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A numerical characterization based on experimental data of the spouting regime in a
two-dimensional fluidized bed is presented. The aspect ratio of the bed allowed for good
visualization of the spouting and solids circulation as the spouting jet gas velocity was varied to
highlight the visited bifurcation sequence. Digital video sequences were recorded and then
preprocessed for numerical analysis. In this paper, the proper orthogonal decomposition~POD! was
applied to these data sets in order to identify and separate the dominant spatial features from the
temporal evolution of the spouting dynamics. The results indicate that the overall spatiotemporal
dynamics can be captured by a few POD eigenfunctions, and that the POD amplitudes can be used
to distinguish between varying degrees of spouting. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1739012#

Previous experimental works have revealed that the hy-
drodynamics of fluidized beds exhibit many features as-
sociated with low-dimensional deterministic chaos.
Hence, in principle, it should be possible to control the
overall patterns of solids mixing, thus altering gas–solids
contacting efficiency, by exploiting the sensitivity of the
system to small perturbations. In this work, we employ
the proper orthogonal decomposition, and experimental
data, to identify and extract coherent structures in the
spouting dynamics with the purpose of understanding the
transitions and response of the bed to changes in param-
eters, namely, to changes in the spouting jet gas velocity.
It is our hope that this work can lead to future low-
dimensional models and possible control strategies.

I. INTRODUCTION

Fluidization is a process in which solid particles are sus-
pended in a fluid-like state by a carrier medium, typically air.
This phenomenon occurs when the drag forces on the par-
ticles from the upward fluid flow exceed gravitational and
interparticle forces. Fluidized-bed reactors afford excellent

gas–solid contacting and particle mixing, facilitate the con-
trol of highly exothermal reactions, and provide good gas-to-
particle and bed-to-wall heat transfer. However, they also
have disadvantages, such as a broad residence time distribu-
tion of the gas and particles, gas-bypassing in the form of gas
bubbles, jets and channeling, the erosion of bed internals,
and the attrition of the bed material. Common engineering
applications of fluidization technology include coal combus-
tion, the production of polyethylene, and the cracking of hy-
drocarbons. Fluidization is in many ways related to the field
of granular dynamics but offers a set of unique features and
challenges because of the way the particles are agitated.

Fluidization occurs in many different dynamical re-
gimes, depending on a variety of factors such as particle size,
density and geometry, vessel size and geometry, the gas-
distribution system, and gas flow rate. A very common re-
gime is bubbling, in which voids~‘‘bubbles’’! form in the
granular bed and rise with a vigorous motion. In rising, these
bubbles entrain particles upward with them and thus create
large-scale patterns of solids circulation. Bubbling occurs
with many common solids of industrial importance and is a
fairly well-understood and widespread regime. Typically,
bubbling fluidized-bed vessels are cylindrical or rectangular
in cross section with a flat bottom plate with some arrange-
ment of multiple gas inflow orifices.

Some particle types, based on their~typically large! size
or density, are difficult to fluidize in the bubbling regime.
Instead, solids circulation for chemical reaction or heat trans-
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fer may be achieved by operating in the spouting regime.
Typically, spouted beds are cylindrical in cross section but
have an inverted conical base with a single gas input at the
vertex; some spouting vessels have flat bases. With sufficient
gas flow through this orifice, a strong, coherent gas jet flows
up the vessel central axis, and particles are entrained within
this jet at great velocity upwards. At the surface of the bed,
the gas escapes to the exhaust system, but particles follow a
ballistic trajectory and rain back down to the bed surface or
side walls. They then migrate downwards until they are en-
trained in the upward gas flow again. The spouting regime in
some respects is not as well understood and widespread as
the bubbling regime but has significant industrial importance
and relevance.

