Cellular pattern formation in circular domains
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An analysis of stationary and nonstationary cellular patterns observed in premixed flames on a
circular, porous plug burner is presented. A phenomenological model is introduced, that exhibits
patterns similar to the experimental states. The primary modes of the model are combinations of
Fourier—Bessel functions, whose radial parts have neighboring zeros. This observation explains
several features of patterns, such as the existence of concentric rings of cells and the weak coupling
between rings. Properties of rotating rings of cells, including the existence of modulated rotations
and heteroclinic cycles can be deduced using mode coupling. For nonstationary patterns, the modal
decomposition of experimental data can be carried out using the Karhuneve-(iie) analysis.
Experimental states are used to demonstrate the possibility of using KL analysis to differentiate
between uniform and nonuniform rotations. The methodology can be extended to study more

complicated nonstationary patterns. In particular, it is shown how the complexity of “hopping
states” can be unraveled through the analysis. 1997 American Institute of Physics.
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Recent studies of pattern formation on experimental sys-
tems and mathematical models have clearly demon-
strated the existence of “universal” features that depend
strongly on the nonlinearities of the physical system and
the geometry of the domain. Motivated by the observa-
tion of novel stationary and nonstationary cellular states
on a flame front, we develop a coherent scheme for the
analysis of cellular patterns generated on a circular do-
main. The uniform flame front can bifurcate to a variety
of cellular states depending on the size of the individual
cells. The form of these primary modes are determined
using data from experiments and also from the integra-
tion of a phenomenological model. It is demonstrated that
apparently complicated dynamics can result from the
coupling between a few principal modes.

I. INTRODUCTION

future. In addition, the role played by the geometry of the
system and intricate connections between distinct states are
best studied in simplified models.

In this paper we demonstrate how a phenomenological
model and bifurcation theohcan be used to understand cer-
tain aspects of cellular pattern formation on a circular flame
front. Bifurcations from the unifornflat) flame front lead to
patterns of concentric cells through spontaneous symmetry
breaking. The circular geometry suggests an expansion of the
broken-symmetry states in a Fourier—Bessel series. In pa-
rameter domains where two or more distinct modes compete,
their coupling can have subtle and interesting effects that can
be described by the appropriate normal form théc®gveral
properties of stationary and nonstationary cellular states of
the flame front are explained as consequences of this
analysis.

In the next section, we describe the experimental system,
which consists of a circular burner that produces a combus-
tion front from a uniformly flowing mixture of a fuel and air.

Flame patterns generated on a circular burner exhibit &0r suitable control parameters the flame front consists of
wide array of complex spatiotemporal states with novel feacellular states, such as that shown in Figg)10bserve that

tures. They include cells that exhibit uniform rotatidnis;-
termittent motiond and chaotic dynamict* Realistic mod-

the aspect ratigthe size of the combustion front to that of
the cellg is of the order of unity, so that the boundary con-

eling of the system combining the reaction-diffusion ditions play a crucial role in the determination of the cellular

equations with the appropriate fluid dynamics would, in pri

n-Structure. Figure (&) shows a state with two rings of differ-

ciple, provide a panoptic description of all observed states of Nt Symmetries. The inner ring contains three oellsd has

the system. However, the capabilities for conducting this for
midable computational task will not be available in the nea
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rcells (and is approximatelDg invarian). The experiments
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approximateD 5 symmetry while the outer ring has eight

also show many nonstationary states like rotating rings of
cells! hopping modes (where three cells rotate
nonuniformly?) and ratcheting state@vhere two rings of
cells move intermittently with different mean rotation ratés
The mode-coupling theory is expected to describe the
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464 Palacios et al.: Cellular pattern formation

(b)

FIG. 2. (a) The intensity of a single-cell rotating state, affil the corre-
sponding numerically generated state. The setting of the video camera re-
quired to view the cellular flames leads to a saturation of the intensity.
Consequently, the experimental data need to be filtered prior to a modal
analysis.

FIG. 1. (a) Stationary pattern of cells from the experiments, &bdthe
analogous pattern from the integration of the mogel). Notice that the
pattern consists of two rings with approximate symmetbigsand Dg.

mechanisms for the generation of these states.

