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Modal decomposition of hopping states in cellular flames
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We use Karhunen–Loeve~KL ! decomposition of video images from an experiment to analyze a
spatiotemporal dynamic state, unique to cellular flames, referred to as a ‘‘hopping state.’’ Ordered
states of cellular flames on a circular burner consist of one or two concentric rings of luminous cells.
The hopping states correspond to the motions of individual cells in a ring sequentially executing
abrupt changes in their angular position, while the other cells in the ring remain symmetric and at
rest. KL decomposition separates the spatial and temporal characteristics of the hopping motion.
The underlying symmetries of the experiment allow us to deduce a set of normal form equations that
describe the formation of these states. We find that they result from secondary bifurcations
connecting two primary branches of traveling waves. The solutions corresponding to hopping states
exist as mixed-mode solutions away from the secondary bifurcations. ©1999 American Institute
of Physics.@S1054-1500~99!02503-3#
m
rm
e
ti
e

la
a
th

in

a

re

ding
t in
are
the
use
ns

pa-
der-
las-

e

ake
ng
by a

nt

-
te
lly,
i-
s at
rily
on,
ng
this
ical
op-
dy-

er-
In rotating wave „TW … states observed in cellular flames
all N cells sweep out equal angles in equal times. In
modulated rotating wave „MTW … states allN cells speed
up and slowdown in unison. In hopping states individual
cells „sequentially… abruptly change their angular posi-
tions, while the other „N21… cells are at rest„much like
people moving up when a vacancy occurs in a line…. In
this paper we show that hopping states result from an
interaction between anN cell TW state and an„N21… cell
TW state, with different angular velocities; yet, the re-
sulting hopping state is not a TW state.

I. INTRODUCTION

A flat, premixed flame is a propagating front of unifor
chemical reaction. Heavy hydrocarbon–air mixtures fo
cellular flames in which regions of bright cells and dark
cusps and folds reflect enhanced and diminished combus
due to the diffusion of the lighter oxygen relative to th
heavier fuel. When the flame front is confined to a circu
domain, the cells organize themselves in either station
states of concentric rings or nonstationary states in which
cells can move collectively within the ring structure.

We have previously analyzed the dynamics of rotat
states~TW!, standing wave states~SW!, and modulated ro-
tating states~MTW! using Karhunen–Loeve~KL ! decompo-
sition with the aim of developing the appropriate norm
forms.1 The KL decomposition of a rotating ring ofk cells
showed the presence ofk– 2k coupling. The normal form
theory corresponding to these ‘‘parity-broken’’ states p

a!Electronic mail: gorman@uh.edu
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dicted the presence of modulated rotating states and stan
wave states, which were also observed in the experimen
nearby regions of parameter space. The normal forms
obtained from the symmetries of the physical system and
symmetries of the modes, thus circumventing the need to
a detailed model of the flame front, for which calculatio
are extremely cumbersome.

In this paper we present a corresponding analysis of s
tiotemporal states with unusual characteristics and consi
ably more complex dynamics. These states were earlier c
sified as ‘‘square dance modes’’2 and later as ‘‘hopping
states.’’3 In numerical simulations from a thermodiffusiv
model, a similar state was termed ‘‘Pushmi–Pullyu.’’4 The
hopping states are formed by cells that sequentially m
rapid changes of angular position while moving in a ri
structure. The ring can be isolated or can be surrounded
stationary ring.

The motion of cells in a hopping state is very differe
from that of a traveling wave state~TW! or a modulated
traveling wave state~MTW!.5 In a TW state identical asym
metric cells of fixed shape rotate uniformly. In a MTW sta
identical asymmetric cells change their shapes periodica
while moving within the ring structure. In contrast, ind
vidual cells of a hopping state execute the same motion
different times. A single cell, whose shape is momenta
asymmetric, makes a rapid excursion to a new locati
while the remaining cells stay in place. Each cell in the ri
moves sequentially as described. To our knowledge,
kind of motion has not been observed in any other phys
systems. Understanding the spatiotemporal dynamics of h
ping states and contrasting them with the spatiotemporal
namics of TWs and MTWs is the purpose of this work.

A description of the experimental apparatus and prop
© 1999 American Institute of Physics
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ties of hopping states are given in Sec. II. With the aid o
phenomenological model~see Sec. III!, we explore the sta-
bility of cellular flame patterns. The model helped us to ide
tify the spatial structure of many stationary states in terms
Fourier–Bessel modes.1 The essential features of Karhunen
Loève decomposition are described in Sec. IV. In Sec. V,
study various configurations with three hopping cells, wh
include a single ring of hopping cells and two concent
rings where a stationary ring surrounds a ring of hopp
cells. The similarity in the behavior of the hopping cells
these two cases leads us to conclude that the interaction
tween rings is relatively weak. We thus concentrate on
analysis of single ring patterns and demonstrate that hop
states with three cells result from the Hopf–Hopf interact
of a two-cell TW with a three-cell TW. These states exist
mixed-mode solutions away from the secondary bifurcatio
We propose a normal form for the system and show how
output can be used to reconstruct the motion of cells
physical space. In Sec. VI, we generalize these result
other hopping states.

II. CLASSIFICATION OF EXPERIMENTAL STATES

The experimental flame patterns are stabilized on a
cular porous plug that burns premixed gases inside a
pressure~0.3–0.5 atm! combustion chamber. Pressure, flo
rate, and fuel/oxidizer ratio are the principal parameters
determine the formation of the patterns. In these experim
a steady uniform flame in the form of a circular lumino
disk, 5.62 cm in diameter and 0.5 mm thick, sits 5 mm abo
the surface of the burner. We call this initial state the ‘‘un
form state’’ of the experiment and note that it inherits t
circular symmetry of the burner. To the experimentalist,
uniform state looks the same if the burner is rotated by
arbitrary angle, or if the experiment is observed throug
vertical mirror. It is then reasonable to identifyO(2), the
group of rotations and reflections on the plane, as the un
lying group of symmetries of these flame experiments.