Depending on the spouting gas velocity, bed depth, and
particle characteristics, the gas jet within the bed and spout
of particles above the bed display different degrees of stabil-
ity. ~In some ways, this is remininscent of the dynamics of
water fountains.! Understanding the spatial and temporal be-
havior of the jet and spout is important because well-
controlled conditions can maximize the efficiency of fluid–
particle contacting and particle mixing while mitigating their
negative effects. This understanding can be achieved with
good physical characterization and the development of nu-
merical physical models. Of particular interest is the devel-
opment of lower-order models which can be executed
quickly, in or around real time, to aid process development
and design. One of the aims of this work is to investigate the
existence of coherent structures in the spouting dynamics,
which may then lead to more accurate low-dimensional mod-
els.

In the last decade, studies by Skrzyckeet al.,1 Daw
et al.,2,3 Daw and Halow,4,5 Schoutenet al.,6–8 and vander
Stappenet al.9–11 have shown that the hydrodynamics of flu-
idized beds exhibit many features associated with low-
dimensional deterministic chaos. Then, in principle, one
should be able to control the hydrodynamics of fluidization
behavior by exploiting the sensitivity of the system to small
perturbations. Such control strategy has not been developed
yet, mainly because the use of chaos-based methods in flu-
idization has gained attention only in recent years.12–14 Ad-
ditionally, the lack of realistic low-dimensional models for
bubbling and spouting behavior has limited the progress of
chaos-based control strategies. More recently, however, com-
putational models for simulating gas–solid interactions have
also been developed. Such models are derived from the con-
servation laws for mass, momentum, energy, and species.
The resulting governing equations consist of large and
strongly coupled systems of partial differential equations
~PDEs!.

Due to the high dimensionality of the PDEs, understand-
ing and predicting the spatiotemporal behavior of fluid–
particle interactions, using analytical methods, is not fea-
sible. Instead, numerical and laboratory experiments are first
conducted to get insight into the complexity of the interac-
tions. In particular, they are used to identify and extract any
dominant spatial features that can lead to simplified reduced-
order models and to relate these features to specific bifurca-
tion events in the overall dynamics. Numerical simulations

can suffer from limitations on accuracy and excessive
computer-time requirements. In order to circumvent these
limitations, in this work we identify and extract, directly
from the laboratory experiments, the coherent structures that
appear at various states of spouting. In particular, a series of
well-controlled experiments were conducted using a two-
dimensional bed filled with small particles of zircshot
(ZrO2). The uniformly distributed air flow to the bed was
maintained just below minimum fluidization. A centerline
nozzle was then used to inject a controlled flow of excess air.
We then seek to understand any changes in the bed dynamics
in response to changes in the velocity of the air flow injected
through this nozzle.

The proper orthogonal decomposition method is used to
extract the dominant spatial features directly from the experi-
mental data. A predominantly visible coherent structure is the
gas jet rising along the centerline and up through the bed
surface. An additional significant structure is the arch of the
particle fountain above the bed surface. The gas–particle
flow within these structures, and at the bed surface, is suc-
cessfully captured by a few proper orthogonal decomposition
~POD! eigenfunctions. Approximately 20 eigenfunctions can
account for 80% of the original dynamics. The first two
eigenfunctions capture approximately 50% of the behavior.
Furthermore, when the air flow velocity is low, the contribu-
tion of the first two modes~measured by the POD energy
function! is almost equal. As the flow velocity increases,
however, the contribution of the second mode decreases and
that of higher modes increases.

Our results suggest that a reduced-order model could be
constructed, for instance, via Galerkin methods, in which a
suitable PDE model is projected onto the POD modes to
generate a low-dimensional system of ordinary differential
equations. However, we do not attempt such a construction
in this work. The reduced order model has the potential to
help us further investigate, at near real-time speeds, fluid–
particle contacting and how to control the resulting interac-
tion. Understanding this interaction can significantly impact
the use of fluidization in engineering applications.