Figure 2a) shows the intensity of a single rotating cell Dirichlet boundary conditions chosen for the phenom-
recorded on a video tape. A suitable modal decomposition oénological model suggest that the destabilization of the uni-
the state would lead to an understanding of the cell shape arfdrm state leads to a state whose intensity is proportional to
the origin of the motion. The preliminary analysis is carrieda Fourier—Bess&FB) function® Linear and nonlinear stabil-
out on a humerically generated pattern. In Section Ill, a pheity analysis of this bifurcation is given in Section Ill. It is
nomenological model is presented to study the characteristideund that the primary bifurcations are subcritical. In Section
of cellular patternSin a circular domain. The equations of 1V, examples are presented that show how the subcriticality
the model are constructed with terms that describe the domif the primary bifurcations and proximity of certain zeros of
nant physical mechanisms of the reaction and diffusion of dhe Bessel functions can lead to states consisting of rings of
single species. The model is not meant to be a “realistic”cells.
description of the combustion procesgaspremixed flame Several experimental manifestations of the mode-
front contains many species, has heat loss to the burner, amdupling theory are provided in the remainder of the paper.
produces a modification of the flow figldand can be inte- In Section V, we present examples of rotating cells both
grated in polar coordinates using computationally efficienfrom the experiment and the model. The Fourier—Bessel ex-
algorithms. Figure (b) shows contours of a stationary state pansion of a single rotating cell demonstrates the existence
from the model analogous to Fig(d, while Fig. 2b) shows of two leading FB modes whogezimutha) frequencies are
the intensity of a single cell rotating state. in a ratio 1:2. The results from the numerical integration
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exhibit cellular states which rotate uniformly as well as thosehopping motionare found in isobutane-air mixtures but not
that rotate nonuniformly. In addition, dynamical states thatin propane-air mixtures.
move on a heteroclinic cycle between a pair of two-cell  The distinctive feature of the patterns which form in pre-
states related by symmetry are presented and analyzed. mixed flames on a circular porous plug burner is the complex
The existence of nonuniform rotating states and heterosequence of bifurcations from ordered patterns of concentric
clinic cycles was predicted by the normal form theofy  rings of cells to nonstationary patterns in which the rings of
when the primary bifurcations are supercritical. Our resultscells move collectively in an intricate manner. In rotating
suggest that the bifurcation sets corresponding to subcriticatates, asymmetrically shaped cells rotate at a rate of ap-
and supercritical bifurcations are similar. In the Appendix weproximately 100 deg/s. In hopping states individual cells se-
present the normal form theory which corresponds to theuentially make abrupt changes in their angular positi@ns
case when the bifurcations to pure modgs., Fourier— Hz), while in ratcheting states one or more rings(appar-
Bessel modesare degenerate. The bifurcation diagram will ently) symmetric cells drift slowly(1 deg/$ except for inter-
be structurally stable under the unfolding of the degeneracymittent jumps. These motions have only been observed in
thus explaining the similarity of the subcritical and super-this system. In addition, the ordered states are unique among
critical cases. pattern-forming systems in that the boundaries between the
In Section VI, we argue that the Karhunen-kegKL ) cells exhibit small amplitude chaotic oscillations about their
analysis can be used for the modal decomposition of nonstaquilibrium positionsA priori, the description of these mo-
tionary patterns on the flame front. It is used to differentiatetions requires high accuracy measurements of the positions
between experimental states with uniform and nonuniformand shapes of the cells in each frame.
rotations. It is further argued that the KL decomposition can  The height of the flame front is seen to be at a constant
be used to eliminate higher dimensional effects from experiheight at the boundary, except along a small length between
mental data, thus allowing a direct check of the effects othe cells of the outer ring where it extends slightly further.
mode coupling. As shown through several examples, th&his observation suggests the use of Dirichlet boundary con-
modal decomposition of these spatiotemporal states unravethtions (as an approximatignon the model equation intro-
their complexity and leads to the deduction of the appropri-duced in the next section. A co-flow of inert nitrogen gas can
ate normal form equations. be sent through an annular disk surrounding the porous plug
In the concluding section the methodology introducedto reduce the shear between the premixed gas and the ambi-
here is used to analyze more complex dynamical states cent vacuum. However, this co-flow has never produced an
the circular domain. Modal decompositions of “hopping observable change on the dynamic states. In some experi-
states” provide the “primary” modes necessary for their ments the cellular flame front does not completely fill the
existence, and demonstrate the need for studying mode coarea of the porous plug, leaving a substantial region of unre-
plings that do not appear naturally in one-dimensionalacted premixed gas which then effectively acts as a weak
problems. co-flow. Occasionally, the edge of the flame front is seen to
curl upward slightly. There is no evidence that either of these
characteristics has any appreciable effect on the dynamics.

Il. THE EXPERIMENTAL SYSTEM

. . IIl. THE PHENOMENOLOGICAL MODEL
The experiments are conducted on a circular porous plug

burner mounted in a combustion chamber kept at a pressure The aim of this work is an understanding of “character-
of 0.3-0.5 atm. The fuel and air are mixed prior to theiristic” aspects of cellular patterns generated on circular do-
entrance into the porous medidrithe uniform velocity field mains. In particular, we wish to explain why the cellular
produces a flat flame front, a circular luminous disk, 5.62 crrstates consist of rings of cells and to determine mechanisms
in diameter and 0.5 mm thick, that sits 5 mm above thethrough which nonstationary states are generated. We would
porous plug. The pressure, flow rate and fuel/oxidizer ratialso like an explanation of the wediut nonzerpinteraction

are controlled to within 0.1%. A Dage-MTI charge-coupled between distinct rings of cells. The underlying suggestion is
device camera is mounted either vertically on the top of thehat these features arise primarily from spontaneous symme-
combustion chamber or horizontally in the plane of the flamery breaking and the geometry rather than from the specific
to record the dynamics on videotape. physical mechanisms that govern the flame front.

