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We use Karhunen—Loev&KL) decomposition of video images from an experiment to analyze a
spatiotemporal dynamic state, unique to cellular flames, referred to as a “hopping state.” Ordered
states of cellular flames on a circular burner consist of one or two concentric rings of luminous cells.
The hopping states correspond to the motions of individual cells in a ring sequentially executing
abrupt changes in their angular position, while the other cells in the ring remain symmetric and at
rest. KL decomposition separates the spatial and temporal characteristics of the hopping motion.
The underlying symmetries of the experiment allow us to deduce a set of normal form equations that
describe the formation of these states. We find that they result from secondary bifurcations
connecting two primary branches of traveling waves. The solutions corresponding to hopping states
exist as mixed-mode solutions away from the secondary bifurcationsl99® American Institute

of Physics[S1054-150(09)02503-3

In rotating wave (TW) states observed in cellular flames dicted the presence of modulated rotating states and standing
all N cells sweep out equal angles in equal times. In wave states, which were also observed in the experiment in
modulated rotating wave (MTW ) states allN cells speed nearby regions of parameter space. The normal forms are
up and slowdown in unison. In hopping states individual  obtained from the symmetries of the physical system and the
cells (sequentially) abruptly change their angular posi-  symmetries of the modes, thus circumventing the need to use
tions, while the other (N—1) cells are at rest(much like a detailed model of the flame front, for which calculations
people moving up when a vacancy occurs in a lipe In are extremely cumbersome.
this paper we show that hopping states result from an In this paper we present a corresponding analysis of spa-
interaction between anN cell TW state and an(N—1) cell  tiotemporal states with unusual characteristics and consider-
TW state, with different angular velocities; yet, the re-  ably more complex dynamics. These states were earlier clas-
sulting hopping state is not a TW state. sified as “square dance mode%”and later as “hopping
states.” In numerical simulations from a thermodiffusive
model, a similar state was termed “Pushmi-PullyfiThe
. INTRODUCTION hopping states are formed by cells that sequentially make
rapid changes of angular position while moving in a ring

A flat, premixed flame is a propagating front of uniform g4 \cture. The ring can be isolated or can be surrounded by a
chemical reaction. Heavy hydrocarbon—air mixtures formstationary ring.

cellular flames in which regions of bright cells and darker  tha motion of cells in a hopping state is very different
cusps and folds reflect enhanced and diminished combustigh, 1, that of a traveling wave stat'W) or a modulated
due to the diffusion of the lighter oxygen relative to thetraveling wave statéMTW).% In a TW state identical asym-
heavier fuel. When the flame front is confined to a circularatric cells of fixed shape rotate uniformly. In a MTW state
domain, the cells organize themselves in either stationangentical asymmetric cells change their shapes periodically,
states of concentric rings or n_on.stauongry states in which thg .o moving within the ring structure. In contrast, indi-
cells can move collectively within the ring structure.  jqy5] cells of a hopping state execute the same motions at
We have pre\{lously analyzed the dynamics of rotatingyiterent times. A single cell, whose shape is momentarily
states(TW), standing wave stateSW), and modulated ro- ooy mmetric, makes a rapid excursion to a new location,
tating statesMTW) using Karhunen—Loeve<L) decompo-  pije the remaining cells stay in place. Each cell in the ring
sition 1W'th the aim of developing the appropriate normal o es sequentially as described. To our knowledge, this
forms™ The KL decomposition of a rotating ring & cells  ying of motion has not been observed in any other physical
showed the presence &2k coupling. The normal form g qtems. Understanding the spatiotemporal dynamics of hop-
theory corresponding to these “parity-broken” states pré-ing siates and contrasting them with the spatiotemporal dy-
namics of TWs and MTWs is the purpose of this work.
dElectronic mail: gorman@uh.edu A description of the experimental apparatus and proper-
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ties of hopping states are given in Sec. Il. With the aid of a
phenomenological moddkee Sec. I, we explore the sta-
bility of cellular flame patterns. The model helped us to iden-
tify the spatial structure of many stationary states in terms of
Fourier—Bessel modésThe essential features of Karhunen—
Loeve decomposition are described in Sec. IV. In Sec. V, we
study various configurations with three hopping cells, which
include a single ring of hopping cells and two concentric
rings where a stationary ring surrounds a ring of hopping
cells. The similarity in the behavior of the hopping cells in
these two cases leads us to conclude that the interaction be
tween rings is relatively weak. We thus concentrate on the
analysis of single ring patterns and demonstrate that hoppinc
states with three cells result from the Hopf—Hopf interaction
of a two-cell TW with a three-cell TW. These states exist as
mixed-mode solutions away from the secondary bifurcations.
We propose a normal form for the system and show how its
output can be used to reconstruct the motion of cells in
physical space. In Sec. VI, we generalize these results tc
other hopping states.