This paper is organized as follows. Section II presents a
brief introduction to the fluidization phenomenon. In Sec. III
we describe the experimental investigation of spouting dy-
namics in a fluidized bed. Section IV presents basic proper-
ties of the proper orthogonal decomposition relevant to this
work. In particular, a theoretical description is provided, fol-
lowed by a computational implementation for numerical
simulations or experimental data. Section V describes the
results of applying the proper orthogonal decomposition to
experimental data. The results support the existence of low-
dimensional dynamics and suggest that building reduced or-
der models via Galerkin methods can be successful. This
latter task is part of future work.

II. FLUIDIZED BEDS

Fluidization is the phenomenon in which a bed of solid
particles acquires fluid-like properties15–18 due to the inter-
stitial upward flow of a fluid through the bed. Fluidized beds
normally consist of a vessel containing the solids with a
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bottom plate through which the fluidizing medium, usually
gas, can be introduced. At low fluid flow rates, the fluid
percolates through the void spaces between the solids, which
remains a packed bed; the forces acting on the bed due to the
flow of the fluid are less than the weight of the bed. When
the flow rate is increased over a certain threshold, the mini-
mum fluidization velocity, the solids become levitated due to
the interaction between the fluid and the particles and the bed
behaves like a fluid. That is, lighter particles float on top of
the bed, the surface of the solids bed stays horizontal when
its containment vessel is tilted~like water in a glass!, and the
solids can flow through an opening, such as a valve. This
state is called fluidization.

If the fluid flow rate is further increased, a second veloc-
ity threshold appears, beyond which voids, shaped like
bubbles, form and rise through the bed with vigorous motion
and extensive coalescence and splitting.19–23 This state is
called the bubbling fluidization regime and the threshold ve-
locity at which it first occurs is called the minimum bubbling
velocity. The onset of bubble formation depends on the ac-
tual type and size of solid particles and on the particle/fluid
density ratio. In a bed of coarse particles fluidized by a gas,
for example, the onset of bubble formation is approximately
the same as the minimum fluidization velocity. But regard-
less of when bubbles are formed, their vigorous motion, in-
cluding coalescence and splitting, is important because they
affect the efficiency of particle mixing. A bed with uniformly
distributed fine bubbles, for instance, will generally lead to a
higher chemical conversion than a bed containing a few large
bubbles. If the fluid flow rate is increased beyond the termi-
nal velocity of the particles, then the solids would be swept
out of the container. If this material is captured and returned
to the bed then the unit is operating in the circulating fluidi-
zation regime. Of interest in the present work is a highly
energetic form of bubbling called spouting. This regime typi-
cally occurs when input gas is focused within a small area,
such as a single orifice, rather than through a uniform dis-
tributor and when the bed depths are shallow. Bubbles are
formed from the jet and rise so quickly through the bed that
they can merge into a single stream of gas. This jet stream
pulls with it particles and actually ejects these particles in a
spout above the bed surface, much like a water fountain.
Depending on the jet gas velocity, the particle properties, and
the bed depth, the spouting dynamics can vary greatly.

Although there can be significant gas bypass in this re-
gime resulting in less gas–solids contacting, this is still an
industrially useful and relevant operational state. Addition-
ally, the complexity of the regime yet presence of coherent
structures such as the fountain effect makes it an interesting
research topic. For more information on the general engi-
neering relevance of fluidization, please consult Ref. 24. The
spouting regime specifically is treated in Refs. 25 and 26.

III. THE EXPERIMENTAL SYSTEM

A two-dimensional fluidized bed was constructed at the
University of Tennessee for the Oak Ridge National Labora-
tory using transparent acrylic. The dimensions of the bed
were 25.3 cm wide, 1.9 cm deep, and 77.5 cm tall. Metered,

regulated air was passed through a sintered-metal distributor
~with high pressure drop for uniform fluidization and reduc-
tion of feedback to the air supply! for the bed-wide fluidiza-
tion of particles. Additionally, a single square nozzle 0.5 cm
to a side was located directly at the vessel centerline flush to
the distributor plate, and through this center nozzle a con-
trolled flow of air was passed. In the experiments described
here, the vessel was filled with 300mm spherical zircshot
(ZrO2) ~material density of 5.6 gm/cm3) to a static depth of
15 cm. Then the bed was uniformly fluidized to around 10
cm/s ~below minimum fluidization to avoid free bubbling
elsewhere in the bed! to reduce interparticle locking which
might inhibit jet dynamics, and the centerline nozzle flow
velocity was varied as the experimental parameter. Figure 1
shows a schematic depiction of the final apparatus.