Beyond a critical value of a control parameter, the flame ~ The Kuramoto—Sivashinsk§KS)'? equation is the sim-
front curves(locally), forming patterns of concentric rings of plest model of the thermodiffusive instability. It is derived
brighter (hottep cells whose boundaries are demarked byby making a series of simplifying approximations of diffu-
darker(coolep cusps and folds. These cusps extend about Sion equations for two variabldshemical species and hgat
mm further from the porous plug. In a typical experimentcoupled to fluid equations, and it captures qualitative features
different patterns are selected by varying the flow rate anaf cellular flames in extended domaitis:* To preserve the
the equivalence ratio. Variations in the pressure are made 1©(2) invariance of the system, the integration has to be car-
adjust the range of the number of cells. For example, singleied out in polar coordinates. The difficulty of integrating the
rings of cells are stable at 0.3 atm, but not at 0.5 atm. ChangkS equation in polar coordinates prevents us from using it
ing the fuel can lead to additional patterns; ratchétiagd  for our study.
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466 Palacios et al.: Cellular pattern formation

The phenomenological model used is a modification othe mode mixing implied by the presence of gradient terms
the “Brusselator”(expanded about its uniform solutipl? It and the Dirichlet boundary conditions plays a significant role
describes the evolution of two coupled, diffusive spatiotem-in generating the nonstationary states.
poral fieldsu(x,t) andv(x,t) through A. Linear stability analysis
du=k1V2u+(B—1)u+A% - nud-v,(Vu)?, (3.1 A smooth fieldu(x,t) vanishing on the boundary of a
20 = K,V 20 — BU— AZp — 70°— 1y(V)2, g(recslélgrsdec;irzglgsof radiuRk can be expanded in a Fourier
The parameterg,; and«, are thediffusion coefficientsf the
two fields which are coupled linearly. The cubic terms con- u(x,t)=2 Zom(DY (1, @) +c.c., (3.2
trol the growth of the linearly unstable modes, while the mm
nonlinear gradient terms render the model nonvariationalwhere W ,.(r,)=J,(a,f/R)e™?, (m=0 andn>0) and
The form of the latter is similar to the nonlinear term of the c.c. denotes the complex conjugafedere J, (r) is thenth
KS equation, where it appears as a consequence of the cusrder Bessel function of the first kind ang,,, is its mth
vature of the flame front The shape of the boundary of the nontrivial zero.z,,, are complex coefficients, save fa,
flame front(discussed in Section)imotivates the imposition  which are real. The orthonormality and completeness of the
of Dirichlet boundary conditions on the fieldg(x,t) and  functions{¥,,: n=0, m=1} gives
v(x,t). We do not believe that the results of the numerical

. . . K 1 27 (R —

studies discussed _here depend on.thls f:h0|ce. an:ﬁz—f f ru(r, o)W (v, ¢)dedr,
In order to retain the rotational invariance of the system, 7RI 1(anm) Jo Jo

we carry out the numerical integration in polar coordinates (3.3

(r,¢). The form of the Laplaciar§®=dy +1 "0 +1 2344 with the proviso that the coefficients are half of the value
produces alcoordinatg singularity at the origin, which is given whenn=0.

avoided by partitioning each diameter into an even number  Thys the uniform stateu(v)=(0,0) is stable if all per-
of equally spaced lattice points. The numerical integration is,rpations of the typedu, 5v) ¥, decay. The marginal sta-
carried out semi-implicitly through an Alternating Direction pjjity corresponds to those parameters whan least one
Implicit (ADI) algorithm in ,¢) coordinate¥. Each non- g ch perturbation is marginal. Using
linear termN[u(x,t),v(x,t)] is expanded to linear order in y2y — _(, /R)2¥_ _ and substituting in Eq(3.1)
Su=u(x,t+ ot) —u(x,t) and dv=v(x,t+ ot)—v(x,t), thus gives

linearizing the equations in(x,t+ 6t) andv (x,t+ 6t). Each

step of the integration is carried out first along the diameter @[ dU(t)} (Mg Myp| [ Su(t)
and then azimuthally, with a time steft (=0.05 small At sut)] \my myl\ o))’
enough to justify the truncation of the expansion of nonlinear B 9 2 .
terms. For several states it was checked that the results afd'e"® mlzl_B_ 1= Kl(‘;‘nsm’R) » Mip=A", my=-B and
unchanged with smaller time steps. The numerical algorithn{'22~ ~ A"~ k2(@nm/R)”.” The uniform state destabilizes to
fails in the case of the Kuramoto—Sivashinsky equation du nm("»#) beyond the curve
to the existence of the ter¥i*u, which when expanded in " K1 anm? A% R |2

polar coordinates gives terms with cross derivatives such as Bam=1+ A%+ Kl( R ) —( ) . (3.9
dyr gU. In our numerical integrations, the ADI algorithm was 2
seen to develop divergences at the origin when such ternfsor @ given value of\, it reaches a minimum of