Upon changes of control parameters, theO(2) symmet-
ric uniform solution loses stability, and the flame front form
ordered patterns of concentric rings of cells. Brighter ce
correspond to hotter regions closer to the burner. They
separated by darker regions corresponding to cusps and
which extend an additional 5 mm away from the surface
the burner. The cellular patterns include stationary states
dynamical states in which the cells are able to move wit
the ring configuration. The stationary states can be class
based on their spatial symmetries. Usually, a subgroup
O(2) suffices for stationary states consisting of a single r
of cells while those states with two rings can be described
direct products of subgroups. In contrast, both spatial
temporal symmetries must be taken into account when
scribing dynamical states.

Hopping states appear in patterns with either one or
rings of cells at parameter values for which two order
states compete for stability. For instance, a hopping s
with three cells is found in a range of parameter values
tween those where three-cell ordered states and four-cel
dered states are stable. Hopping states have been obser
Downloaded 08 Jul 2002 to 204.121.3.10. Redistribution subject to AIP 
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butane–air and isobutane–air flames, but not in propane
flames. Figure 1 depicts four different configurations of ho
ping states. In Figs. 1~a! and 1~d!, hopping occurs in a single
ring array of cells, while in Figs. 1~b! and 1~c!, an inner ring
of hopping cells is surrounded by a stationary outer ring.

In order to study the spatiotemporal characteristics of
motion, the evolution of the flame front is recorded with
Dage-MTI charge-coupled device~CCD! camera, mounted
vertically on top of the combustion chamber. The video i
ages capture the emitted chemiluminescence from the fl
front and provide a two-dimensional measurement prop
tional to the temperature at various points on the burn
Such measurements are commonly used in flame model6–8

The spatial and temporal resolution, the time interval, a
the dynamic range are limited only by the recording devi
Images of 6403480 pixel resolution, taken at 1/30 s inte
vals with 7 bit dynamic range, are typical for dynamics r
corded on S-VHS video tape.

III. MATHEMATICAL MODEL

In previous work,1 we investigated the formation an
evolution of cellular patterns in circular domains with
reaction–diffusion PDE system in the form

] tu5~B21!u1A2v2hu32n1~¹u!21k1¹2u,
~1!

] tv52Bu2A2v2hv32n2~¹v !21k2¹2v,

whereu(x,t) andv(x,t) are two linearly coupled, diffusive
spatiotemporal fields with diffusion coefficientsk1 andk2 ,
respectively. The cubic terms control the growth of the l

FIG. 1. Four sequential frames of videotape of four different experime
states with hopping motion in:~a! a single ring state with three cells;~b! an
inner ring of three cells surrounded by a stationary outer ring with ele
cells; ~c! an inner ring of two cells surrounded by a stationary outer ri
with ten cells;~d! a single ring state with four cells.
license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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757Chaos, Vol. 9, No. 3, 1999 Islands of modes and tangles
early unstable modes, while the nonlinear gradient terms
der the model nonvariational. Several stationary and non
tionary patterns whose characteristics are similar to
experimental states were observed in the model.

These corresponding states from the model complem
the experimental results by giving insight into the dynam
of hopping motion. Due to the circular geometry of the d
main, the integration of Eq.~1! is carried out in polar coor-
dinatesx5(r ,u) over a circular grid of radiusR. An alter-
nating direction implicit algorithm is used in the numeric
integration procedure.9 Since qualitatively different pattern
are observed asR is varied, the radius of the burner will b
treated as a distinguished bifurcation parameter.

A. Linear stability analysis

A scalar field u(r ,u,t) satisfying Dirichlet boundary
conditions on a circular domain of radiusR can be expanded
as

u~r ,u,t !5(
n,m

znm~ t !Cnm~r ,u!1c.c., ~2!

where Cnm(r ,u)5Jn(anmr /R)einu, ~m>0 and n.0! and
c.c. denotes complex conjugate.10 HereJn(r ) is thenth-order
Bessel function of the first kind andanm is its mth-nontrivial
zero.znm are complex time-dependent coefficients, save
z0m which are real. The orthonormality and completeness
the functions$Cnm(r ,u):n>0,m>1% gives

znm~ t !5
1

pR2Jn11
2 ~anm!

3E
0

2pE
0

R

ru~r ,u,t !C̄nm~r ,u!du dr, ~3!

with the proviso that the coefficients are half of the val
given whenn50.

Previously, the linear stability of the uniform sta
(u0 ,v0)5(0,0) was studied by considering small perturb
tions w5(wu ,wv) proportional to Fourier–Bessel function

w5eltCnm~r ,u!. ~4!

Under these perturbations, the uniform state (u0 ,v0) is stable
if l,0, and unstable ifl.0. The marginal stability curve
corresponds to those parameters wherel50 and was calcu-
lated as a function of the distinguished parameterR,

Bnm
M ~R!511

k1

k2
A21k1S anm

R D 2

1
A2

k2
S R

anm
D 2

. ~5!

Beyond this curve, on increasingB, the uniform state desta
bilizes to Cnm(r ,u). For a given value ofA, a particular
curveBnm reaches a minimum value of

B0511
k1

k2
A212AAk1

k2
~6!

at a radiusR5anm(k1k2 /A2)1/4. The results presented i
this paper are evaluated with fixed values ofk151.6, k2

516.0, h50.8, n152.32, n256.501, andA55.0. B and R
are used as control parameters.
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B. Numerical results

The integration of Eq.~1! was focused in a region wher
the evolution of a single ring pattern with three cells can
traced. Such region can be found in a neighborhood of
minimum of the marginal stability curveB31 shown in Fig. 2.
As the curved is crossed, on increasingB, a stationary pattern
of three cells with purely spatialD3 symmetry bifurcates
from theO(2) symmetric trivial solution. IncreasingB fur-
ther, the shaded region is found, in which the three-cell p
tern is no longer dominant but rather competes for stabi
with another stationary ring of four cells. To the left of th
region, the three-cell state is stable; and to the right,
four-cell state becomes the dominant mode.