Il. CLASSIFICATION OF EXPERIMENTAL STATES

The experimental flame patterns are stabilized on a Cil’-FIG' 1. I_:our sequentlal_frar_nes of _\/ldeot_ape of four_ different experimental
states with hopping motion irfa) a single ring state with three celld)) an

cular porous plug that burns _premiXEd gases inside a lowner ring of three cells surrounded by a stationary outer ring with eleven
pressurg0.3—0.5 atm combustion chamber. Pressure, flow cells; (c) an inner ring of two cells surrounded by a stationary outer ring

rate, and fuel/oxidizer ratio are the principal parameters thatith ten cells;(d) a single ring state with four cells.
determine the formation of the patterns. In these experiments

a steady uniform flame in the form of a circular luminous

disk 5.62 cm in diameter and 0.5 mm thick. sits 5 mm abové)utane—air and isobutane—air flames, but not in propane—air
the surface of the burner. We call this initial state the “uni- flames. Figure 1 depicts four different configurations of hop-

form state” of the experiment and note that it inherits thePind states. In Figs.(&) and d), hopping occurs in a single

circular symmetry of the burner. To the experimentalist, the/ind array of cells, while in Figs. (b) and 1c), an inner ring

uniform state looks the same if the burner is rotated by arPf NOPPING cells is surrounded by a stationary outer ring.
arbitrary angle, or if the experiment is observed through a In order to study the spatiotemporal characteristics of the
vertical mirror. It is then reasonable to identi§(2), the motion, the evolution of the flame front is recorded with a

group of rotations and reflections on the plane, as the undeP298-MTI charge-coupled devid€CD) camera, mounted
lying group of symmetries of these flame experiments. vertically on top of the combustion chamber. The video im-

Upon changes of control parameters, ®€2) symmet-  29€S capture t_he emitted (_:hemil_uminescence from the flame
ric uniform solution loses stability, and the flame front forms TONt and provide a two-dimensional measurement propor-
ordered patterns of concentric rings of cells. Brighter celisional to the temperature at various points on the burner.
correspond to hotter regions closer to the burner. They arguch measurements are commonly used in flame mbdels.
separated by darker regions corresponding to cusps and foldd!® SPatial and temporal resolution, the time interval, and
which extend an additional 5 mm away from the surface ofi'€ dynamic range are limited only by the recording device.

the burner. The cellular patterns include stationary states arl'2ges of 646480 pixel resolution, taken at 1/30 s inter-

dynamical states in which the cells are able to move within’&lS With 7 bit dynamic range, are typical for dynamics re-

the ring configuration. The stationary states can be classifie§®rded on S-VHS video tape.

based on their spatial symmetries. Usually, a subgroup of
0O(2) suffices for stationary states consisting of a single ringll. MATHEMATICAL MODEL
of cells while those states with two rings can be described by . W . . .
. . In previous work; we investigated the formation and
direct products of subgroups. In contrast, both spatial and . e . .
. ; evolution of cellular patterns in circular domains with a
temporal symmetries must be taken into account when de-_ . e .
e . reaction—diffusion PDE system in the form
scribing dynamical states.

Hopping states appear in patterns with either one or two  du=(B—1)u+A%v— pu*— v, (Vu)?+ «,V2u,
rings of cells at parameter values for which two ordered
states compete for stability. For instance, a hopping state
with three cells is found in a range of parameter values bewhereu(x,t) andv(x,t) are two linearly coupled, diffusive
tween those where three-cell ordered states and four-cell ospatiotemporal fields with diffusion coefficienkg and 5,
dered states are stable. Hopping states have been observedespectively. The cubic terms control the growth of the lin-

@

dv=—Bu—A%v— pv3—1,(VVv)2+ k,V?v,
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early unstable modes, while the nonlinear gradient terms ren- 71

der the model nonvariational. Several stationary and nonsta-

tionary patterns whose characteristics are similar to the

experimental states were observed in the model. 7.0
These corresponding states from the model complement

the experimental results by giving insight into the dynamics

of hopping motion. Due to the circular geometry of the do- &g

main, the integration of Eq1) is carried out in polar coor-

dinatesx=(r,#) over a circular grid of radiu®k. An alter- m

nating direction implicit algorithm is used in the numerical 6.8

integration procedure Since qualitatively different patterns

are observed aR is varied, the radius of the burner will be

treated as a distinguished bifurcation parameter. 67

A. Linear stability analysis

A scalar field u(r,6,t) satisfying Dirichlet boundary ) . , ,
conditions on a circular domain of raditscan be expanded 6.0 65 7.0 75 8.0
as R

FIG. 2. Marginal stability curves defining the stability domains where the
u(r,0,t)= 2 Zom(DWm(r,0)+c.c., 2 trivial solution (Ug,vo)=(0,0), representing a uniform flame front, bifur-
n.m cates to Fourier—Bessel modés, .
where ¥, (r,6)=J,(ay/R)E™, (Mm=0 andn>0) and
c.c. denotes complex conjugdfeHered, (r) is thenth-order )
Bessel function of the first kind ang, , is its mth-nontrivial ~ B- Numerical results
zero.z,, are complex time-dependent coefficients, save for  The integration of Eq(1) was focused in a region where
Zom Which are real. The orthonormality and completeness othe evolution of a single ring pattern with three cells can be
the functions{W,(r,0):n=0m=1} gives traced. Such region can be found in a neighborhood of the
minimum of the marginal stability curv;, shown in Fig. 2.

Znm(=—p2 As the curved is crossed, on increasBig stationary pattern
TR 1(anm) of three cells with purely spatiaD; symmetry bifurcates
om (R o from the O(2) symmetric trivial solution. Increasing fur-
xf f ru(r,0,t)w,(r,6)dédr, (3)  ther, the shaded region is found, in which the three-cell pat-
0 0

tern is no longer dominant but rather competes for stability

with the proviso that the coefficients are half of the valueWith another stationary ring of four cells. To the left of the

given whenn=0. region, the three-cell state is stable; and to the right, the
Previously, the linear stability of the uniform state four-cell state becomes the dominant mode.