(3.9

K K2\ &nm

are included. P P
Figures 1b) and 4b) show stationary states generated Bo=1+ a2y 2A\ﬁ (3.6
through the integration of the model. These are similar to the K2 K2
experimental patterns shown in Figs(al and 4a). As  at a radiusR,,= apm( K1k /A?) Y4 The results presented in
shown later, we are also able to reproduce several nonstghis paper are evaluated with fixed values ©f=0.2,
tionary states that are analogous to experimentally observed,=2.0 andA=5.0. B andR are used as the control param-
patterns. eters. The marginal stability curves of the trivial state to
Although one would expect to obtain nonstationary several Fourier—Bessel modes are shown in Fig. 3.
states by using any nonvariational mofiglich as replacing
the quadratic terms witk u(x,t)v(x,t)], we have only suc-
ceeded in doing so with the inclusion of the nonlinear gradi-
ent terms. This is particularly unfortunate, since the absenc
of the gradient terms would have allowed the reduction of  For parameters considered in the paper, it is found that
Eqg. (3.1) to a set of ordinary differential equations for the the bifurcations from the uniform state to the FB modes are
dynamics of Fourier—Bessel coefficients. The presence of theubcritical. The following calculation for the instability to
nonlinear gradient terms result in the coupling of a largeW; supports this observation. The presence of the quadratic
number of FB modes and prevents the reduction of(Bq)  (gradienj term implies that we need to expand the fields
to the set of ordinary differential equations. It is possible that(u,v) as

E' Nonlinear stability analysis
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IV. ORDERED CELLULAR STATES

@

1 " By The discussion of the last section suggests that primary
: B,, pM bifurcations from the uniform state lead to modes that are
; B;g 12 proportional to the Fourier—Bessel functions. This appears to
! be the case in some of the single ring flame patterns. Mul-
750 BM| M tiple ring Fourier—Bessel modes have also been observed in

patterns from the Faraday experimet4’in this section we
suggest, through examples, possible reasons for the con-
B B,y spicuous absence of the multiple ringed FB stdsexh as

: W2 in the flame patterns.

The presence of the nonlinear gradient terms and the

7¢ { imposition of Dirichlet boundary conditions imply that pure

| FB modes cannot be solutions of the phenomenological

: \ “ model (3.1) because all terms except the gradients vanish at
)“‘

the boundary of the domain. Consequently, solutions to the
model equations will have to be combinations of FB modes,
t whose gradient vanishes at the boundary. The existence of
65 1 2 3 a cellular states can be traced to the proximity of certain roots
R of the FB functions, as we demonstrate through examples.
fG. 3 Mardinal stabiit | hich th . . The three ring cellular state shown in Figagcan be ap-
o B st e " pro¥imated by a combination of he mo¥s; 1, ¥ss. and

curves are evaluated for fixed valueskgf=0.2, k,=2.0 andA=5.0.B and Wo. Observe the p_rOX|m|ty Of)‘12,1’ ‘1’6_33' and ag alIO_V\_/ )
the radius of the domaiR are used as control parameters. these modes to be simultaneously excited. The subcriticality

of the primary bifurcations, which imply the finiteness of the
amplitudes, coupled with the necessity for the gradients of
the fields to vanish at the boundary, make it imperative that
u(x,t)=u; ¥y +u ¥ tc.c, (3.7) such a combination of modes be excited.
) As a second example we give the modal decomposition
of the two-ring pattern with rings of thref®) and eight(8)
This form for the fields will be substituted in E¢3.1) and  cells, see Fig. 1. The two rings have distinct symmetries, and
we will study its equilibrium by projecting onto the direc- hence can be separated as follows. Fourier—Bessel decompo-
tions ¥, and¥,;. In order to complete the calculation we sition of the state shows that the largest amplitudes corre-
write (Vu)2= 71U2U_1‘1’11+ 72U§‘I’21- ... and asimilar ex- qund to modes wit.h[fnm with m= 0,3,6,8_,9, anq 16. Com-
pression for Fv)2.8 Substituting these in Eq3.1) and pro- bln_lng the modes W|tmn=3_,6,9 gives the inner ring of cglls,
jecting gives up to quadratic order in, U,, v; andv,, Whl|e the sum of modes witn= 8,16 provide .the outer ring.
Figure 5 shows the results of the decomposition, and leads to

U(X,t) = Uqull—’_ U2’\I,21+ C.C.