Consider now the stationary ring of three cells as o
served to the left of the shaded region. On moving right,
D3 symmetry of the ring is broken and a nonstationary p
tern bifurcates subcritically. Figure 3 depicts various sn
shots of the evolution ofu(r ,u,t). The bifurcating field also
contains three cells but now the cells rotate clockwise. T

FIG. 2. Marginal stability curves defining the stability domains where
trivial solution (u0 ,v0)5(0,0), representing a uniform flame front, bifur
cates to Fourier–Bessel modesCnm .

FIG. 3. Space and time evolution of three cells hopping from model~1!. The
cells move nonuniformly and their shapes change periodically. Observe
competition with a four-cells state.
license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



e
r

m
o
a
nt
os
to
ila
nd
p
pe
t

e
te
um
he
ha
si
ac
i-
ide
.

t-
nt,

ns
ffi-

nca-

ace
or

ow,
ld,

s.
-
ar

t,
ht

ho
en

ost
the
the

758 Chaos, Vol. 9, No. 3, 1999 Palacios, Gorman, and Gunaratne
ring of cells rotates nonuniformly with the shape of each c
changing periodically. The dynamics of each cell is mo
complicated. An animated sequence of the field reveals s
but visible jumps in the angular position of each cell. One
the cells changes its shape more than the other two and
appears more asymmetric. In comparison with experime
observations of hopping states, the jumps in angular p
tions are smaller in magnitude but, up to a time scale fac
the general characteristics of the dynamics are very sim
Figure 4 shows the time evolution of the amplitude a
phases of a few coefficients in the Fourier–Bessel decom
sition of u(x,t). The amplitude modulations reflect the sha
changes of the cells, and the phase modulations confirm
nonuniform rotation of the cells. The periodicity of th
modulations further suggests that this nonstationary pat
is created via a Hopf bifurcation. The frequency spectr
~not shown! of the Fourier–Bessel coefficients indicates t
presence of two incommensurate frequencies and their
monics. This quasiperiodic motion of the cells can be ea
visualized in the phase plane projections of the sp
(z11,z21,z31,z41), which is shown in Fig. 5. A computer an
mation of the numerical results is posted in the World W
Web at http://vip.cs.utsa.edu/flames/klvisual/klvisual.html

FIG. 4. Time evolution of the~a! amplitude coefficients and their~b! cor-
responding phases, found in the Fourier–Bessel decomposition of the
ping state shown in Fig. 3. The observed modulations indicate the pres
of nonuniform motion.
Downloaded 08 Jul 2002 to 204.121.3.10. Redistribution subject to AIP 
ll
e
all
f
lso
al
i-
r,
r.

o-

he

rn

r-
ly
e

IV. KARHUNEN–LOÈ VE DECOMPOSITION OF
EXPERIMENTAL DATA

Let u(x,t):D→R be a scalar-valued function represen
ing an observable of a numerical or physical experime
whereD,Rn is the domain of the experiment andt repre-
sents time. Karhunen–Loe`ve decomposition11–15 allows us
to separate the spatial and temporal variations ofu(x,t) by
extracting time-independent orthonormal basis functio
Fk(x), and time-dependent orthonormal amplitude coe
cientsak(t), such that the reconstruction

u~x,t !5(
k

ak~ t !Fk~x! ~7!

is optimal in the sense that the average least-squares tru
tion error in the approximation up toNth order

eN5K I u~x,t !2 (
k51

N

ak~ t !Fk~x!I 2L ~8!

is always a minimum for any given numberN of basis func-
tions over all possible sets of orthogonal functions.

The observable can be a continuous function of sp
and time or a discrete set of vector-valued functions. F
instance, in Rayleigh–Benard convection,16 in which a fluid
confined between two parallel plates is heated from bel
u(x,t) can be assumed to be a component of a velocity fie
andD5$(x,y,z):0,z,1% a region between the two plate
In Eq. ~1!, u(x,t) could be any of the two diffusive spa
tiotemporal fields that simulate the evolution of cellul
flames. In the combustion experiments of Sec. II,u is a func-
tion of the intensity of the light emitted by the flame fron
and D is the circular burner. Since the variations in lig
intensity are recorded on video tape,u is now a discrete
vector of video images. Each image is aN5w3h array of
pixels with scalar values in the range@0, 255#. Formally,u is
represented by a discrete sequence ofM data vectors of the
form ui(x)5@u(x1 ,t i),u(x2 ,t i),...,u(xN ,t i)#T, i 51...M ,
where xj is the j th grid point in the pixel domainD

p-
ce

FIG. 5. Phase plane projections of real and imaginary parts of the m
dominant Fourier–Bessel coefficients obtained in the decomposition of
hopping state shown in Fig. 3. The modulations in the angular motion of
cells is clearly visible in the projections.
license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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759Chaos, Vol. 9, No. 3, 1999 Islands of modes and tangles
5(x1,x2,...,xN), t i is a discrete-time variable or frame inde
and M indicates the total number of measurements of
experiment.

The functionsFk(x), called empirical eigenfunctions
coherent structures, or KL modes, are the eigenvectors of th
two-point spatial correlationfunction which in the case of a
discrete observable is given by

r ~x,y!5
1

M (
i 51

M

u~x,t i !u
T~y,t i !, ~9!

wherea0(t) is a constant andF0 is the time average of the
data ũ5(1/M )( i 51

M u(x,t i). Frequently, we are more inter
ested in the variations of a data setu about its average valu
than onu itself. It is then common practice to subtract th
average value from the data set prior to the KL decomp
tion and assumeF050. However, when the original data s
is reconstructed with Eq.~7!, the averageũ must be restored

The method of snapshots.A direct computation of the
eigenvectors of Eq.~9! involves solving the eigenvalue prob
lem

r ~x,y!F~y!5lF~x!. ~10!

Sincer (x,y) is anN3N matrix, solving Eq.~10! could be a
very expensive process if the number of grid pointsN is very
large. However, whenN is larger than the number of mea
surementsM, then themethod of snapshots15 provides a
popular and efficient alternative for solving the eigenva
problem~10!. The method is based on the fact that the d
vectorsui , and the eigenvectorsFk , span the same linea
space.11,15 This result implies that the eigenvectors can
written as a linear combination of the data vectors

Fk5(
i 51

M

v i
kui . ~11!