Video images of the spouting dynamics were recorded
with a Sony digital video camera located normal to the front
surface of the bed. At each unique flow condition, 5 min of
video records of the bed front face were recorded at 30
frames/s. The bed was illuminated from the rear face through
a translucent sheet of plastic for diffuse background lighting,
so that any gas pockets~the jet! occupying a signicant pro-
portion of the 1.9 cm vessel depth would show up clearly on
the video record. Each frame of video was cropped to a fixed
area to remove external features~such as flanges and tubing!
not important to the dynamics, interlacing lines removed
with a row-wise kernel neighborhood-averaging technique,27

and then converted to grayscale for data analysis. The intent
with this video setting was to record global features such as
spout height, bed-surface profile, and jet penetration height,
with the realization that the limited spatial and temporal
resolution might miss certain fine features such as granular
flows and fine bubbling in the gas jet.

Additionally, a differential pressure measurement~rela-
tive to atmosphere! was obtained from a wall-flush pressure
tap along the vessel side wall 7.5 cm above the distributor.
The analog voltage signal form a Baratron transducer was
bandpass-filtered between 0.1 and 40 Hz~to remove instru-
ment drift and 60 Hz electronic noise contamination! before
being digitized with 12 bit precision at 200 samples/s with a
Nicolet 440 digitizing oscilloscope. The resulting time series
were stored for off-line analysis.

FIG. 1. Schematic diagram of experimental fluidization apparatus.
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IV. PROPER ORTHOGONAL DECOMPOSITION

The proper orthogonal decomposition is a well-known
technique for determining an optimal basis for the recon-
struction of a data set.28,29The POD has been used in various
disciplines that include fluid mechanics,30–32 identification
and control in chemical engineering,33 oceanography,34 im-
age processing,35 and flutter prediction.36 Depending on the
discipline, the POD is also known as Karhunen–Loe`ve de-
composition, principal components analysis, singular sys-
tems analysis, and singular value decomposition. The follow-
ing reviews the definitions and properties of the proper
orthogonal decomposition relevant to this work and dis-
cusses how the method can be applied to computer simula-
tions in order to separate spatial and temporal behavior.

A. Theoretical aspects

Let us consider a sequence of numerical and/or experi-
mental observations represented by scalar functions
u(x,t i),i 51,...,M . These functions are assumed to form a
linear (MÞ`) infinite-dimensional Hilbert spaceL237 on a
domain D which is a bounded subset ofRn, and they are
parametrized byt i , which represents time. The time-average
of the sequence, defined by

ū~x!5^u~x,t i !&5
1

M (
i 51

M

u~x,t i !, ~1!

is assumed to be zero, without loss of generality. The proper
orthogonal decomposition extracts time-independent ortho-
normal basis functions,Fk(x), and time-dependent orthonor-
mal amplitude coefficients,ak(t i), such that the reconstruc-
tion

u~x,t i !5 (
k51

M

ak~ t i !Fk~x!, i 51,...,M ~2!

is optimal in the sense that the average least square trunca-
tion error

«m5K I u~x,t i !2 (
k51

m

ak~ t i !Fk~x!I 2L ~3!

is a minimum for any given numberm<M of basis func-
tions over all possible sets of orthogonal functions. Herei•i
is theL2-norm i f i25( f , f ), where~•,•! denotes the standard
Euclidean inner product. The functionsFk(x) are calledem-
pirical eigenfunctions, coherent structures, or POD modes.