MyqUy + My 1 — 1 YU U =0, an interesting observation. The intensity of each combination
of modes is small outside of the corresponding ring. This
mjqU,+ mlzvz—vlyzuf=0, 3.9 feature may explain why the rings of cells are weakly

_ coupled to each other in the nonstationary states.
MUy + Moo+ v2y10201=0,

2 V. NONSTATIONARY STATES: ROTATING RINGS OF
MyqUp + Myt o+ v, y,01=0. CELLS

It followl\s/I that the §t.ate is cre&ted along the marginal stability — he utility of modal decomposition for the study of non-
curve Byy(R). Writing B=Bp,+ 6B, Eq.(3.1) can be re-  stationary states can be demonstrated through the analysis of
duced to give a rotating ring of cells. Evidence for the existence of addi-
SB=c|uy|?, (3.9 tional npnst.ationary' states, predicted by the normgl form
theory, is given. It is known from experimental studies of
where the prefactoc is negative for parameters considered one-dimensional systems that cellular patterns on interfaces
in the paper. Thus small amplitude solutions to Eq. 3.1 existrift when the cells are not invariant under reflectiéh¥he-
when 6B<0, and hence the bifurcations from the trivial oretical analyses show how the asymmetry, which results
states are subcritical. Figure 7 shows the bifurcations to thérom the coupling of modes with a wave-vector ratio 1:2,
modes¥,; and ¥,; which were obtained through the nu- leads to drift mode&!%?? These results have not been
merical integration of Eq(3.1). A significant implication of checked in geometries beyofessentially one-dimensional
the subcriticality is that théobservablg bifurcating states systems.
have finite amplitudes. Consequently, the nonlinear terms are Figure 6 shows three pairs of patterns from the flame
crucial to determine the form of nontrivial states. front. The stationary patterns in Figgah 6(c) and Ge) have
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FIG. 4. Stationary cellular patterns generated in(#eexperiment andb)

mechanism by which such cellular statéss opposed to pure Fourier—

Bessel modescan be formed.

the same number of cells in each ring as their rotating courterns. Figure 7 shows the parameter space in the neighbor-
terparts shown in Figs.(B), 6(d) and &f), respectively. The hood of the mode coupling betwedn,; andW¥,,. The pri-
rings shown in Figs. ®) and &d) are both rotating in a mary bifurcations to each pure mode are subcritical, as
clockwise direction. In Fig. @) the outer ring is fixed and expected from the analysis of Section Ill. The shaded region
the inner ring rotates in a counter-clockwise direction. Theto the left of the stability domain ofV,; contains several
rotation of a ring at given control parameters can be eithedistinct nonstationary states. The first bifurcation moving
clockwise or counter-clockwise depending on the initial con-right) occurs along the left edge of the shaded domain. It
ditions. The crucial observations are that the cells in eacleads to a single uniformly rotating cell, which undergoes a
rotating ring have lost their chiral symmethand that the
direction of rotation depends on the sense of the asymmetrghape is periodic. The final bifurcation, which occurs close
Fourier—Bessel decomposition of these states demonstratesthe right edge of the shaded region leads to a heteroclinic
that the asymmetry is produced by the phase difference afycle between a pair of two-cell states which are at right
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FIG. 5. The(a) inner and(b) outer ring of the state shown in Fig(. The
rings are separated via a FB expansion as described in the text. Observe that

the model, which have similar characteristics. In Section IV, we suggest 41€ intensity of the field outside of the rings is small. This may explain why
the interaction between rings is small in nonstationary patterns, such as the

ratcheting states.

Hopf bifurcation to a state whose angular velocag well as

the modes. The blurring created by the rotation does noangles to each other.

contribute to the observed asymmetry of the cells. These
observations reinforce the relationship between the geometmal integration of Eq(3.1) are presented in Fig. 8 along with
the analogous experimental states. The chiral asymmetry is
demonstrated by contrasting FigaBwith Fig. 8b) and also

We choose to study a single cell, the analysis of whichFig. 8(c) with Fig. 8(d). The computed and experimental cell
captures many essential features of the rotating cellular pashapes are similar as seen by comparing Fig) 8nd Fig.

(chiral asymmetry of cells and the dynamic&otation of

rings of cells.
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FIG. 6. Six cellular patterns generated on a circular flame fr@htand (c)
show stationary rings of two and six cells, respectivély;shows a ring of
two cells, while(d) shows a ring of six cells, both rotating clockwise)
and(f) are states with a fixed outer ring and an inner ring of two cells. The
cells in the inner ring ofe) are stationary, while those ¢f) rotate counter-

1 1.5 R 2

FIG. 7. Parameter space in the neighborhood of the mode-coupling between
V¥,, and¥,,. Observe that the primary bifurcation to each pure mode is
subcritical. The shaded region to the left of the stability domainbgf
contains several distinct nonstationary states. The first bifurcéiomov-

ing right) leads to a single uniformly rotating cell, which experiences a Hopf
bifurcation to a state whose angular velodias well as the shapés peri-

odic. The final bifurcation occurs close to the right end of the shaded region,
and leads to a heteroclinic cycle between a pair of two-cell states related by
symmetry.

via a Hopf bifurcation, confirming the predictions of the nor-
mal form theory. The heteroclinic cycles observed at the
rightmost edge of the shaded parameter domain are shown in
Fig. 11(a). Figure 11b) shows the behavior of the phases of
the FB coefficients.

clockwise. Observe that cells belonging to the stationary rings are chirally 10 the best of our knowledge our experimental and nu-

symmetric, while those of the rotating rings are not.