After substitution in the eigenvalue problem~10!, the coef-
ficientsv i

k are obtained from the solution of

Cv5lv, ~12!

where vk5(v1
k ,...,vN

k ) is the kth eigenvector of Eq.~12!,
and C is a symmetric M3M matrix defined by @ci j #
5(1/M )(ui ,uj ), where ~•,•! denotes the standar
vector inner product, (ui ,uj )5u(x1 ,t i)u(x1 ,t j )1¯

1u(xN ,t i)u(xN ,t j ). In this way anN3N eigenvalue prob-
lem @the eigenvectors of Eq.~9!# is reduced to computing th
eigenvectors of anM3M matrix, a preferable task ifN
@M . After computing the KL basis functions, the tempor
coefficientsak(t) are calculated by projecting the data s
onto each of the eigenfunctions

ak~ t !5
~u~x,t !,Fk~x!!

~Fk~x!,Fk~x!!
. ~13!

It can be shown that both temporal coefficients and eig
functions are uncorrelated in time and space~see the Appen-
dix for more details!. The results presented in this paper we
obtained with an implementation of the method of snapsh
through the use of the software packageKLTOOL.17
Downloaded 08 Jul 2002 to 204.121.3.10. Redistribution subject to AIP 
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V. HOPPING MOTION IN THREE CELLS

In this section, three different configurations of cellul
patterns containing a ring of three hopping cells are a
lyzed. The first is a state with three hopping cells. The ot
two contain an inner ring of three hopping cells surround
by a stationary outer ring. The dynamics of each state
encapsulated in a data set of the formui

5@u(x1 ,t i),...,u(xN ,t i)#T, i 51,...,M , with M5600, frames
andN54096 pixels. Each data set is a digitization of 20 s
video tape at a rate of 30 frames/s.

The analysis presented in this section will reveal th
these states result from the interaction of two traveling wa
with incommensurate frequencies. The wave numbers are
termined by the spatial symmetries of the modes, and t
correspond, in physical space, to the number of cells i
ring. A reconstruction of the motion shows that the intera
tion of the two TWs produces a state with physical char
teristics similar to those of the hopping states. The prese
of the outer stationary ring of cells has no appreciable eff
on the hopping motion of the inner ring of cells, suggesti
that the interaction between the rings is very weak.

A. Hopping in a single ring pattern

The hopping motion in a single ring state with three ce
is shown in Fig. 6~a!. The label 3H has been assigned to th
state in previous experimental studies.3 The same classifica
tion scheme is adopted here. Five instantaneous snapsho
the data set, with time running from top-to-bottom, depic
cellular pattern with three cells rotating counterclockwis
Cells are numbered for identification purposes and fram
are 1/15th s apart from each other. In frame 1, cell 1 is j
finishing a hop. The cell behind it, cell 3, then begins
move in frame 2 and completes its hop in frame 3. It is th
the turn for cell 2 to hop and its motion is completed
frame 4. In frame 5, the cycle repeats over again star
with cell 1. The hopping cell appears more asymmetric a
moves faster than the other two cells, one of which is alw
at rest.

The application of KL decomposition gives the eige
functions shown in Fig. 6~b!. The time average of the image
ũ ~top snapshot!, reflects theO(2) symmetry of the burner
even though none of the instantaneous states has
symmetry.18 Below the time average~ordered from left to
right and top to bottom!, the six most energetic KL mode
F1–F6 are also depicted. The energy spectra~see the
Appendix! E5(15.1, 14.8, 12.1, 11.5, 5.4, 5.3, 4.6, 4.5, 1
1.8,...) show an equal distribution of energy among conse
tive pairs of modes, indicating that each pair of modes for
an invariant subspace for the overall dynamics. The rec
struction with the six most energetic modes is shown in F
6~c!. Since the KL modes were obtained directly from vid
images of the experiment, their analytical forms are u
known. However, their symmetries can be deduced thro
Fourier–Bessel decomposition. For the first three pairs,
largest contributions come from Fourier–Bessel modesC21,
C31, andC41, respectively. This result confirms the visu
perception of approximatelyD2 , D3 , andD4 symmetry in
each pair, respectively.
license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 6. KL decomposition of hopping motion in a single ring state with three cells:~a! five instantaneous snapshots showing hopping motion as the cells r
counterclockwise;~b! the time average of the data set appears at the top, followed~from left-to-right and top-to-bottom! by the six most energetic mode
F1–F6 ; ~c! the reconstruction of the dynamics using the six most energetic KL modes.
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Insight into the origin of the hopping motion can b
obtained from the projections@see Eq.~13!# of the data set
ui(x) onto each invariant subspace. Using the two most
ergetic pairs of modes$F1 ,F2% and $F3 ,F4%, the projec-
tions produce time coefficients $a1(t),a2(t)% and
$a3(t),a4(t)%, ~not shown!. The sinusoidal shape of the co
efficients suggests that, on the invariant subspace$F1 ,F2%,
the reconstructed dynamics

u~x,t !5ũ1a1~ t !F1~x!1a2~ t !F2~x!, ~14!

forms a cellular pattern of two traveling cells (TW2
3H). Simi-

larly, the reconstruction on the subspace$F3 ,F4% forms a
pattern of three traveling cells (TW3

3H). The number of cells
or wave number, is inferred from the spatial symmetries
Downloaded 08 Jul 2002 to 204.121.3.10. Redistribution subject to AIP 
n-

f

the modes in each invariant space:D2 andD3 , respectively.
The phase difference observed in each pair is a consequ
of the orthogonality~see the Appendix! of the modes, and it
is needed to break the reflectional symmetry of the cells
required by the bifurcation of rotating waves from syste
with O(2) symmetry.19

Figure 7 shows the phase between the time coefficie
associated with each wave, arctan(a2(t)/a1(t)), and
arctan(a4(t)/a3(t)). The observed linear variation of th
phases with slopesm251.1925 andm350.8701 indicates
that each wave rotates uniformly. In physical space, the
ues of m2 and m3 correspond to angular speedsw2

517.67 rad/s andw358.59 rad/s, respectively. Observe th
license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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TW2
3H rotates significantly faster than TW3

3H . The two-
frequency motion can be visualized in the phase-plane
jections of the space (a1 ,a2 ,a3 ,a4), as is shown in Fig. 8.

