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We report the first observations of numerical “hopping” cellular flame patterns found in computer
simulations of the Kuramoto-Sivashinsky equation. Hopping states are characterized by nonuni-
form rotations of a ring of cells, in which individual cells make abrupt changes in their angular
positions while they rotate around the ring. Until now, these states have been observed only in
experiments but not in truly two-dimensional computer simulations. A modal decomposition analy-
sis of the simulated patterns, via the proper orthogonal decomposition, reveals spatio-temporal
behavior in which the overall temporal dynamics is similar to that of equivalent experimental states
but the spatial dynamics exhibits a few more features that are not seen in the experiments. Simi-
larities in the temporal behavior and subtle differences in the spatial dynamics between numerical
hopping states and their experimental counterparts are discussed in more d&@i5 @&merican
Institute of Physicg DOI: 10.1063/1.184831]1

Previous experimental works have revealed that the considered isolated rings of hopping states as well as con-
spatio-temporal dynamics of pre-mixed flames exhibit a centric rings of cells in which the outer ring remains station-
wide variety of cellular patterns that can change in space ary while the inner ring exhibits hopping motion. The analy-
and time. Aided by a new numerical scheme, we have sis was based solely on experimental data and the use of the
found a particular dynamic pattern, called hopping state,  proper orthogonal decompositioPOD). A comparative
through the integration of the Kuramoto—Shivashinsky  analysis against computer-simulated hopping states was pre-
flame instability model. In this work, we employ the  ¢jyded by the lack of a reliable model of the combustion of
proper orthogonal decomposition to unravel the spatio-  hremixed gases that can produce solutions with truly two-
temporal characteristics of the numeric hopping states  gimensional features similar to those observed in
and compare thelr spatial and te.mporal features with experimenté. There have been, however, reports of similar
those obtained in laboratory experiments. states, described as “Pushme-Pullyou,” found in a quasi-one-
dimensional thermodiffusive modélBut now, aided by a
new numerical DAF-based scheme that we describe in a
companion papetwe have observed for the first time a truly
Premixed gases burn irregularly, which can lead to celtwo-dimensional2D) hopping state. The state was found in
lular flame patterr?sformed through a mechanism that re- simulations of the Kuramoto—SivashinskiKS) model®*°
sembles that of reaction-diffusion systems described first bwhich is considered to be one of the simplest models of
Turing? When the gases are confined to circular domainsthermodiffusive instability and one that can produce solu-
the cells generically become organized in stationary and nortions that closely resemble experimental states, including sta-
stationary concentric rings. Stationary patterns are steadyonary and dynamic patterns. The actual hopping state is a
states with petal-like structures and well-defined spatial symsingle-ring state made up of three cells and it was found in a
metries. Nonstationary patterns are dynamical states thaery small region of parameter space bounded by two sta-
change continuously in space and time. The cells move eithdionary patterns, one with three cells and one with four. A
individually or collectively within the ring structure. The POD analysis reveals the emergence of a spatio-temporal
global dynamics could be as simple as a uniformly rotatingpattern whose temporal characteristics are in good agree-
cell or more complicated as an aggregation of cells movingnent, up to a few subtle differences in spatial behavior, with
chaotically? An individual pattern, either stationary or non- those of experimental states. More importantly, we show that
stationary, is selected based on control parameters such #s POD analysis suggests that numerical hopping patterns
type of fuel, pressure, flow rate, and fuel-to-oxidizer ratio. are created in an invariant subspace where three steady-state
In previous work! we analyzed the behavior of certain modes compete for stability. The spatial symmetries of these
dynamic patterns, called “hopping” statesin which indi-  modes are described by the Dihedral grobpsD,, andD,.
vidual cells sequentially make abrupt changes in their anguwith this information, we can derive appropriate normal
lar positions while they keep rotating in a ring structure. Weforms equivariant undelf =0(2), the group of rotations and
reflections of the experiments, and then use the normal forms
to study hopping-modulated rotating states and hopping—

I. INTRODUCTION
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The paper is organized as follows. In Sec. Il we discuss
the experimental work in more detail. In Sec. Il we describe
the Kuramoto-Sivashinky model, carry out a linear stability
analysis, and review the basic principles and properties of the
proper orthogonal decomposition relevant to this work. In
Sec. IV we derive the marginal stability curves that guided us
in the search for hopping states; we show results of the nu-
merical integration of the KS model with the new DAF-
based technique; and present a complete bifurcation analysis,
via the POD technique, of the observed spatio-temporal dy-
namics. Similarities in the temporal behavior and subtle dif-
ferences in the spatial dynamics between numerical hopping
states and their experimental counterparts are discussed in
this section as well.