The optimality property~3! is equivalent to finding func-
tions F that maximize the normalized average projection of
u onto F,

max
FPL2(D)

^u~u,F!u2&
iFi2 , ~4!

where u•u denotes the modulus. The optimum condition~4!
reduces to the eigenvalue problem30

E
D

^u~x!u* ~y!&F~y!dy5lF~x!, ~5!

where x,yPD. Consequently, the optimal basis functions
$Fk% are the eigenfunctions of the integral equation~5!,
whose kernel is the averagedautocorrelationfunction

^u~x!u* ~y!&[R~x,y!.

In practice the state of a numerical model is only available at
discrete spatial grid points, so that the observations that form
the data set are vectors rather than continuous functions.
In other words, D5(x1 ,x2 ,...,xN), where xj is the
j th grid point and u(x,t i) is the vector ui

5@u(x1 ,t i),u(x2 ,t i),...,u(xN ,t i)#T. The data set can be ob-
tained from numerical simulation, experimental investiga-
tion, or a combination of the numerical and experimental
results. In the discrete case, the autocorrelation function is
replaced by the tensor product matrix

R~x,y!5
1

M (
i 51

M

uiui
T . ~6!

More important, it can also be shown that the eigenvectors of
theR(x,y) matrix yield the eigenfunctionsFk(x), which can
be computed with the algorithm presented in Sec. IV B.

B. Computational implementation: Method of
snapshots

A popular technique for finding the eigenvectors of Eq.
~6! is the method of snapshotsdeveloped by Sirovich.38 It
was introduced as an efficient method when the resolution of
the spatial domain (N) is higher than the number of obser-
vations (M ). The method of snapshots is based on the fact
that the data vectors,ui , and the eigenvectorsFk , span the
same linear space.31,38This implies that the eigenvectors can
be written as a linear combination of the data vectors,

Fk5(
i 51

M

v i
kui , k51,...,M . ~7!

After substitution in the eigenvalue problem,R(x,y)F(y)
5lF(x), the coefficientsv i

k are obtained from the solution
of

Cv5lv, ~8!

where vk5(v1
k ,...,vM

k ) is the kth eigenvector of Eq.~8!,
and C is a symmetric M3M matrix defined
by @ci j #5 (1/M ) (ui ,uj ). Here ~•,•! denotes the standard
vector inner product, (ui ,uj )5u(x1 ,t i)u(x1 ,t j )1¯

1u(xN ,t i)u(xN ,t j ). In this way the eigenvectors of theN
3N matrix R ~6! can be found by computing the eigenvec-
tors of anM3M matrix C ~8!, a preferable task ifN@M .
The results presented in Sec. V were obtained with an imple-
mentation of the method of snapshots. An iterative QR
method39 was used to compute the eigenvectors of the sym-
metric matrixC from Eq. ~8!.
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C. Properties of the proper orthogonal decomposition

Since the kernel is Hermitian,R(x,y)5R* (y,x), ac-
cording to the Riesz theorem,37 it admits a diagonal decom-
position of the form

R~x,y!5 (
k51

N

lkFk~x!Fk* ~y!. ~9!

This fact is particularly useful when finding the POD modes

FIG. 2. Montage of spatiotemporal be-
havior for a spouting experiment, with
jet velocity of approximately v
523 m/s. Time evolves from left-to-
right and top-to-bottom; each frame is
separated in time by the camera frame
rate of 1/30 s.

FIG. 3. Montage of spatiotemporal be-
havior for a spouting experiment, with
jet velocity of approximately v
543 m/s. Time evolves from left-to-
right and top-to-bottom; each frame is
separated in time by the camera frame
rate of 1/30 s.
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analytically. They can be read off from the diagonal decom-
position ~9!. Then the temporal coefficients,ak(t i), are cal-
culated by projecting the data set on each of the eigenfunc-
tions,

ak~ t i !5~u~x,t i !,Fk~x!!, i 51,...,M . ~10!