8(c), and also Fig. &) and Fig. &). The Fourier—Bessel

expansion of the rotating cell confirms that the modes with

largest amplitude ard’y,, ¥, and ¥,,. The real coeffi-

cients zy,, are constants of the motion. The amplitude and

phase of the coefficients; andz,;, shown in Fig. 9, indi-
cate that the state undergoes uniform rotation.

The presence of the nonlinear gradient term and the van-

merical states are the first observations of cellular parity-
broken modes beyond those on one-dimensional interfdces.

ishing of the field at the boundary require the existence of
secondary FB modes that are “slaved” to these primary
modes. The behavior of their coefficients is similar to that of
the corresponding primary mode. Thus, for the state shown
in Fig. 8@ the amplitude of coefficients,,, z,3, etc., will

be constant, and their phase will have the same slope as that

of z41.
In addition to the uniformly rotating states, the normal

form analysis predicts the existence of nonuniformly rotating

states, as well as a heteroclinic cy2f€.We observe these

states close to the right edge of the shaded region of Fig. 7,

the very edge of which exhibits the heteroclinic cycle. Figure

10(a) exhibits the evolution of the amplitude and phasegf
and z,4 for a nonuniformly rotating cell. The periodicity of
both the cell shape and angular spésgidown in Fig. 10b)]

FIG. 8. (a) Clockwise andb) counter-clockwise rotating states of a single
cell from the model, and the analogous std®sand(d) of the experiment.
Observe the qualitative similarity of the cell shape in the two cases. The
parameters generating the rotating state gre2.0, »,=0.5, v,=1.0,

suggests that the bifurcation to nonuniform rotation occur®=6.80 andR=1.35.
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) ] ) FIG. 10. (a) The evolution of thel@ amplitudes|z,,| and|z,,| of the pri-
FIG. 9. The evolution of théa) amplitudes|zy;| and|z,,| of the primary  mary Fourier—Bessel coefficients, aftg} the corresponding phases, of the
Fourier—Bessel coefficients, aifio) the corresponding phases, of the cellu- nonuniformly rotating cell. The “phase asymmetry” g2— 6,) is a peri-

lar state shown in Fig. 8 reveal that it is pure drift mode. The “phaseggic function. The parameters that give this state are the same as Fig. 8,
asymmetry” (20,— 6,) is constant. except forR=1.37.

Furthermore observations of the nonuniform rotations andiotemporal fieldu(x,t), in terms of a time-independent or-
heteroclinic cycles resulting from the-2k mode coupling  thogonal basis{¢;(x)} and time dependent amplitudes

have not been reported before. {a;(t)}, such that the reconstruction
VI. MODAL DECOMPOSITION OF EXPERIMENTAL u(xt)=2ia(t) $i(x) ©.D
DATA has a smaller mean-square truncation error than in any other

i 24-26 ; ) ;
For nonstationary patterns, we demonstrate the feasibif;)as'sz;, The funcuons.,{d),(x)},. determined from the
. . . e data” u(x,t), are the eigenfunctions of a correlation ma-
ity of using the Karhunen—Lae (KL) decomposition to ob- trix. The associated eigenvaluks satisfy
tain the modes relevant to the dynamics. Karhunenv&oe ' 9 ®
decomposition provides an expansion of a given smooth spa-  (a;(t)ay(t)) =\;djx, (6.2
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which is the only information needed to deduce the normal
form equations.

Figure 12b) shows the five leading modes from the KL
decomposition of the nonuniformly rotating single-cell state,
several snapshots of which are shown in Fig(@l2These
modes capture over 99% of the energy, and give the repro-
duction shown in Fig. 12). The first KL mode, which con-
tains the largest energy, is the time average of the data; it is
0O(2) symmetric?’ The next two modeéwhich can be con-
sidered to be the real and imaginary parts of a complex mode
analogous toV ,, of the Fourier—Bessel expansjoare (ap-
proximately D, invariant. These pairs of KL modes are
combinations of several FB modes of the tyfq,,. The
largest contributions to these come from,;, ¥, andW¥ 3.

The phases of these modes are slightly different, leading to
the small asymmetry observed in the KL modes. The second
pair of modes are approximately, symmetric, and their
expansion consists o¥,,’'s. Ignoring their asymmetryor
taking their largest component in the FB expangiame can
thus deduce the modal decomposition of the rotating states,
and the appropriate normal form theory.

Figure 13a) shows several snapshots of an experimental
state with a single rotating cell. Figure (b3 shows the KL
modes with the largest energies, and Fig(cl3jives the
reconstruction using the first 5 modes. The distinctive asym-
metry of the KL modes is due to the phase difference be-

35 m 20 30 e =0 0 tv_veen the differentz,,,’s for a fixed n. A_nalysis of artifi-
¢ cially saturated data from the model indicates that the cutoff
(b) of experimental dat@Fig. 1(b)], and the form of boundary