(Ug,Vo)=(0,0) was studied by considering small perturba- Consider now the stationary ring of three cells as ob-

tions w= (w, ,w,) proportional to Fourier—Bessel functions served to the left of the shaded region. On moving right, the
D5 symmetry of the ring is broken and a nonstationary pat-

w=eMW¥_ (r,0). (4)  tern bifurcates subcritically. Figure 3 depicts various snap-
shots of the evolution afi(r, 8,t). The bifurcating field also

Under these perturbations, the uniform statg, ¢o) is stable contains three cells but now the cells rotate clockwise. The

if A<<0, and unstable ih>0. The marginal stability curve
corresponds to those parameters whete0 and was calcu-
lated as a function of the distinguished param&er

anm) 2+ iz( R

K2

2

©)

K1
Bum(R) =1+ —A%+
m(R) K2 1 Anm
Beyond this curve, on increasirg) the uniform state desta-
bilizes to ¥, (r,6). For a given value ofA, a particular
curveB,,, reaches a minimum value of

K K
Bo=1+ —A2+2A/— (6)
K2 K2

at a radiusR= a,(k1k,/A?)Y* The results presented in

this paper are evaluated with fixed values Iq-f: 1.6, x; FIG. 3. Space and time evolution of three cells hopping from m¢ijelThe

=16.0, »=0.8, »,=2.32,v,=6.501, andA=5.0. B andR cells move nonuniformly and their shapes change periodically. Observe the
are used as control parameters. competition with a four-cells state.
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FIG. 5. Phase plane projections of real and imaginary parts of the most
-1.86 i " " " dominant Fourier—Bessel coefficients obtained in the decomposition of the
hopping state shown in Fig. 3. The modulations in the angular motion of the
cells is clearly visible in the projections.

-1.92+

-1.94r IV. KARHUNEN-LOEVE DECOMPOSITION OF

-1.96} EXPERIMENTAL DATA

198 Let u(x,t):D—R be a scalar-valued function represent-

ing an observable of a numerical or physical experiment,
whereDCR?" is the domain of the experiment andepre-
sents time. Karhunen—Lwve decompositioh~'° allows us

to separate the spatial and temporal variationsi(oft) by
206 50 100 150 200 250 extracting time-independent orthonormal basis functions
(b) ®,(x), and time-dependent orthonormal amplitude coeffi-
cientsa,(t), such that the reconstruction

2

-2.02+

-2.04}+

FIG. 4. Time evolution of théa) amplitude coefficients and thelb) cor-

responding phases, found in the Fourier—Bessel decomposition of the hop-

ping state shown in Fig. 3. The observed modulations indicate the presence u(x,t)= 2 ak(t)q)k(x) (7)
of nonuniform motion. K

is optimal in the sense that the average least-squares trunca-

ring of cells rotates nonuniformly with the shape of each cell

changing periodically. The dynamics of each cell is more < N
ENT

u(x,t)— >, a () @y(x)

tion error in the approximation up t§th order
complicated. An animated sequence of the field reveals small &

2

b e
but visible jumps in the angular position of each cell. One of
the cells changes its shape more than the other two and als®always a minimum for any given numbkrof basis func-
appears more asymmetric. In comparison with experimentaions over all possible sets of orthogonal functions.
observations of hopping states, the jumps in angular posi- The observable can be a continuous function of space
tions are smaller in magnitude but, up to a time scale factorand time or a discrete set of vector-valued functions. For
the general characteristics of the dynamics are very similainstance, in Rayleigh—Benard convectiSrin which a fluid
Figure 4 shows the time evolution of the amplitude andconfined between two parallel plates is heated from below,
phases of a few coefficients in the Fourier—Bessel decompa#(x,t) can be assumed to be a component of a velocity field,
sition of u(x,t). The amplitude modulations reflect the shapeandD ={(x,y,z):0<z<1} a region between the two plates.
changes of the cells, and the phase modulations confirm the Eq. (1), u(x,t) could be any of the two diffusive spa-
nonuniform rotation of the cells. The periodicity of the tiotemporal fields that simulate the evolution of cellular
modulations further suggests that this nonstationary patterflames. In the combustion experiments of Secuik a func-
is created via a Hopf bifurcation. The frequency spectruntion of the intensity of the light emitted by the flame front,
(not shown of the Fourier—Bessel coefficients indicates theand D is the circular burner. Since the variations in light
presence of two incommensurate frequencies and their haimtensity are recorded on video tape,is now a discrete
monics. This quasiperiodic motion of the cells can be easilywector of video images. Each image isNa=wXxh array of
visualized in the phase plane projections of the spaceixels with scalar values in the ranf@ 255. Formally,u is
(211,251,231,247), Which is shown in Fig. 5. A computer ani- represented by a discrete sequencodiata vectors of the
mation of the numerical results is posted in the World Wideform u;(x) =[u(Xy,t;),u(Xz,t;),....u(xy,t)17, i=1.M,
Web at http://vip.cs.utsa.edu/flames/klvisual/klvisual.html. where x; is the jth grid point in the pixel domainD
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=X, %o,...XN), tj IS a discrete-time variable or frame index,
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V. HOPPING MOTION IN THREE CELLS

and M indicates the total number of measurements of the

experiment.

The functions®,(x), called empirical eigenfunctions,
coherent structureor KL modesare the eigenvectors of the
two-point spatial correlatiorfunction which in the case of a
discrete observable is given by

1 M
r(xy) =15 2, uCxt)uT(y.t),

=1

9

whereag(t) is a constant an@, is the time average of the
dataTJ:(llM)Ei'\":lu(x,ti). Frequently, we are more inter-
ested in the variations of a data sedbout its average value

In this section, three different configurations of cellular
patterns containing a ring of three hopping cells are ana-
lyzed. The first is a state with three hopping cells. The other
two contain an inner ring of three hopping cells surrounded
by a stationary outer ring. The dynamics of each state is
encapsulated in a data set of the forny,
=[u(Xy,t),....u(xy,t) 1", i=1,...M, with M =600, frames
andN=4096 pixels. Each data set is a digitization of 20 s of
video tape at a rate of 30 frames/s.