It can be shown that both temporal coefficients and
eigenfunctions are uncorrelated in time and space,
respectively.31,38 In addition, the POD modes$Fk(x)% and
the corresponding temporal coefficients,$ak(t i)%, satisfy the
following orthogonality properties:

~ i! Fj* ~x!Fk~x!5d jk ,

~ ii ! ^aj~ t i !ak* ~ t i !&5d jkl j ,

whered jk represents the Kronecker delta function.
Property~ii ! is obtained when the terms in the diagonal

decomposition ~9! are compared with the expression
R(x,y)5(^aj (t i)ak* (t i)&Fj (x)Fk* (y). The non-negative
and self-adjoint properties ofR(x,y) imply that all eigenval-
ues are non-negative and can be ordered accordingly:l1

>l2¯>¯>0. Statistically speaking,lk represents the
variance of the data set in the direction of the corresponding
POD mode,Fk(x). In physical terms, ifu represents a com-

ponent of a velocity field, thenlk measures the amount of
kinetic energy captured by the respective POD mode,Fk(x).
In this sense, the energy measures the contribution of each
mode to the overall dynamics.

The total energy captured in a proper orthogonal decom-
position of a numerical or experimental data set is defined as
the sum of all eigenvalues,

E5 (
k51

M

lk . ~11!

The relative energy captured by thekth mode, Ek , is
defined by

Ek5
lk

( j 51
M l j

. ~12!

Note that the cumulative sum of relative energies,(Ek , ap-
proaches one as the number of modes in the reconstruction
increases toM .

D. Low-order model construction

Once the POD modes are computed, low-order models
can be constructed via Galerkin methods, where a set of

FIG. 4. POD spatial modes for spouting experiments, in which air flow is injected through a central nozzle inside a fluidized bed. Air flow velocity variesas
follows: ~top left! v523 m/s;~top right! v531 m/s;~bottom left! v539 m/s;~bottom right! v543 m/s.
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PDEs are reduced to a smaller set of ordinary differential
equations~ODEs!. Briefly speaking, the main idea is as fol-
lows. Given a PDE model of the form

]u

]t
5F~u!,

the Galerkin procedure consists of using the POD decompo-
sition of u shown in Eq.~2! to generate a reduced set of
ODEs by solving

S Fj , (
k51

M
dak

dt
Fk~x!2FS (

k51

M

ak~ t i !Fk~x!D D 50,

j 51,...,M .

Note that the dependent variables of the set of ODEs are the
POD amplitude coefficients. For further details, the reader is
referred to Ref. 40.

V. RESULTS

Six experimental conditions are examined here. In each
case, air was injected through the central nozzle but with
different velocities varying from 23 to 43 m/s. This central
jet produces a spatiotemporal flow pattern that is easier to
analyze than that resulting from uniform excess gas flow
through the distributor in which bubbles would be generated

fairly randomly throughout the bed. Figure 2 depicts the spa-
tiotemporal evolution of the experiment at the lowest veloc-
ity examined, v523 m/s. An animation of these frames
shows spatiotemporal behavior that is more visible on the
bed-surface than in other regions of the bed, such as in the
V-shape structure formed where the central gas jet becomes
wide enough to be seen along the bed front surface. This
suggests that the dynamics of the surface of the bed repre-
sents a global feature of the system, while the gas–solid
motion inside the gas jet might be viewed more as a detailed
feature of the system.

Figure 3 shows a similar montage of the spatiotemporal
dynamics inside the bed, except that now the montage was
recorded at the high end of the air velocity range, i.e.,v
543 m/s. At first glance, both cases appear to be similar.
That is, the global feature of the bed dynamics is still cap-
tured, mainly, by the bed-surface behavior. To discern the
differences, we apply next the proper orthogonal decompo-
sition to all six cases.