IIl. COMBUSTION EXPERIMENTS

A. Experimental setup

Experiments with pre-mixed gases on a circular porous
plug burner were conducted at the University of Houston b}FlG- 1. I_:our sequential_ frames of _videot_ape of four_ different experimental
collaborator M. Gorman.The burner was mounted inside a *15% 411 hopPTo Tt 16 A sigle g sate wih tree cely an
combustion chamber and pressure was kept within the rangjis; (c) an inner ring of two cells surrounded by a stationary outer ring
0.3-0.5 atm. Fuel and air were mixed prior to their entrancavith ten cells;(d) a single ring state with four cells.
into the porous medium. Pressure, flow rate, and fuel/
oxidizer ratio were controlled to within 0.1%. Depending on
initial conditions, a steady uniform flame in the form of a spatial and temporal symmetries. Of particular interest to this
circular luminous disk, 5.62 cm in diameter and 0.5 mmwork are a special type of nonuniformly traveling wave pat-
thick, appears roughly 5 mm above the surface of the burneterns, called “hopping states,” in which individual cells se-
We call this initial state the “trivial solution” or “uniform quentially make abrupt changes in their angular positions.
state” of the experiment. To the experimentalist, the trivialThese type of dynamic states appear in either single-ring or
solution looks the same if the burner is rotated by an arbimultiple-ring configurations. And they have been observed
trary angle, or if the experiment is observed through a verti-only in isobutane—air flames but not in propane—air flames.
cal mirror. It is then reasonable to identify the orthogonalFigure 1 depicts four different configurations of hopping
groupO(2), i.e., the group of rotations and reflections on thestates. In Figs. (8 and 1d), hopping occurs in a single ring
plane, as the underlying group of symmetries of the flamearray of cells, while in Figs. (b) and Xc), an inner ring of
experiments. Upon changes of principal parameters, thhopping cells is surrounded by a stationary outer ring.
trivial solution loses stability and then ordered patterns of  Cells in hopping states evolve collectively like rotating
concentric rings of cells emerge \@&(2) symmetry-breaking waves, yet individually, their motion appears more compli-
bifurcations. In a typical experiment, different patterns arecated and very different from other types of traveling wave
selected by varying the flow rate and the equivalence ratigpatterns found in experimen’t?s.For instance, hopping cells
Variations in the pressure are made to adjust the range of thao not rotate rigidly. Each cell seems to hop independently
number of cells. For example, single rings of cells are stablevhile still preserving the overall dynamics of the ring. That
at 0.3 atm, but not at 0.5 atm. Changing the fuel can leads, there is a timingly rhythm for each cell to move faster and
to additional patterns; ratcheting states, for instance, art® slow down. Closer observation also reveals that when a
found in isobutane—air mixtures but not in propane-aircell is hopping, its shape is more asymmetric than the other
mixtures? cells which appear temporarily stationary.

Brighter cells correspond to hotter regions on the burner.
They are separated by darker regions corresponding to cusps
and folds which extend an additional 5 mm away from the ™
surface of the burner. Emergent patterns include a wide va- Video images of relevant flame experiments were col-
riety of steady state ordered patterns and dynamical states lacted with a Dage-MTI Charge-Coupled Device camera
which the cells are able to move orderly within a ring con-mounted vertically on top of the experimental system. The
figuration or chaotically’ Steady states can be classified video images capture the emitted chemiluminescence from
based on their spatial symmetries—usually, a subgroup ahe flame front and provide a two-dimensional measurement
0O(2) would suffice for single-ring patterns while direct prod- proportional to the temperature at various points on the
ucts of subgroups might be necessary for multiple rings. Irburner. Such measurements are commonly used in flame
contrast, dynamical states would require a combination ofmodels!®*® The spatial and temporal resolution, the time

Experimental measurements
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interval, and the dynamic range are limited only by the re-spatial derivatives. To solve this problem, we originally de-
cording device. Images of 640480 pixel resolution, taken veloped an algorithi{ that uses “distributed approximating
at 1/30 second intervals with 7 bit dynamic range, are typia‘unctionals’“"17 to approximate the flame front(x,t) and

cal for dynamics recorded on S-VHS video tape. its derivatives with a specified accuracy on and off grid
points close to the origin as follows. A distributed approxi-
Ill. MODEL OF FLAME INSTABILITY mating functional(DAF) is an approximation of identity in

A. The Kuramoto-Sivashinsky equation the weak sense:

Motivated by a new numerical DAF-based scheme that (- )M (x) = fo SV F(x)dx — (= DMFM(x)
we have recently developed and described in Ref. 8, we now o
explore in this work the formation and evolution of hopping "
states through a modified version of the Kuramoto— ~ f 5{SAF(X)f(X)dX- 2)