FIG. 11. (a) The two saddle points of a heteroclinic cycl®) shows the Cond!tlons play arole in this asymmetry' The behavior of the
evolution of the phases of the Fourier—Bessel coefficieptandz,,. The amplitudes of the KL modesFig. 14a) can be used to
parameters that give this state are the same as Figure 8 excdptth#. deduce that the rotation is nonuniform. Figure 15 provides
the results of the analysis of a rotating state with two cells,
and the rotation in this case is seen to be much closer to
where( - ) denotes the time-average operatorrepresents being uniform(Fig. 14(b)).
the variance of the signal(x,t) in the direction of thejth Finally, Fig. 16 shows the results from the KL analysis
eigenfunction. Alternatively, ifi(x,t) is considered as a ve- of a cycle between two distinct states. The phase of the
locity field, then each; represents the average “kinetic en- (compley coefficients of the KL modesFig. 17) can be
ergy” in the jth mode and\; can be considered to be the used to deduce that the motion corresponds to a heteroclinic
total “energy” of the data or signal. If the total energy con- cycle.
tained in a given truncation of the KL expansion is close to
that of the original S|g_nal,_then the trun_cated expansion prog, s~ sSION
vides a good approximation of the original spatiotemporal
“data.” We have used a phenomenological model and bifurca-
The KL modes are estimated from the given spatiotemdion theory to understand certain aspects of cellular patterns
poral fields; consequently their analytical form, and symme-on a flame front. The work is complementary to a detailed
tries are unknown. This precludes us from deducing the nomumerical study of simplified models of a flame front, e.g.,
mal form equations for the amplitudes of KL modes. the Kuramoto—Sivashinsky equation. Our work aims to de-
Furthermore, the saturation of the intensities of experimentatermine the general features such as the existence of rings of
data[see Fig. )] will result in a proliferation of unphysical cells and the relationships between distinct patterns observed
KL modes, which can destroy symmetries of the KL modesin the experiments. It was shown through several examples
We have thus far not succeeded in developing a systemattbat certain features of both stationary and dynamic patterns
way to eliminate these problems completely. However, thecean be deduced using the appropriate theories of mode-
observation that the combustion front almost vanishes at theoupling.
boundary suggests that the largest Fourier—Bessel coeffi- The essential first step in the analysis is the identification
cients of a given KL mode may provide information about itsof the modes whose coupling leads to interesting patterns.
symmetries. As shown below, we can identifyith suffi- ~ We have shown how states consisting of rings of cells can be
cient confidence the symmetries of the coupled modes, established. Furthermore, we are able to dedabservablg
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{a) {c)

FIG. 12. The Karhunen—Lee analysis of a single nonuniformly rotating
cell generated in the modéB.1): (a) shows several snapshots of the state,
demonstrating the shape changes of the cell. The five largest KL modes ar¢
shown in(b). The first is the mean value of the field. The next two pairs of
KL modes are analogous to the real and imaginary parts of the FB functions
¥, and W5, (the former is well approximated by a linear combination of
v, ¥,andV¥ 5, while the latter is approximated by a linear combination
of ¥y, ¥,,, ¥y3andV¥,,). The reproduction using these five KL modes

is given in(c).

(a) (e}

B
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(b)

FIG. 14. The evolution of the amplitude of primary KL mode fay rotat-

ing single cell state shown in Fig. 13, clearly showing the periodic modula-
tions, and hence that the rotation is nonuniform. In conttagt which
shows the amplitude of a primary KL mode of the rotating two-cell state
shown in Fig. 15, indicates that the rotation is uniform.

properties of nonstationary states. In Sections IV-VI and the
Appendix, we have presented aspects of this analysis. Prop-
erties of cellular flame patterns appear to be intimately re-

lated to the orthonormal expansion appropriate to a circular
FIG. 13. The Karhunen-Lee decomposition of a single nonuniformly domain, i.e., the Fourier—Bessel expans:'iz)?f’. However,
rotating cell from the experiment. The layout is similar to that of Fig. 12. the patterns observed are not pure FB modes. but rather their

The distinctive asymmetry of the KL modes is due to the phase difference

between the FB coefficients. This is in part due to the saturation of the&¢ombinations. The Schritica"_ty of the pr_imary bifurcations,_
experimental data. and the presence of the gradient terms in the model explain
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FIG. 15. The Karhunen—Lee decomposition of a rotating state with two

cells. The layout is similar to that of Figs. 12 and 13. A good approximation

of these KL modes require about a dozen FB modes.

(
BEPZE

(a)

8]

FIG. 16. (a) Snapshots from a heteroclinic cycle moving between two
saddle points(b) the principal modes of the KL decomposition afoj the
reconstruction from these modes.

-1 1 1
0 50 100

t

FIG. 17. The phase of the KL modes for the heteroclinic cycle show the
motion between two saddle points.

why this can be the case. The Bessel functions of those FB
modes that combine to produce cellular patterns have zeros
in close proximity. In states with multiple rings of cells with
different symmetriege.g., Fig. 1, several FB functions con-
tribute to the cells in each ring. The observed weak coupling
between distinct ringgas is observed in ratcheting stdtes
where the inner ring rotates intermittently without affecting
the outer ring significantlyis also explained through the
proximity of roots of the Bessel functions. What is clear is
that the explanation of the origin of these features does not
lie in a microscopic theory of the flame front.