In both of these sets of montages, one sees characteristic
features of spouting beds. The injected air flows above the
nozzle, and at a certain distance above the nozzle expands
enough to impinge upon the walls of the shallow~1.9 cm!
vessel used in this experiment. Particles are entrained in the
jet and are ejected above the bed free surface into a fountain-

FIG. 5. Representative Poincare´ maps obtained from pressure measurements of the spouting experiments described earlier. A period doubling bifurcation
appears to occur when the air flow velocity decreases. Air flow velocity varies as follows:~top left! v523 m/s;~top right! v531 m/s;~bottom left! v539 m/s;
~bottom right! v543 m/s.
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like structure, where they then rain back upon the bed sur-
face. An interesting feature apparent in these montages is
that the ejection of particles is not at a steady rate; otherwise,
each video frame would be identical. Instead, there is a bit of
slugging, as particles collapse periodically into the jet and
then are entrained in bursts and ejected into the fountain;
these bursts are viewed as waves in the fountain arch in the
video frames. This variability in particle-ejection rates is a
fundamental feature captured in spatiotemporal analysis.

Figure 4 shows the ten most energetic spatial modes~in-
cluding the mean! that are obtained after applying the proper
orthogonal decomposition~separately! to each of the six ex-
perimental data sets described earlier. Only the modes for
four cases forv523, v531, v539, and v543 m/s are
shown. In all six cases, the time-average captures the
V-shape structure created by the central jet, while the re-
maining modes capture, mainly, the dynamics near the bed
surface. Computer animations of the reconstructed flow with
increasing numbers of POD modes, from one to 20~includ-
ing the time average!, were performed and compared with
the original simulations. Visual inspection of these anima-
tions reproduces the overall motion through the jet channel

structure, but the most visible changes appear near the bed-
surface. To further understand the nature of the dynamics
near the V-jet, pressure measurements were recorded and
analyzed. In particular, Fig. 5 shows the Poincare´ maps~re-
constructed phase space! that were obtained for the four
cases of Fig. 4. The Poincare´ maps suggest the existence of
low-dimensional periodic behavior, which undergoes a
period-doubling bifurcation as the air flow velocity de-
creases. Perhaps more sensitive recording equipment, with
better temporal and spatial resolution, would be needed to
study the fine-details of the gas–particle interactions inside
the jet structure.

The POD energy spectrum for the above-discussed four
cases is shown in Fig. 6. Note that in all cases approximately
80% of the original behavior is captured by the first 20 POD
modes, including the time-average mode. Furthermore, Fig.
6 shows that when the air flow velocity is nearv543 m/s,
the first two modes contain the same amount of POD energy,
approximately 25%. Consequently, the contribution of these
two modes to the reconstruction of the spatiotemporal dy-
namics is approximately the same. When the air velocity of
the jet decreases, however, the POD energy in the second

FIG. 6. POD energy spectrum for spouting experiments, in which air flow is injected through a central nozzle inside a fluidized bed. Air flow velocity varies
as follows:~top left! v523 m/s;~top right! v531 m/s;~bottom left! v539 m/s;~bottom right! v543 m/s.
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mode decreases. In fact, the overall energy spectrum appears
to decay exponentially as the number of modes increases.
Visual inspection of animations of the reconstructed dynam-
ics reveals that high-energy modes contribute more to the
fine details of the gas–particle interaction inside the jet struc-
ture, while low-energy modes reconstruct the behavior near
the bed-surface.

Figure 7 shows the time-dependent amplitude coeffi-
cients associated with each of the POD modes shown previ-
ously in Fig. 4. In all six experimental cases, the time series
produced by the first two amplitude coefficients~see Fig. 4!
show a certain level of regularity. The frequency in the time
series of the first two modes, however, increases as the air
flow velocity increases. An animation of the reconstructed
dynamics with the first two POD modes forv523 m/s, and
corresponding amplitudes, shows the flow of air and en-
trained particles rising through the central jet channel and
then producing a small splash of flow at the bed-surface. The
cycle repeats, approximately, in a periodic fashion. The arch
structure that is created above the bed surface appears to be
almost symmetric with respect to the bed centerline. Similar
results are obtained when the POD modes forv543 m/s are