The analysis presented in this section will reveal that
these states result from the interaction of two traveling waves
with incommensurate frequencies. The wave numbers are de-

than onu itself. It is then common practice to subtract the termined by the spatial symmetries of the modes, and they

average value from the data set prior to the KL decomposieorrespond, in physical space, to the number of cells in a

tion and assumé ,=0. However, when the original data set ring. A reconstruction of the motion shows that the interac-

is reconstructed with Ed7), the averag@ must be restored. tion of the two TWs produces a state with physical charac-
The method of snapshotA. direct computation of the teristics similar to those of the hopping states. The presence

eigenvectors of E(9) involves solving the eigenvalue prob- of the outer stationary ring of cells has no appreciable effect

lem on the hopping motion of the inner ring of cells, suggesting

that the interaction between the rings is very weak.

rxy)®(y)=rd(x).

Sincer (x,y) is anN XN matrix, solving Eq.(10) could be a
very expensive process if the number of grid pots very The hopping motion in a single ring state with three cells
large. However, wheiN is larger than the number of mea- is shown in Fig. 63). The label 3 has been assigned to this
surementsM, then themethod of snapshdfsprovides a state in previous experimental studfeshe same classifica-
popular and efficient alternative for solving the eigenvaluetion scheme is adopted here. Five instantaneous snapshots of
problem(10). The method is based on the fact that the datahe data set, with time running from top-to-bottom, depict a
vectorsy;, and the eigenvector®,, span the same linear cellular pattern with three cells rotating counterclockwise.
space:™® This result implies that the eigenvectors can beCells are numbered for identification purposes and frames

(10
A. Hopping in a single ring pattern

written as a linear combination of the data vectors

M
— k
Cbk—zl Viu;.
i=

(13)

After substitution in the eigenvalue problefh0), the coef-
ficientsv¥ are obtained from the solution of

Cv=\v, (12

where v¥=(v&,....vK) is the kth eigenvector of Eq(12),
and C is a symmetricM XM matrix defined by[c;;]
=(1M)(u;,u), where (-,-) denotes the standard
vector inner product, ;,u;)=u(Xy,t)u(Xe,tj)+---
+Uu(Xn,t)u(xy,tj). In this way anNxX N eigenvalue prob-
lem [the eigenvectors of Eq9)] is reduced to computing the
eigenvectors of arM XM matrix, a preferable task iN

are 1/15th s apart from each other. In frame 1, cell 1 is just
finishing a hop. The cell behind it, cell 3, then begins to

move in frame 2 and completes its hop in frame 3. It is then
the turn for cell 2 to hop and its motion is completed in

frame 4. In frame 5, the cycle repeats over again starting
with cell 1. The hopping cell appears more asymmetric and
moves faster than the other two cells, one of which is always
at rest.

The application of KL decomposition gives the eigen-
functions shown in Fig. ®). The time average of the images
T (top snapshot reflects theO(2) symmetry of the burner,
even though none of the instantaneous states has this
symmetry'® Below the time averagéordered from left to
right and top to bottom the six most energetic KL modes
®,—dg are also depicted. The energy spectsee the
Appendiy E=(15.1,14.8,12.1,11.5,5.4,5.3,4.6,4.5,1.9,

>M. After computing the KL basis functions, the temporal 1.8,...) show an equal distribution of energy among consecu-

coefficientsay(t) are calculated by projecting the data se

onto each of the eigenfunctions

(U(x,1), Dy(x))

A= 13,02, B) a3

ttive pairs of modes, indicating that each pair of modes forms

an invariant subspace for the overall dynamics. The recon-
struction with the six most energetic modes is shown in Fig.
6(c). Since the KL modes were obtained directly from video

images of the experiment, their analytical forms are un-
known. However, their symmetries can be deduced through

It can be shown that both temporal coefficients and eigenFourier—Bessel decomposition. For the first three pairs, the

functions are uncorrelated in time and spé&ee the Appen-

largest contributions come from Fourier—Bessel modigs,

dix for more details The results presented in this paper wereW,,, and¥,,, respectively. This result confirms the visual
obtained with an implementation of the method of snapshotperception of approximatelp,, D3, andD, symmetry in

through the use of the software packaggooL.'’

each pair, respectively.
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Average

(a) (c)

FIG. 6. KL decomposition of hopping motion in a single ring state with three dallive instantaneous snapshots showing hopping motion as the cells rotate
counterclockwisefb) the time average of the data set appears at the top, foll¢fseah left-to-right and top-to-bottojnby the six most energetic modes
®,—dg; (c) the reconstruction of the dynamics using the six most energetic KL modes.