The introduction of anumerically integrable phenom-
enological model allows a comprehensive analysis of many
stationary and nonstationary states, including a study of the
effects of noise and those of boundary conditions. Stability
domains of distinct states can be obtained with greater accu-
racy; in particular, we have been able to locate nonuniform
rotating states and the heteroclinic cycles predicted by the
normal form theory. The ability to analyze experimental pat-
terns through Karhunen—Loe analysis complements these
results. To the best of our knowledge, nonuniform rotating
states and heteroclinic cycles of the type discussed have not
been shown to be present in experiments before. In future
work, the KL decomposition will be used to derive low-
dimensional approximations to the KS equatfon.

We conclude with a brief demonstration of the advan-
tages provided by a modal analysis in the study of more
complex nonstationary states. Figuresdl&nd 18b) show
snapshots from the “hopping state,” where three cells in a
single ring rotate with nonuniform angular speed. The dy-
namics and the evolution of cell shapes appears to be quite
complex and distinct for each cell; the trailing cell changes
its shape more than the other t@/&ourier—Bessel decom-
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(b) FIG. 19. The bifurcation set for E§A2). The trivial state ¢,v)=(0,0) is
stable foru,;<0 andu,<0. Along the linew,=0 the uniform state under-

FIG. 18. Hopping modes seen in tf@ experiment andb) the mode3.1). goes a bifurcation t&,, which is chosen to be degenerate. The bifurcation

Observe that the cell shapes and angular velocities appear to change inagrossu;=0 leads to a mixed mode which remains supercritical. TW,
complicated way. However a Fourier—Bessel decomposition of these statddTW and HC show bifurcations to traveling modes, modulated traveling
unravels this complexity, and provides the modes essential to study theodes, and heteroclinic cycles respectively. The parameders —1,
dynamics. e,=—2,e,=—1,e,,=0 ande,;= —1 are fixed.

position of the numerically generated state unravels most dfl-00014-94-1-0949. The prograris-TOOL andAUTO were
the complexity of the dynamics and reveals that the primarysed to obtain Karhunen—[{ee analysis and the bifurcation
modes excited¥,,, ¥, and ¥,;, undergo periodic mo- sets reported here.
tion. Not surprisingly, the zeras,,, a3; anday,, are close to
each other and thus the modes can be simultaneously
excited. APPENDIX: NORMAL FORM ANALYSIS

In order to develop the normal form analysis we need to

X : . ) A brief description of the normal form analysis corre-
deduce a representation of the invariances in terms of the . . , . .
e . . sponding to thé&— 2k mode coupling will be provided in the
coefficientsz,,, z3; and z4; of the Fourier—Bessel series.

. Appendix>°1° The primary bifurcations for our modéhs
Rotations are represented by 714,231,249 . . :
i 3ig 4i6 : . well as for the experimental systeérmre subcritical, see Fig.
—(z212€'%,25:€”"%,241€™"") while reflections are represented

— 7. Consequently, earlier analyses of the mode coupling,
by (215,231,241) —(Z12,Z31,Z47). Observe that the normal d y y Ping

: i =" though providing an insight to the possible bifurcation sets,
form depend_s only on the az'm‘_“ha' index of the Fourier—re not strictly applicable here. However, the nonstationary
Bessel functions, while the “radial” pad, (e, /R) de-

. h h X i | states observed in the modgk., uniform rotation, nonuni-
termines the modew,, that can be excited simultaneously. ¢4 rotation, and heteroclinic cyclesuggest that the bifur-

Unlike the rotating states studied in Section V, the couplinge,tion sets are similar in the two cases. We present the mode-
of modes leading to hopping states would not be expected if, hjing theory for the case when the primary bifurcations
one dimensional problems. The analysis of the normal forWto ¥, and¥,;) are degenerafeUnfolding of the degen-

will be presented elsewhefe. eracy (leading either to subcritical or supercritical transi-
tions) will preserve the bifurcation diagram. The analysis of
the degenerate case will thus not only explain our results, but
will also suggest why the observed states are similar in the
Dr. M. el-Hamdi made the initial observations on rotat- tWo cases.
ing and hopping states, and Alfredo Martinez carried out  The normal form equations are equivariant under rota-
early numerical integrations of the mod@.1). We have tions by an arbitrary anglé and reflections. Using the FB
benefited greatly from many discussions with Mike Field,coefficients, these operations are represented by
Martin Golubitsky, Victor LeBlanc, Bernie Matkowsky and (z;1,21) —(z11€'%,2,1€%%) and (211,20 — (211,251 re-
lan Melbourne. This work is partially funded by the Office of spectively. Equations that are equivariant under the opera-
Naval Research through Grant Nos. N-00014-K-0613 andions take the forrif
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211=P1(11,12,13)231+ Q1(11,12,13) 2217 11, (A1)

: 2
Z51=Py(l1,12,13) 213+ Qa(11,12,13) 233,

W|th |1:|211|2, |2:|221|2, and |3222121+ 221251. USing
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