Sivashinky equation —

1) Robust DAFs are built by multiplying a Gaussian by a finite

Ju
— =eu-(1+ V)~ 7, (Vu)2 = 18, : :
prat i )U= 7 (VU)* = U sum of Hermite polynomial&

whereu=u(x,t) represents the perturbation of a planar flame 1 o M2 q\n1 X
front in the direction of propagatioms, measures the strength Opar(X) = =——¢ x 2| = |l TS
\2mo o\ 4/ n V20

of the perturbation forcep; is a parameter associated with
growth in the direction normal to the burner, amsl® is a 3
term that was added to help stabilize the numerical integr
tion. This model is derived by making a series of simplifyin
assumptions on a pair of diffusion equatidisr a single
chemical species and temperatwrie,t)] coupled to fluid i
equations. We have chosen this model because it is one g{/
the simplest models of the thermodiffusive instab?ri]t?/and based time-integration scheme for the KS model can be writ-
because through previous wotkwe have established that ten i 9
: en in the form
the DAF-based numerical scheme can produce accurate
simulations of various experimental flame patterns. Addition-  u(t+h) — u(t)
ally, we have validated the accuracy of the KS model and of h
the DAF technique by comparison with simulations of the . . . )
Brusselator equations, which were carried out in previougvhereF(:) is the right-hand-side ofl); the nonlinear terms

work using an alternating direction impliciADI) numerical in F. are therlinearizedby the following first-order approxi-
schemé? Both schemes, DAF and ADI, produce qualita- Mation:
tively similar results, except that the ADI rapidly develops a [u(t +h) +u()
divergence near the origin of a polar grid. Our aim is now to —
. . . . . 2
use the numerical simulations to get insight into the under-
lying bifurcations that lead to hopping states. We treat theShortly after the scheme was completed, we observed for the
radius of the burner as the distinguished bifurcation paramfirst time several stationary cellular flame patterns with mul-
eter, while the other parameters are held fixed. In order taiple rings and a few dynamic states such as single rings of
conduct simulations that are relevant to the experiments, i.erptating cells, see Ref. 15 for more details. More complicated
simulations that preserve th@(2) symmetry of the burner, dynamic states were also observed but only for brief periods
we integrate(1) in a circular domain of radiu® through of time. The resulting scheme was linear, and consequently,
polar coordinateg=(r, §) and Dirichlet boundary conditions unstable for integration over long periods of time, which are
u(x,t)=0 outside of this domain. In the next section we typically required for simulating highly complex patterns.
present a brief description of the DAF-based integratiorBut recently’* we have developed a second-generation code
scheme. More in-depth details of the actual numerical algowith a new stable DAF-based time-integration algorithm,

&vhereM is the order of approximation, anglan appropriate

9 decay-rate for the exponential. DAFs are particularly well-
suited for approximating spatial derivatives on nonuniform

ds since the error bound for the approximation is uniform

er the entire domain, even off the node points. The DAF-

h ut+h) + u(t))

=F{xt+_,
e 35

}n ~ (1 - g)u(t)” 4 gu(t)”‘lu(t)(t +h).

rithm can be found in Ref. 8. based on a Crank—Nicolson scheme
B. Second-generation DAF integration scheme: u(t+h) —u®) _ FOtu() + FOt+hult+ h)). 4)
Basic ideas h 2

Efforts to numerically investigate Gorman’s flames with Advantages of this new algorithm ar@) Unconditional
the KS equatiorfl) had been unsuccessful due to a singuIasztabiIity,18 and(ii) time-discretization becomes second order.
ity that arises in the Laplacian operat®¥=(d,,+2r 29,  We remark that the Crank—Nicolsdi€N) scheme is used
+1729¢¢) near the origin of a polar gridcircular burney. only for the discretization in time. Furthermore, by keeping
Even though the singularity can be avoided by partitioningthe full nonlinearity of~(-), the spatial approximation retains
each diameter into an even number of equally spaced lattickhe order of the DAF-approximation. Once the DAF-
points, the presence of small denominators at grid pointapproximation is used for the spatial derivatives(4y, the
close to the origin necessitates very accurate estimates oésulting nonlinear system of equations is solved for the un-

Downloaded 17 May 2005 to 199.60.1.20. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



013706-4 Blomgren, Gasner, and Palacios Chaos 15, 013706 (2005)