Insight into the origin of the hopping motion can be the modes in each invariant spak; andD 5, respectively.
obtained from the projectionsee Eq.(13)] of the data set The phase difference observed in each pair is a consequence
ui(x) onto each invariant subspace. Using the two most enof the orthogonality(see the Appendixof the modes, and it
ergetic pairs of mode§d;,®,} and{P;,d,}, the projec- is needed to break the reflectional symmetry of the cells as

tions  produce time coefficients{ay(t),a,(t)} and  reqyired by the bifurcation of rotating waves from systems
{as(t),a4(t)}, (not shown. The sinusoidal shape of the co- with O(2) symmetry'®

efficients suggests that, on the invariant subsgdeg @},

X Figure 7 shows the phase between the time coefficients
the reconstructed dynamics

associated with each wave, arcw@f()/a,(t)), and
u(x,t) =t+ay(t)P1(x) +ax(t)Pa(x), (14 arctanfy(t)/ag(t)). The observed linear variation of the

forms a cellular pattern of two traveling cells (Bj. Simi- ~ phases with slopes,=1.1925 andm;=0.8701 indicates

larly, the reconstruction on the subspdek,,®,} forms a  that each wave rotates uniformly. In physical space, the val-

pattern of three traveling cells (TW). The number of cells ues of m, and m; correspond to angular speeds,

or wave number, is inferred from the spatial symmetries of=17.67 rad/s andvy=38.59 rad/s, respectively. Observe that
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120 . T —T T " as an 11/8 state. Cells in the inner ring hop in a fashion
I T similar to those of the B state(but in the opposite senge
The stationary ring of outer cells has little effect on the mo-
ol =_' tion of the inner cells.
| The results from the KL decomposition are shown in
ol i Fig. 9b) and the reconstruction with the six most energetic
I ] modes appears in Fig(®. The time averagéop snapshot
w0k ] clearly captures the structure of the stationary outer ring and
A the rotations of the inner cells. It has an approximat@hy
20 F g ®0(2) spatial symmetry. The three most energetic pairs of
~ KL modes(from top to bottom and left to rightb,—dg4 are
o P ™ composed of the same Fourier—Bessel modes as inlthe 3
time (1/30 sec) state, except that they appear in a different order. Using Eq.
FIG. 7. The linear variation in the phase betwefm(t),a,(t)} and (2) we have verified that the modes in each pair have ap-
{a3(t),a,4(t)} indicates uniform motion Ey the traveling wa’vezs $Wand prOXImateD3’. D2, and D.4 symmetry, respectively. As be-.
TW3" . The slopes of the phases), and m,, are used to estimate the fore, each pair forms an invariant subspace for the dynamics.
angular velocity of each waves,=17.67 rad/s and,==8.59 rad/s, respec- On the{®,,d,} subspace, th®; symmetry of the modes
tively. and the sinusoidal nature of the corresponding time coeffi-
cients provide a state with three traveling cells GHAT).

o o Similarly, two traveling cells (TW**') are obtained on the
TW3H rotates significantly faster than V. The two- {®5,®,} subspace. Observe that both waves % and
frequency motion can be visualized in the phase-plane proTW%mH are equivalent to those found in thed3case, i.e.

jections of the spacesf ,a,,a3,84), as is shown in Fig. 8. w3t and TWE", respectively. They all lie in equivalent

All these observations have been confirmed by VieWingsubspaces. The frequency analysis further reveals that each

reconstructions in physical space with E@). The analysis wave undergoes uniform rotations. '§W* rotates with a
is valid even though many modes have been omitted beg,, . angular speed abs=6.14rad/s, while TW* moves
cause, first, most of the remaining low energy modes capturg,giar atw,=18.41rad/s. In this caséds, ) is a higher
only high-dimensional effects such as shape variations an

$rarmonic of{® ,®,} and need not be included directly in
second, modes such 4&,dg} are higher harmonics of ic OH{bs, P} et I s

B . the analysis.
other modes{%,,®5; in this case. Up to a shape approxi- The effects of changing the number of cells in the outer

mation, only four modes are needed to reproduce the dynan?l—ng can be studied using results from the 2/8opping
ics.

100 | -

angutar position (rad)

state. An analysis of its motion provides results very similar
to those of the 118 state, withw,=19.88rad/s ando,
=7.61rad/s.

Figure 9a) shows five sequential snapshots of a pattern  In each of the above cases, two traveling waves are
with two concentric rings of cells. The outer ring containsfound to be lying in equivalent subspaces and with wave
eleven stationary cells, while the inner ring is formed bynumbers two and three. Each wave rotates uniformly but the
three cells hopping clockwise. This pattern is characterizeavave with two cells always moves faster. In the H/and
12/3H states, the existence of a stationary outer ring has a
negligible effect on the hopping motion of the inner ring.

B. Hopping motion in patterns with concentric rings

C. Bifurcation analysis

a,t)
a,(t)

Consider an idealization of the flame experiment by a
I'-equivariant system of ordinary differential equations
(ODEs

x=f(x,\), (15

where I'=0(2) models the symmetry of the burnex,
eR", and\ e R? is a vector of parameters. We now wish to
explain, within a mathematical context, how a pattern with
three hopping cells can bifurcate from a system such as Eq.
(15). As already discussed, the presence of a secondary ring
of cells does not effect the hopping motion significantly.
Consequently, our study is limited to the analysis of a single
ring of hopping cells, which results from the interaction of
two uniformly rotating waves with two and three cells, re-
FIG. 8. Projections of phase planey(t),a,(t),as(t),aq(t)), showing a  SPectively. For generality these waves are labelecand
two-dimensional invariant torus in the KL decomposition of thé 8tate. Tm, respectively. The subscripts specify the actual values of

ay)

aft)
a)

a,{h 3,
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(a) (c)

FIG. 9. KL decomposition of hopping motion in an inner ring with three cells surrounded by a stationary ring with elevefacélg instantaneous
snapshots showing hopping motion in the inner ring as the cells rotate clockbjsie time average of the data set appears at the top, folldfreah
left-to-right and top-to-bottomby the six most energetic modds,—®g; (c) the reconstruction of the dynamics using the six most energetic KL modes.