used, though the splash at the bed surface is now larger.
These observations suggest that the first two modes capture,
mainly, the global features of the bed behavior and that these
features could be reproduced by a low-dimensional deter-
ministic model. Phase portraits ofa1(t) vs a2(t) ~not shown
for brevity! also confirm the existence of low-dimensional
behavior in the form of a limit cycle. Furthermore, the results
also suggest that one could use the frequency of the ampli-
tude coefficients for the first two POD modes to estimate the
frequency of jet-pulsation dynamics.

As a final observation, note that in all four cases~actu-
ally all six cases!, the time-average pattern~described by
POD modeF0) exhibits, approximately, a reflective symme-
try ~across a middle line running from top-to-bottom of the
bed!, which mimics the symmetry of the experimental sys-
tem. As the number of modes increases, each individual re-
constructed image shows less reflectional symmetry and
closer resemblance to the bed-surface dynamics. More re-
markable is the fact that the reflective symmetry can appear
even when none of the time instantaneous snapshots shows
this symmetry. Next we explain this point in more detail.

Suppose that the long-term behavior of the spouting ex-

FIG. 7. POD amplitude coefficients for spouting experiments, in which air flow is injected through a central nozzle inside a fluidized bed. Air flow velocity
varies as follows:~top left! v523 m/s;~top right! v531 m/s;~bottom left! v539 m/s;~bottom right! v543 m/s.
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periments is captured by an attractor, denoted byA ~see Ref.
41 for a precise definition!. Assume thatg(x,t i), i 51,...,M
represents the scalar spatiotemporal measurements produced
by our experimental work. In practice, as is the case of our
POD implementation, one must first compute the time-
average

ḡ~x!5
1

M (
i 51

M

g~x,t i !,

in order to produce a new set of measurements,u(x,t i)
5g(x,t i)2ḡ(x), with zero average. LetG denote the sym-
metry group of the system of interest. The symmetries of the
attractor form a subgroup ofG defined by

G (A)5$gPGugA5A%. ~13!

Dellnitz, Golubitsky, and Melbourne42 made the critical
observation that symmetries of attractors of partial differen-
tial equations appear as symmetries of the time average,
ḡ(x), independent of the symmetries of the instantaneous
scalar fieldg(x,t i). Unfortunately, the converse is not always
true. The symmetries of the time average do not necessarily
reflect the symmetries of the underlying attractor. This im-
plies that reduced-order models obtained via Galerkin pro-
jections from partial differential equations onto POD modes
might lead to ordinary differential equations with more sym-
metry than is present in an actual numerical simulation or
experimental investigation.

VI. CONCLUSIONS AND FUTURE WORK

Experiments on a gas–particle fluidized bed were carried
out to investigate the space–time dynamics of the spouting
regime. A nozzle, located at the bottom-center of a uniformly
fluidized bed, was used to inject air at several velocities to
create a strong centerline jet and varying spout dynamics.
The proper orthogonal decomposition method was then ap-
plied to video images of the experiments, recorded at 30
frames/s. Through the POD decomposition, we were able to
identify and separate dominant spatial features from the tem-
poral evolution of the system. The main dominant features,
described by the POD modes with high levels of energy,
capture the behavior of the flow near the bed surface, while
low energy POD modes capture fine details of the gas–
particle interaction near a V-shape central channel formed by
the excess air flow. Furthermore, our results suggest that the
time scales of variability within the jet, caused by pulsations
of entrained particle densities, can be estimated from the
frequency of the time series produced by the amplitude co-
efficients associated with the first two POD modes. Finally,
our findings indicate that a low-dimensional model might be
constructed via Galerkin projections from a suitable PDE
model onto the POD modes. The low-dimensional model can
be further used to study, at real-time speeds, the splash mo-
tion that is observed near the bed surface.
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