Marginal Stability Curves
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FIG. 2. Marginal stability curves outline the stability domains where the trivial solutjer® (representing a uniform flame froriifurcates to Fourier—Bessel
modesWV

known U(X,t+h). We formulate this step as a root finding +2k?*~k*-~\)w=0. Since we are looking for nontrivial solu-
problemé(ﬁ(i,ﬁh)):o, which we solve using an iterative tions forw, then is determined by the roots of characteris-

Newton-based method: tic polynomiale — 1+ 2k?—k*~\=0. Hence a marginal stabil-
ity curve, which corresponds to those parameters where

(K t+ h) = A%t + h) - [6G(0"(X,t + ) I1G(T"(X,t + h)), =0, is given(as a function of the radius of the burhdy

Uo(X,t+ h) = G(X,1), .
. R _ Xnm nm

where 6G is the Jacobian 6G(U"(X,t+h))=[G,(0"(X,t enm(R) =1~ 2( R ) + (?) : (6)

+h)7,...,G(0"(X,t+h))T]", and k is the number of grid-

points. A critical observation is the fact that beyond this curve,

on increasinge, the uniform stateu,=0 destabilizes to

V,m(r, 6). More importantly, we now have a tool to system-

atically search for the right type of pattern, at least with the
To guide us in the search for hopping states, we performight number of cells. Similar marginal stability curves were

a linear stability analysis as follows. First, we assume derived to aid the numerical explorations of cellular patterns

=0 to be the uniform state or homogenous flame front that isn a phenomenological modéf*+°

commonly observed in the experiments. Then we investigate

the stability of this uniform state to small perturbations of the

C. Stability analysis

form: IV. SIMILARITIES AND DIFFERENCES
w(r,6,t) =eMW¥, (r,6) +c.c., (5) IN SPATIO-TEMPORAL DYNAMICS
whereW (1, 0)=J,(ans /REM (M=0 andn>0) andJ,(r) Without loss of generality, we choose to focus the inte-

is thenth order Bessel function of the first kind ang,,is its  gration of the model equatiofl) in a region where the evo-
mth nontrivial zero, and c.c. denotes complex conjugatdution of a single-ring pattern with three cells can be traced.
terms, which rendew(r, 6,t) a real-valued solution. It fol- Such regions can be found in a neighborhood of the mini-
lows that the uniform flame front is stableNf<0, and un- mum of the marginal stability curve;; shown in Fig. 2. As
stable ifA>0. In physical space¥,.(r, ) has the appear- the curved is crossed, on increasRga stationary pattern of
ance of a cellular pattern with cells whose orientation is three cells with purely spatidD;-symmetry emerges via a
determined bym. Thus a perturbation based on Fourier—symmetry-breaking bifurcation from theD(2)-invariant
Bessel functions is a natural choiteNow substituting(5) trivial solution.

into (1) and using the fact thaWV?V¥, ,+k*¥,,=0, and IncreasingR further, and upon crossing the left edge of
VA —k*W, =0, wherek?=(a,/R)?, we arrive at(s—1  the shaded region, the three-cells pattern loses stability, the
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FIG. 3. Ten sequential timgop indexX snapshots of a dynamic state of three cells rotating counter-clockwise, with small modulations, found in simulations
of (1). Parameter values are=0.32,7,=1.0, ,=0.013, andR=7.36.

D5;-symmetry of the ring is broken, and a dynamic pattern ofV;=spaq®;,®,}, Vg=spaqds, Pg}, Vo,=spaqd,, dg}, and
three cells rotating “almost” uniformly and counter- V,=spaf{®gy,®;,}, where the indexn in V, indicates
clockwise bifurcates subcritically. Figure 3 depicts a sampleD, -symmetry.

of snapshots of the space and time evolution ofttfre 6, t) The fact that five pairs of modes are needed to capture
field obtained aR=7.36. Although at first glance the cells ahoyt 950 of the energy is in clear contrast to the energy
appear to be rotating uniformly and rigidly, i.e., Without yisyribtion of certain uniformly rotating cells that we stud-

changing shape, the POD analysis that follows will help YSed through simulations of a phenomenological model and

fje_termlne in more (_jetall the exact spatio-temporal CharaCtegimulations of the KS model as wéfl® Such uniformly
istics of the dynamics.