the wave numbers which are assumed to be relatively prime.  f(0\)=0, (17)
In the present casé=2 andm=3. Recall from Fig. €a)
that each wave lies on a@(2)-invariant subspace create
from the coupling of two KL modes

d and the linearizatioh. =(Df ), o has a pair of purely imagi-
nary eigenvalues w)i,* oy, Wherew, andw,, are incom-
mensurate. Assume further that each pair of eigenvalues oc-

Ti: Vi=spad®;, @y}, curs twice so thak e R8. SinceV, andV,, are subspaces of
16 dimension two, then a decomposition R¥ takes the form
Tm: Vm=spaqd;,d,}. (16) P
Ré=V,aV, &V, & V,,. (18)

The KL modes and the periodicity of their time coefficients
suggest that both traveling waves are created via Hopf bifurAs indicated by the KL decomposition, the invariance of the
cations. We should then consider conditions, under the symsubspaces implies that(V,)CV, andL(V,)CV,.

metries of the experiment, for these bifurcations to occur in ~ Under these assumptions,Xat 0, thex=0 uniform so-

Eq. (15. We assume thak=0 is the O(2)-symmetric lution loses stability and twoO(2) symmetry-breaking
“trivial solution” of the experiment satisfying branches of rotating waves are created simultaneously via a
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Hopf bifurcation!® A competition between both waves cor-
responds to a Hopf-Hopf interaction between t@W¢2)

broken-symmetry modes. The dynamics of the mode interac-

tion can be described through EG5) in “normal form,” in
which the terms irf are simplified(up to any orderthrough

successive changes of coordinates. As in many other cases,
the normal form can be deduced from the way the symmetry
group I' acts on the modes. Since two branches of Hopf

bifurcations induce a torus actidif=S'x S on the system
of ODEs, we must consider the action B T? or O(2)

XT? on Eq. (15). Identifying R® with C2®C? as

(X1,X2,X3,X4,X5,Xg,X7,Xg) > (X174 Xol , X3+ X4l , X5+ Xgi , X7

+Xgi)=(21,25,23,24), the action of[ XT? on C?®C? is

generated by

Y(21,2,25,24) = (€2, ,€7"12,,™ 25,67 ™'z,)

for all yeSO(2), (19
K(21,25,23,24) =(22,21,24,23)
where k=flip in O(2), (20

(01102)'(21122123124):(eelizlveeliZZ1e02iz31e02iz4)
for all (6,,6,)eT>. (21)

Observe that under this actidd(2) acts byl-fold rotations
on V, andm-fold rotations onV,. For instance, considé/
which according to Fig. ®), has roughly the form

R{J,e? J,e &1, (22

In physical space, a spatial translatior> X+ v in V, corre-
sponds to multiplication by{e?*”',e”2”'}. The remaining
group operations can be interpreted in a similar way. A nor
mal form equation for at®(2)x T? equivariant vector field
f, under the action generated by E¢$9)—(21) takes the
form

2,=(p1(2)+iq1(2))z,

+(r(2)+is1(2)Z] 12 (2a22),

2,=(p1(x2) +i91(k2))Z,

+(ry(x2)+isy(k2)) 275 H(Z3z4)',
. . (23)
23=(p2(2) +iqx(2))z3

+(ry(2) +is,(2))(2122) "2 2},

2,=(p2(kz)+i0,(KkZ))Zy4
+(ro(k2)+isy(k2))(Z1,22) 252, *,

where z=(z,,2;,23,24), pj, Q;, I, and sj(j=1,2) are
functions of |zy|?,...)z4]>, Rea and Ima, «

=(2125)"(Z324)', P1(0)=p5(0)=0, 01(0)=w, and g,(0)
=w,,. Truncating at third order, we consider the following

2= (py+agy|zg|?+agd |+ aggzs|? +as i) 2y

+ (@) b11|74|*+ 01| 25| >+ b1g Z5| >+ b1 24| ?)iZy

Islands of modes and tangles 763

TW*

2

Amplitude
_‘_- B,

FIG. 10. Hopf-Hopf interaction of two branches of uniformly traveling
cellular flames formed in a®(2) symmetry breaking bifurcation from a
uniform flame front. The mixed-mode solution is created through a second-
ary bifurcation. In physical space, the dynamics near the secondary bifurca-
tion points appears as a standard MTW. In the middle, however, the behav-
ior is radically different: three hopping cells similar to the experimental 3
state are observed.

2p=(p1targlza|?+as|zo|* + a1 z5|* + @14 24 *) 22
+ (@ +b1d 24|+ b1y 25| * + b1 25|+ 15 74| P)iz,,

3= (1~ p2) + 81|24 |*+ 8] 25| * + gl 25| 24
+824241%) 25+ (0t 21| 20|+ D27 25|+ bog 25|
+bygz4|?)izs,

24= (1~ p2) + 82021 |*+ 89| 25| * + 4| 25|
+85424%) 24+ (Ot 2ol 20|+ b2y 25|+ b2 25|

+b,gz5]?)iz,,

where u4 and u, are unfolding parameters. Periodic solu-
tions, bifurcating from the trivial solutiom= 0, can be found
by lettingz;=r jeaii and transforming the syste(@4) to po-
lar coordinates. Up to conjugacy by tg2)x T2 action, we
consider three types of periodic solution&--mode solu-
tion: ro,=ry=r,=0, r;=(—pu,/a;)"% (b) mmode solu-
tion: ry=r,=r3=0, ry;=(—ur—pi/a)*% (c) mixed-
mode solution: a;ra+ari+u=0, ayrs+anri+u,
—m2=0.

