
numerical study.
Fig. 5 shows the time-dependent amplitude coeGcients

associated with the reconstruction using the 10 POD modes
of Fig. 2. These time series reveal some well-de=ned struc-
tures, which also support the existence of low-dimensional
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Fig. 6. Phase space projections of amplitudes coeGcients obtained through the proper orthogonal decomposition of void fraction of the gas phase. The
projection reveals low-dimensional dynamics in the form of cycling behavior.

deterministic dynamics. To gain insight into the actual struc-
ture of the attractor, we can use the time series to plot
phase-space projections. For instance, Fig. 6 shows two
projections from the amplitude coeGcients associated with
gas volume fraction, �g. The relatively closed nature of
the resulting curves further illustrates the presence of a
low-dimensional attractor. An animation of �g reconstructed
with the three most energetic modes captures the overall
variations of gas void fraction along the central channel
which results in the time-average of Fig. 2(a).

5. Conclusions

Numerical simulations and POD of gas–solid interactions
in a two-dimensional %uidized bed were carried out to ex-
plore the feasibility of deriving a reduced order model via
Galerkin methods. The governing equations were written in
strong conservation form and solved using the MFIX code.
The focus of the work was on simulations of a bed of sand
particles at uniform minimum %uidization, but with excess
gas injected through a central jet. The proper orthogonal de-
composition was used to identify and extract spatial dom-
inant features from relevant spatio-temporal variables. The
results indicate that a low number of POD modes can cap-
ture the overall characteristics of the motion, which on av-
erage, appears to be con=ned to a central channel formed
from the bottom to the top of the bed. This channel structure
contains, approximately, the re%ective symmetry of the bed.
Large number of modes are needed, however, if we are also
interested in capturing the =ne details of the spatial features
of the %ow near the central channel. Phase-space plots fur-
ther illustrate the existence of a low-dimensional attractor
with approximate re%ective symmetry. Consequently, pro-
jecting the governing PDE model onto the POD modes, as
is common practice for Galerkin methods, can lead to the
desired reduced order models. The development of this last
task is part of future work.

Notation

E total energy per unit volume
Fgs drag force between %uid and solids
g̃ acceleration due to gravity
P pressure
t time in Cartesian coordinates
ṽ velocity vector
(x; y) Cartesian coordinates

Greek letters

� void fraction
) viscosity
� density
QQ�g deviatoric stress tensor
� basis function

Superscripts

− time average
∗ complex conjugate

Subscripts

g gas phase
POD POD reconstruction solution
s solids phase
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