All these observations have been confirmed by view
reconstructions in physical space with Eq.~7!. The analysis
is valid even though many modes have been omitted
cause, first, most of the remaining low energy modes cap
only high-dimensional effects such as shape variations a
second, modes such as$F5 ,F6% are higher harmonics o
other modes,$F1 ,F2% in this case. Up to a shape approx
mation, only four modes are needed to reproduce the dyn
ics.

B. Hopping motion in patterns with concentric rings

Figure 9~a! shows five sequential snapshots of a patt
with two concentric rings of cells. The outer ring contai
eleven stationary cells, while the inner ring is formed
three cells hopping clockwise. This pattern is characteri

FIG. 7. The linear variation in the phase between$a1(t),a2(t)% and
$a3(t),a4(t)% indicates uniform motion by the traveling waves TW2

3H and
TW3

3H . The slopes of the phases,m2 and m3 , are used to estimate th
angular velocity of each wave,v2517.67 rad/s andv358.59 rad/s, respec-
tively.

FIG. 8. Projections of phase plane (a1(t),a2(t),a3(t),a4(t)), showing a
two-dimensional invariant torus in the KL decomposition of the 3H state.
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as an 11/3H state. Cells in the inner ring hop in a fashio
similar to those of the 3H state~but in the opposite sense!.
The stationary ring of outer cells has little effect on the m
tion of the inner cells.

The results from the KL decomposition are shown
Fig. 9~b! and the reconstruction with the six most energe
modes appears in Fig. 9~c!. The time average~top snapshot!
clearly captures the structure of the stationary outer ring
the rotations of the inner cells. It has an approximatelyD11

% O(2) spatial symmetry. The three most energetic pairs
KL modes~from top to bottom and left to right! F1–F6 are
composed of the same Fourier–Bessel modes as in theH
state, except that they appear in a different order. Using
~2! we have verified that the modes in each pair have
proximateD3 , D2 , andD4 symmetry, respectively. As be
fore, each pair forms an invariant subspace for the dynam
On the$F1 ,F2% subspace, theD3 symmetry of the modes
and the sinusoidal nature of the corresponding time coe
cients provide a state with three traveling cells (TW3

11/3H).
Similarly, two traveling cells (TW2

11/3H) are obtained on the
$F3 ,F4% subspace. Observe that both waves TW3

11/3H and
TW2

11/3H are equivalent to those found in the 3H case, i.e.,
TW3

3H and TW2
3H , respectively. They all lie in equivalen

subspaces. The frequency analysis further reveals that
wave undergoes uniform rotations. TW3

11/3H rotates with a
slow angular speed ofv356.14 rad/s, while TW2

11/3H moves
faster atv2518.41 rad/s. In this case,$F5 ,F6% is a higher
harmonic of$F3 ,F4% and need not be included directly i
the analysis.

The effects of changing the number of cells in the ou
ring can be studied using results from the 12/3H hopping
state. An analysis of its motion provides results very simi
to those of the 11/3H state, withv2519.88 rad/s andv3

57.61 rad/s.
In each of the above cases, two traveling waves

found to be lying in equivalent subspaces and with wa
numbers two and three. Each wave rotates uniformly but
wave with two cells always moves faster. In the 11/3H and
12/3H states, the existence of a stationary outer ring ha
negligible effect on the hopping motion of the inner ring.

C. Bifurcation analysis

Consider an idealization of the flame experiment by
G-equivariant system of ordinary differential equatio
~ODEs!

ẋ5 f ~x,l!, ~15!

where G5O(2) models the symmetry of the burner,x
PRn, andlPR2 is a vector of parameters. We now wish
explain, within a mathematical context, how a pattern w
three hopping cells can bifurcate from a system such as
~15!. As already discussed, the presence of a secondary
of cells does not effect the hopping motion significant
Consequently, our study is limited to the analysis of a sin
ring of hopping cells, which results from the interaction
two uniformly rotating waves with two and three cells, r
spectively. For generality these waves are labeledTl and
Tm , respectively. The subscripts specify the actual values
license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 9. KL decomposition of hopping motion in an inner ring with three cells surrounded by a stationary ring with eleven cells;~a! five instantaneous
snapshots showing hopping motion in the inner ring as the cells rotate clockwise;~b! the time average of the data set appears at the top, followed~from
left-to-right and top-to-bottom! by the six most energetic modesF1–F6 ; ~c! the reconstruction of the dynamics using the six most energetic KL mode
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the wave numbers which are assumed to be relatively pri
In the present case,l 52 and m53. Recall from Fig. 6~a!
that each wave lies on anO(2)-invariant subspace create
from the coupling of two KL modes

Tl : Vl5span$F1 ,F2%,
~16!

Tm : Vm5span$F3 ,F4%.

The KL modes and the periodicity of their time coefficien
suggest that both traveling waves are created via Hopf bi
cations. We should then consider conditions, under the s
metries of the experiment, for these bifurcations to occu
Eq. ~15!. We assume thatx50 is the O(2)-symmetric
‘‘trivial solution’’ of the experiment satisfying
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f ~0,l!50, ~17!

and the linearizationL5(D f )0,0 has a pair of purely imagi-
nary eigenvalues6v l i ,6vmi , wherev l andvm are incom-
mensurate. Assume further that each pair of eigenvalues
curs twice so thatxPR8. SinceVl andVm are subspaces o
dimension two, then a decomposition ofR8 takes the form

R85Vl % Vl % Vm% Vm . ~18!

As indicated by the KL decomposition, the invariance of t
subspaces implies thatL(Vl),Vl andL(Vm),Vm .