Treatingu,>0 as a fixed auxiliary parameter, it can be
verified that the trivial solutioz=0 is stable foru,;<0 and
unstablew,;>0. At u,=0, a branch of-mode solutionsT,)
bifurcates along the curve;=(—u/a;;)Y2 The bifurca-
tion is supercritical whenu/a;,;<0, and subcritical other-
wise. In physical space, the solutidnp is a cellular pattern
with | =2 cells rotating uniformly aty, rad/s, and lies inside
V| which corresponds to the invariant subspage z;=2,
=0. After u, is further increased such that;=u,, a
branch ofmmode solutions T,,,) bifurcates along the curve
ra=(umo—m1/a,5) Y2 In this case, the bifurcation is super-
critical when (u,— uq)/@,3<0, and subcritical otherwise.
As before,T,, is a pattern withm=3 cells rotating uniformly
at w,, rad/s, and lies insid¥,, which is the invariant sub-
space given by,=z,=z3=0. Note that a single point on
both branches represents a circle of conjugate solutions.

Figure 10 shows a bifurcation diagram wham=a;,
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= - 1, a13: a14: - 15, a21: a22: - 05, a23: a24: - 1,
bij=—1, w,=1.178rad/frame (17.67 rad/s and w;
=0.859 rad/framé8.59 rad/$. These values were chosen to
reflect the stability of the branches shown in the diagram.
The mixed-mode branch is stable and lies in the invariant
subspacez;=z3=0. A direct calculation shows that the
mixed-mode solution bifurcates from thhemode branch at
,u'lz(alllall— a,q) mo, and limits in themrmode branch at
u1'=(aizlaiz—as) uy. A complete stability analysis is be-
yond the scope of this work and the interested reader is re-
ferred to Refs. 19 and 20.

Using bstooL,?! we integrate Eq(24) and traverse the
bifurcation diagram along the mixed-mode branch. Since
=23=0, we only need to consider, and z, and the four
most energetic KL mode®$ ,—®, of Fig. 6(b). In physical
space the evolution of the pattern takes the form

2

u(x,t>=n+k§l RE{Zy, (1)} P x - 1(X)

+1M{Z (1) } D 4 (X).. (25

Near,u'l, the amplitude ok, is significantly larger than that
of z,, and the reconstruction produces a pattern of two cells
rotating almost rigidly. Increasing, slightly does not seem
to affect the rotational motion of the cells, but the shape
modulations become more visible. The pattern continues to
exhibit two cells. Similar behavior is observed near the other
end of the branch, i.e., nea'. Sincez, is now more domi-
nant, the pattern contains three cells but the characteristics of
the motion are similar. In both cases, the nature of the rota-
tion coupled with shape variations produces a motion similar
to (the MTW termed “ponies in a merry-go-around.”
However, away from the secondary bifurcations and near the
middle of the branch, where, and z, are comparable in
magnitude, very different and interesting spatiotemporal be- , _
havior is produced. Figure 11 shows several snapshots of LFfiG 11. Snlafshots of t_he reconstructed Qynamlgs of_ three hopplng cells
) > . ing normal form equation®4) and KL basis functions in physical space
movie generated by Eq25) near the middle of the mixed- (25).
mode branch. The emerging pattern contains three cells ro-
tating counterclockwise but sequentially executing abrupt

changes in their angular position. The direction of rotation Figure 13a) shows five sequential snapshots of the
can be easily controlled in E24), and the overall dynamics 14/ state. A stationary outer ring with ten cells surrounds
is consistent with the hopping motion of the experimentaly, inner ring with two cells hopping counterclockwise. The
3H state. In Fig. 12 various projections of the phase spac&qtion in the inner ring is similar to the hopping motion with

(z2,24) are shown. The motion is confined to & 20rus e cells. At a given instant, one of the two cells is moving
similar to the one found in the experiment. Hopping motion ayidly, or hopping, while the other is almost stationary. In
in three cells results from the coupling of two Hopf- 5qgition, the hopping cell is more asymmetric than the other

bifurcated states. Hopping motion in other configurationsg|, This dynamics is very different from the modulated ro-
such as 11/ and 12/8 can be reproduced in a similar way ating cells obtained from the interaction of two steady

by substituting the appropriate averagén Eq. (25). modes in a 1:2 ratid?? in which the shapes of both cells
(which changed periodicallywere identical at all times.
Figure 13b) shows the results from the KL decomposi-
tion of the 10/H state. The time averag@op snapshot
In this section, the results obtained for thel 311/3H, captures the structure of the ten cells in the stationary outer
and 12/3 states are compared with those for two otherring and the rotation of the two inner cells. The average
states: first, with a 10/ state in which two cells hop inside pattern has an approximately;®O(2) spatial symmetry.
a stationary ring with ten outer cells and, second, wittHh 4 The energy spectra E=(23.02,18.72,9.94,9.69,4.84,
state in which four cells hop in a single ring. This compari-4.81,...), indicates an equal distribution of energy among
son will identify the common characteristics among hoppingpairs of KL modes(shown from top to bottom and left to
states with different numbers of cells. right) ®,—®4. Using Eq.(2), we find that each pair hd3,,

VI. GENERALIZATIONS TO OTHER HOPPING STATES
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im{z,(t)}
Im{z (1))

Re{z,(t)} Re{z,()}

Re{z,()}
Im{z (1)}

Re{z,(0} Im{z,(t)}

FIG. 12. Projections of phase planez,(t),z,(t)) showing a two-
dimensional invariant torus in the normal form reconstruction of the 3
state. Observe the similarities with the torus shown in Fig. 8.