Under these assumptions, atl50, thex50 uniform so-
lution loses stability and twoO(2) symmetry-breaking
branches of rotating waves are created simultaneously v
license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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Hopf bifurcation.19 A competition between both waves co
responds to a Hopf–Hopf interaction between twoO(2)
broken-symmetry modes. The dynamics of the mode inte
tion can be described through Eq.~15! in ‘‘normal form,’’ in
which the terms inf are simplified~up to any order! through
successive changes of coordinates. As in many other ca
the normal form can be deduced from the way the symm
group G acts on the modes. Since two branches of H
bifurcations induce a torus actionT25S13S1 on the system
of ODEs, we must consider the action ofG3T2 or O(2)
3T2 on Eq. ~15!. Identifying R8 with C2

% C2 as
(x1 ,x2 ,x3 ,x4 ,x5 ,x6 ,x7 ,x8) °(x11x2i ,x31x4i ,x51x6i ,x7

1x8i )5(z1 ,z2 ,z3 ,z4), the action ofG3T2 on C2
% C2 is

generated by

g~z1 ,z2 ,z3 ,z4!5~elg iz1 ,e2 lg iz2 ,emg iz3 ,e2mg iz4!

for all gPSO~2!, ~19!

k~z1 ,z2 ,z3 ,z4!5~z2 ,z1 ,z4 ,z3!

where k5flip in O~2!, ~20!

~u1 ,u2!•~z1 ,z2 ,z3 ,z4!5~eu1iz1 ,eu1iz2 ,eu2iz3 ,eu2iz4!

for all ~u1 ,u2!PT2. ~21!

Observe that under this actionO(2) acts byl-fold rotations
on Vl andm-fold rotations onVm . For instance, considerVl

which according to Fig. 6~b!, has roughly the form

R$J2e2xi,J2e22xi%. ~22!

In physical space, a spatial translationx°x1g in Vl corre-
sponds to multiplication by$e2g i ,e22g i%. The remaining
group operations can be interpreted in a similar way. A n
mal form equation for anO(2)3T2 equivariant vector field
f, under the action generated by Eqs.~19!–~21! takes the
form

ż15~p1~z!1 iq1~z!!z1

1~r 1~z!1 is1~z!!z̄1
m21z2

m~z3z̄4! l ,

ż25~p1~kz!1 iq1~kz!!z2

1~r 1~kz!1 is1~kz!!z1
mz̄2

m21~ z̄3z4! l ,
~23!

ż35~p2~z!1 iq2~z!!z3

1~r 2~z!1 is2~z!!~z1z̄2!mz̄3
l 21z4

l ,

ż45~p2~kz!1 iq2~kz!!z4

1~r 2~kz!1 is2~kz!!~ z̄1 ,z2!mz3
l z̄4

l 21,

where z5(z1 ,z2 ,z3 ,z4), pj , qj , r j , and sj ( j 51,2) are
functions of uz1u2,...,uz4u2, Rea and Ima, a
5(z1z̄2)m( z̄3z4) l , p1(0)5p2(0)50, q1(0)5v l and q2(0)
5vm . Truncating at third order, we consider the followin

ż15~m11a11uz1u21a12uz2u21a13uz3u21a14uz4u2!z1

1~v l1b11uz1u21b12uz2u21b13uz3u21b14uz4u2!iz1 ,
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ż25~m11a12uz1u21a11uz2u21a14uz3u21a13uz4u2!z2

1~v l1b12uz1u21b11uz2u21b14uz3u21b13uz4u2!iz2 ,
~24!

ż35~~m12m2!1a21uz1u21a22uz2u21a23uz3u2

1a24uz4u2!z31~vm1b21uz1u21b22uz2u21b23uz2u2

1b24uz4u2!iz3 ,

ż45~~m12m2!1a22uz1u21a21uz2u21a24uz3u2

1a23uz4u2!z41~vm1b22uz1u21b21uz2u21b24uz2u2

1b23uz2u2!iz4 ,

wherem1 and m2 are unfolding parameters. Periodic sol
tions, bifurcating from the trivial solutionz50, can be found
by letting zj5r je

u j i and transforming the system~24! to po-
lar coordinates. Up to conjugacy by theQ(2)3T2 action, we
consider three types of periodic solutions—~a! l-mode solu-
tion: r 25r 35r 450, r 15(2m1 /a11)

1/2; ~b! m-mode solu-
tion: r 15r 25r 350, r 45(2m22m1 /a23)

1/2; ~c! mixed-
mode solution: a11r 2

21a13r 4
21m150, a21r 2

21a23r 4
21m1

2m250.
Treatingm2.0 as a fixed auxiliary parameter, it can b

verified that the trivial solutionz50 is stable form1,0 and
unstablem1.0. At m150, a branch ofl-mode solutions (Tl)
bifurcates along the curver 15(2m1 /a11)

1/2. The bifurca-
tion is supercritical whenm1 /a11,0, and subcritical other-
wise. In physical space, the solutionTl is a cellular pattern
with l 52 cells rotating uniformly atv l rad/s, and lies inside
Vl which corresponds to the invariant subspacez25z35z4

50. After m1 is further increased such thatm15m2 , a
branch ofm-mode solutions (Tm) bifurcates along the curve
r 45(m22m1 /a23)

1/2. In this case, the bifurcation is supe
critical when (m22m1)/a23,0, and subcritical otherwise
As before,Tm is a pattern withm53 cells rotating uniformly
at vm rad/s, and lies insideVm which is the invariant sub-
space given byz15z25z350. Note that a single point on
both branches represents a circle of conjugate solutions.