D,, and D3 symmetry, respectively. In physical space,
{®,,D,} forms a uniformly traveling wave with two cells (a) (c)

rotatllng SIOWIyI qt an angular speed,= 15.645 radls, ap- gig 14 KL decomposition of hopping motion in a single ring state with
proximately. Similarly {®3,®,} creates a uniformly travel- four cells (a) five instantaneous snapshots showing hopping motion as the

ing wave with one cell rotating rapidly at an angular speectells rotate counterclockwiséh) the time average of the data set appears at
the top, followed(from left-to-right and top-to-bottoinby the six most

energetic mode®,—®dg; (c) the reconstruction of the dynamics using the
six most energetic KL modes.

w1=46.755rad/s, approximately. The reconstruction with
the six most energetic modes is shown in Fig(cl3

The hopping state labeledH4is shown in Fig. 14a).

Five sequential snapshots depict a single ring pattern of four
cells hopping counterclockwise. As in previous cases, the
instantaneous asymmetry of a single cell is clearly visible.
The modes extracted from the KL decomposition are shown
in Fig. 14b). The time averagéop snapshgtnow captures
the O(2) symmetry of the burner. The energy spedia
=(13.5,13.5,13.3,13.3,7.0,7.0,...), indicates an equal dis-
tribution of energy among pairs of KL modds,—®¢. Us-

ing Eq. (2), we find that each pair haB;, Ds, and D,
symmetry, respectively. In physical spa¢®,,,d,} forms a
TW with three cells rotating at an angular speeg
=9.8rad/s, while{d;,d,} creates a TW with four cells
rotating at an angular speed af,=4.23rad/s. The recon-
struction with the six most energetic modes is shown in Fig.
14(c) for illustration purposes.

The analysis and conclusions about hopping motion in
cells were obtained based on the assumption that only one
cell hops at a time, while the other cells are almost station-
ary. This result is consistent with almost all of the experi-
FIG. 13. KL decomposition of hopping motion in an inner ring with two MenNtal observations. The mathematical description presented
cells surrounded by a stationary ring with ten ce{; five instantaneous throughout this work predicts the existence of other forms of
snapshots shqwing hoppihg motion in the inner ring as the two cells rotatpopping motion. For instance, a state where more than one
fcounterclockmse(b) th_e time average of the data set appears at thg topte” hops simultaneously is possible. This dynamics bifur-
ollowed (from left-to-right and top-to-bottoinby the six most energetic .
modes®,;—®g; (c) the reconstruction of the dynamics using the six most Cat€s from similar branches of TWs except that now the
energetic KL modes. wave numbers would beandn— 2. An example of a double
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cantly different from the motions of the other states. The
overall results can be generalized to a ring witbells. Hop-
ping states bifurcate from a Hopf—Hopf symmetry breaking
interaction of two uniformly traveling waves (TWTW,,_,)

with wave numbersr andn—1. TW,_, rotates faster than
TW, . In physical space, the dynamics can be reconstructed
through the normal form equatior3) with [I=n—1 and
m=n.

A hopping state is formed by the interaction of two trav-
eling waves of asymmetric cells moving at different speeds;
yet, it is not a traveling wave and some of its cells are sym-
metric. FOrN>2 at least one cell is at rest and symmetric at
any time. Therefore, unlike TWs or MTWS, one cannot go
into a rotating frame at the speed (@ithe traveling wave
and eliminate one of the frequencies. At either end of the
branch, near the secondary bifurcation, one of the the travel-
ing waves dominates; but, as the amplitudes of the two
modes become comparable, the traveling wave character of
the resultant state disappears and hopping motion is ob-
served.

This result is one of the most interesting issues regarding
the geometry of the underlying phase space. Because the
number of cells is not the same near the bifurcating points, it
is an open question as to how the twod ®ri are connected.
We intend to study this problem both numerically in the
model and experimentally by taking data along the mixed
mode branch.
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APPENDIX: PROPERTIES OF KARHUNEN-LOE VE
DECOMPOSITION

The two-point correlation matrix of Eq9) is Hermitian.
That is,r(x,y)=r*(y,x). The matrix then admits according
to Riesz’s theorerf® a diagonal decomposition of the form

N
r(x,y>=k§1 M ()P (y). (A1)

FIG. 15. Five sequential frames of videotape depicting the motion of a
double-hopping state. This fact is particularly useful when finding the KL modes
analytically. They can be read off from the diagonal decom-

hopping state witm=8 cells was indeed found in reviewing pos!non (26).' The fOIIO\.ng propp;mon states that the KL.
basis functions and time coefficients are uncorrelated in

old data from the experiment. In Fig. 15 five consecutive . NYRYS
frames of videotape are presented from a state in which waPace and time, respectivefy.
Proposition 1: The KL modes{®,(x)}, with corre-

airs of cells on opposite sides of the outer ring are simulta- . . . .
Eeously executingpr?opping motion g sponding temporal coefficien{s,(t)}, satisfy the following

orthogonality properties: (i) CDJ?*(X)CI)k(x)z O, (i)
(aj(t)ag (t))=j\j, where 5, represents the Kronecker
delta function.

In this work we have extended the modal analysis used Property(ii) is obtained when the terms in the diagonal
to describe the characteristics of low dimensional dynamicslecomposition (A1) are compared with the expression
in concentric rings of cellular flames to the study of hoppingr (x,y) = =(a;(t)ag (t))®;(x)®y (y). The non-negative and
states, and we have shown how hopping motion is signifiself-adjoint properties of (x,y) imply that all eigenvalues

VII. CONCLUSION
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