Figure 10 shows a bifurcation diagram whena115a12

FIG. 10. Hopf–Hopf interaction of two branches of uniformly travelin
cellular flames formed in anO(2) symmetry breaking bifurcation from a
uniform flame front. The mixed-mode solution is created through a seco
ary bifurcation. In physical space, the dynamics near the secondary bifu
tion points appears as a standard MTW. In the middle, however, the be
ior is radically different: three hopping cells similar to the experimental 3H
state are observed.
license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



to
m
an
e

-
r

t
el

p
s
he

s
ot
ila

th

be
o
-

r
up
io

ta
ac

on
f-
n
y

e
e
4
ri
in

he
ds
he
th
ng
In
her
o-
dy
s

i-

uter
ge

,
ng

cells
e

764 Chaos, Vol. 9, No. 3, 1999 Palacios, Gorman, and Gunaratne
521, a135a14521.5, a215a22520.5, a235a24521,
bi j 521, v251.178 rad/frame ~17.67 rad/s!, and v3

50.859 rad/frame~8.59 rad/s!. These values were chosen
reflect the stability of the branches shown in the diagra
The mixed-mode branch is stable and lies in the invari
subspacez15z350. A direct calculation shows that th
mixed-mode solution bifurcates from thel-mode branch at
m1

l 5(a11/a112a21)m2 , and limits in them-mode branch at
m1

m5(a13/a132a23)m2 . A complete stability analysis is be
yond the scope of this work and the interested reader is
ferred to Refs. 19 and 20.

Using DSTOOL,21 we integrate Eq.~24! and traverse the
bifurcation diagram along the mixed-mode branch. Sincez1

5z350, we only need to considerz2 and z4 and the four
most energetic KL modesF1–F4 of Fig. 6~b!. In physical
space the evolution of the pattern takes the form

u~x,t !5ũ1 (
k51

2

Re$z2k~ t !%F2k21~x!

1Im$z2k~ t !%F2k~x!. ~25!

Nearm1
l , the amplitude ofz2 is significantly larger than tha

of z4 , and the reconstruction produces a pattern of two c
rotating almost rigidly. Increasingm1 slightly does not seem
to affect the rotational motion of the cells, but the sha
modulations become more visible. The pattern continue
exhibit two cells. Similar behavior is observed near the ot
end of the branch, i.e., nearm1

m . Sincez4 is now more domi-
nant, the pattern contains three cells but the characteristic
the motion are similar. In both cases, the nature of the r
tion coupled with shape variations produces a motion sim
to ~the MTW termed! ‘‘ponies in a merry-go-around.’’4

However, away from the secondary bifurcations and near
middle of the branch, wherez2 and z4 are comparable in
magnitude, very different and interesting spatiotemporal
havior is produced. Figure 11 shows several snapshots
movie generated by Eq.~25! near the middle of the mixed
mode branch. The emerging pattern contains three cells
tating counterclockwise but sequentially executing abr
changes in their angular position. The direction of rotat
can be easily controlled in Eq.~24!, and the overall dynamics
is consistent with the hopping motion of the experimen
3H state. In Fig. 12 various projections of the phase sp
(z2 ,z4) are shown. The motion is confined to a 2d torus
similar to the one found in the experiment. Hopping moti
in three cells results from the coupling of two Hop
bifurcated states. Hopping motion in other configuratio
such as 11/3H and 12/3H can be reproduced in a similar wa
by substituting the appropriate averageū in Eq. ~25!.

VI. GENERALIZATIONS TO OTHER HOPPING STATES

In this section, the results obtained for the 3H, 11/3H,
and 12/3H states are compared with those for two oth
states: first, with a 10/2H state in which two cells hop insid
a stationary ring with ten outer cells and, second, with aH
state in which four cells hop in a single ring. This compa
son will identify the common characteristics among hopp
states with different numbers of cells.
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Figure 13~a! shows five sequential snapshots of t
10/2H state. A stationary outer ring with ten cells surroun
an inner ring with two cells hopping counterclockwise. T
motion in the inner ring is similar to the hopping motion wi
three cells. At a given instant, one of the two cells is movi
rapidly, or hopping, while the other is almost stationary.
addition, the hopping cell is more asymmetric than the ot
cell. This dynamics is very different from the modulated r
tating cells obtained from the interaction of two stea
modes in a 1:2 ratio15,22 in which the shapes of both cell
~which changed periodically! were identical at all times.

Figure 13~b! shows the results from the KL decompos
tion of the 10/2H state. The time average~top snapshot!
captures the structure of the ten cells in the stationary o
ring and the rotation of the two inner cells. The avera
pattern has an approximatelyD10% O(2) spatial symmetry.
The energy spectra E5(23.02, 18.72, 9.94, 9.69,4.84
4.81,...), indicates an equal distribution of energy amo
pairs of KL modes~shown from top to bottom and left to
right! F1–F6 . Using Eq.~2!, we find that each pair hasD2 ,

FIG. 11. Snapshots of the reconstructed dynamics of three hopping
using normal form equations~24! and KL basis functions in physical spac
~25!.
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765Chaos, Vol. 9, No. 3, 1999 Islands of modes and tangles
D1 , and D3 symmetry, respectively. In physical spac
$F1 ,F2% forms a uniformly traveling wave with two cell
rotating slowly at an angular speedv2515.645 rad/s, ap-
proximately. Similarly,$F3 ,F4% creates a uniformly travel
ing wave with one cell rotating rapidly at an angular spe

FIG. 12. Projections of phase plane (z2(t),z4(t)) showing a two-
dimensional invariant torus in the normal form reconstruction of theH
state. Observe the similarities with the torus shown in Fig. 8.

FIG. 13. KL decomposition of hopping motion in an inner ring with tw
cells surrounded by a stationary ring with ten cells;~a! five instantaneous
snapshots showing hopping motion in the inner ring as the two cells ro
counterclockwise;~b! the time average of the data set appears at the
followed ~from left-to-right and top-to-bottom! by the six most energetic
modesF1–F6 ; ~c! the reconstruction of the dynamics using the six mo
energetic KL modes.
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v1546.755 rad/s, approximately. The reconstruction w
the six most energetic modes is shown in Fig. 13~c!.

The hopping state labeled 4H is shown in Fig. 14~a!.
Five sequential snapshots depict a single ring pattern of
cells hopping counterclockwise. As in previous cases,
instantaneous asymmetry of a single cell is clearly visib
The modes extracted from the KL decomposition are sho
in Fig. 14~b!. The time average~top snapshot! now captures
the O(2) symmetry of the burner. The energy spectraE
5(13.5, 13.5, 13.3, 13.3, 7.0, 7.0,...), indicates an equal
tribution of energy among pairs of KL modesF1–F6 . Us-
ing Eq. ~2!, we find that each pair hasD3 , D5 , and D4

symmetry, respectively. In physical space,$F1 ,F2% forms a
TW with three cells rotating at an angular speedv3

59.8 rad/s, while$F3 ,F4% creates a TW with four cells
rotating at an angular speed ofv454.23 rad/s. The recon
struction with the six most energetic modes is shown in F
14~c! for illustration purposes.

The analysis and conclusions about hopping motion in
cells were obtained based on the assumption that only
cell hops at a time, while the other cells are almost stati
ary. This result is consistent with almost all of the expe
mental observations. The mathematical description prese
throughout this work predicts the existence of other forms
hopping motion. For instance, a state where more than
cell hops simultaneously is possible. This dynamics bif
cates from similar branches of TWs except that now
wave numbers would ben andn22. An example of a double

te
,

t

FIG. 14. KL decomposition of hopping motion in a single ring state w
four cells ~a! five instantaneous snapshots showing hopping motion as
cells rotate counterclockwise;~b! the time average of the data set appears
the top, followed~from left-to-right and top-to-bottom! by the six most
energetic modesF1–F6 ; ~c! the reconstruction of the dynamics using th
six most energetic KL modes.
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hopping state withn58 cells was indeed found in reviewin
old data from the experiment. In Fig. 15 five consecut
frames of videotape are presented from a state in which
pairs of cells on opposite sides of the outer ring are simu
neously executing hopping motion.

VII. CONCLUSION

In this work we have extended the modal analysis u
to describe the characteristics of low dimensional dynam
in concentric rings of cellular flames to the study of hoppi
states, and we have shown how hopping motion is sign

FIG. 15. Five sequential frames of videotape depicting the motion o
double-hopping state.
Downloaded 08 Jul 2002 to 204.121.3.10. Redistribution subject to AIP 
o
-

d
s

-

cantly different from the motions of the other states. T
overall results can be generalized to a ring withn cells. Hop-
ping states bifurcate from a Hopf–Hopf symmetry breaki
interaction of two uniformly traveling waves (TWn ,TWn21)
with wave numbersn and n21. TWn21 rotates faster than
TWn . In physical space, the dynamics can be reconstruc
through the normal form equations~23! with l 5n21 and
m5n.

A hopping state is formed by the interaction of two tra
eling waves of asymmetric cells moving at different spee
yet, it is not a traveling wave and some of its cells are sy
metric. ForN.2 at least one cell is at rest and symmetric
any time. Therefore, unlike TWs or MTWs, one cannot
into a rotating frame at the speed of~either! traveling wave
and eliminate one of the frequencies. At either end of
branch, near the secondary bifurcation, one of the the tra
ing waves dominates; but, as the amplitudes of the t
modes become comparable, the traveling wave characte
the resultant state disappears and hopping motion is
served.

This result is one of the most interesting issues regard
the geometry of the underlying phase space. Because
number of cells is not the same near the bifurcating points
is an open question as to how the two 2d tori are connected.
We intend to study this problem both numerically in th
model and experimentally by taking data along the mix
mode branch.
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APPENDIX: PROPERTIES OF KARHUNEN–LOÈ VE
DECOMPOSITION

The two-point correlation matrix of Eq.~9! is Hermitian.
That is,r (x,y)5r * (y,x). The matrix then admits accordin
to Riesz’s theorem,23 a diagonal decomposition of the form

r ~x,y!5 (
k51

N

lkFk~x!Fk* ~y!. ~A1!

This fact is particularly useful when finding the KL mode
analytically. They can be read off from the diagonal deco
position ~26!. The following proposition states that the K
basis functions and time coefficients are uncorrelated
space and time, respectively.24–29

Proposition 1: The KL modes $Fk(x)%, with corre-
sponding temporal coefficients$ak(t)%, satisfy the following
orthogonality properties: ~i! F j* (x)Fk(x)5d jk , ~ii !
^aj (t)ak* (t)&5d jkl j , where d jk represents the Kronecke
delta function.

Property~ii ! is obtained when the terms in the diagon
decomposition ~A1! are compared with the expressio
r (x,y)5(^aj (t)ak* (t)&F j (x)Fk* (y). The non-negative and
self-adjoint properties ofr (x,y) imply that all eigenvalues

a
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are non-negative and can be ordered accordingly:l1

>l2¯>¯>0. Statistically speaking,lk represents the
variance of the data set in the direction of the correspond
KL modeFk(x). In physical space, ifu represents a compo
nent of a velocity field, thenlk measures the amount o
‘‘kinetic energy’’ captured by the respective KL mod
Fk(x). In this sense, the energy measures the contributio
each mode to the overall dynamics. The total energy c
tured in a Karhunen–Loe`ve decomposition is then defined a
the sum of all eigenvalues

E5 (
k51

N

lk . ~A2!

Each KL modeFk(x) captures a portion of the total energ
and is defined as therelative energy

Ek5
lk

( j 51
N l j

. ~A3!

The relative energy measures the contribution of each eig
vector Fk(x) to the overall dynamics in the reconstructio
given by Eq.~7!.

Equation~8! states that Karhunen–Loe`ve decomposition
produces a basis that minimizes the least-squares trunc
error. This property can also be stated in terms of the ene
captured by the KL modes.

Proposition 2:Let $ak(t),Fk(x)% be the KL-basis pairs
obtained from a scalar fieldu(x,t), satisfying Eqs.~7!, ~A1!,
and ~13!. Let $bk(t),Ck(x)% be any arbitrary orthonorma
basis pair satisfying Eq.~7!. The KL basis is optimal in the
sense that the total cumulative energy captured by the
quence$ak(t),Fk(x)% is always greater or equal to the tot
cumulative energy captured by$bk(t),Ck(x)%, provided that
the number of eigenfunctions~respecting their ordering from
most to least energetic! employed is the same. Formally

(
k51

N

Ek5 (
k51

N

^ak~ t !ak* ~ t !&5 (
k51

N

lk>(
k51

N

^bk~ t !bk* ~ t !&.

~A4!
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