An ensemble of 2000 consecutive snapshots was generrc_>tating cells were also created via steady-state mode inter-

ated for the POD analysis. Figure 4 shows the time-averag&ction but only two pairs of modes were needed to capture
(can be considered modg,) followed by the ten modes, almost 100% of the energy. Another significant difference is
®,—®,,, with the highest POD energgee the Appendix for the fact the Dihedral group of symmetries of the invariant
an exact definition The actual amount of energy in each subspaces found in the decomposition of the uniformly ro-
mode is indicated below each graph. Each mode shows sontating cells are in a 1:2 ratio. These assertions suggest that
amount of symmetry. The symmetry of the time-average, irthe cells of the state shown in Fig. 3 do not rotate uniformly
particular, reflects thé(2)-symmetry of the burner, even and that they are created via a steady-state mode interaction
though none of the instantaneous snapshots has this symmgrough the space¥;@ V,® Vs® V,& V,. Phase-space pro-
try. This feature is studied in more detail in Ref. 20. Thejections and relative phase angles shown in Fig. 5 further
remaining ten modes exhibit, approximately, the following confirm that the pattern rotates nonuniformly. The temporal
symmetriest, and®, haveDy-symmetry, meaning that one .y, ations are visible in the graph af vs ag and in the

third of a revolution leaves them unchangebl; and ©, associated relative phase angles that appears just below it.

show D;-symmetry, i.e., the patterns are restored after on . o
complete revolutiongbs anddg exhibit Dg-symmetry, which %Iearly the modulathns are very small put th|§ is th.e case
because the pattern is very close to its bifurcation point, i.e.,

is just a higher harmonic of the first two modés and ®; ; 3 . X
®, and ®g are D,symmetric; and ®y and ®,, are it appears just slightly to the right ¢=7.36. Recall that to
D,-symmetric. Observe also that the energy is almosthe left of R=7.36 the three cell state becomes
equally distributed between consecutive pairs of modes, instationary.

dicating the existence ofoupling pairs orinvariant sub- Computer animations of the reconstructed dynamics
spaces for reconstructing the dynamisg=spad®q, P}, through
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FIG. 4. POD decomposition of the three-cells dynamic state of Fig. 3.
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FIG. 5. (Top) Phase-space projections produced by the time coefficients of the POD decomposition of the rotating pattern showr{lofagZssociated
relative phase angles.

M attributed to the fact that now the spatial dynamics is
u(x,t) =T+ X a () Py(x), (7)  stripped from the oscillations in cell siZeithout changing
k=1 shape that we previously observed in the reconstructions

show the following features. WitM=2 modes, a dynamic With M=4 andM=6. Consequently, the periodic “hops” in
state emerges with three cells rotating counter-clockwise ang@ngular position are more distinguishable.

almost rigidly(under the naked eyeThe asymmetry on each We now return our attention to the marginal stability
individual cell is almost indistinguishable, but we know from curves. On moving right into the shaded region, the modula-
previous work®?! that rotating cells cannot posses reflec-tions on the three-cells state of Fig. 3 become progressively
tional (also called “chiral) symmetry. The argument is Stronger. NearR=7.74, in particular, the cells repeatedly
straightforward. If a solutioricellular statg of a system of Make abrupt changes in their angular position while they
differential equations has certain symmetries at one instant dptate around the ring; in a manner that more closely re-
time, then that solution must have the same symmetries at a#embles experimental observations of hopping Céllsig-
times. Consequently, any cellular state with reflectional symure 6 depicts a few representative snapshots of the spatio-
metry cannot rotate. WitM =4 cells, however, the asymme- temporal dynamics aR=7.7475. Observe that changes in
try in the cells becomes more visible. The cells do not seeng€ll shape are more noticeable. In fact, a hopping cell
to change shape too much, but rather, it is their size thaghanges its shape more than the other two and also appears
periodically increases and then decreases as the cells rotafaore asymmetric. The hops are small in comparison with
With M =86, the cells behave in a similar manner except thagxperimental states but, up to a time-scale factor, the overall
their size increases moderately. W= 8, the asymmetry in  characteristics of the dynamics appear to be in good agree-
the cells is more pronounced as well as the variations inment with experiments. To confirm these observations, we
shape. Also the cells move more independently with smalperform next a POD analysis of the space-time behavior.
“jumps” in angular position. WithM=10, the jumps are An ensemble of 6000 consecutive snapshots was gener-
more visible and the overall temporal motion shows similarated for the POD decomposition. Figure 7 shows the time-
characteristics to those of experimental hopping sfates. average, principal modes, and POD energy, in the same for-
This last assertion is not a big surprise given the fact that inmat as they appeared in Fig. 4. A direct comparison of the
a POD decomposition of experimental hopping states  modes yields the following observations. The invariant sub-
found similar modes to those shown in Fig. 4. In particular,spacesvs, V,, andV, are present in both cases. Modgs,

we found ®,, ®,, &, dg, Py, and P, to be the most D4, and®Ps, in Fig. 7, do not appear in Fig. 4. Modk,q in
dominant modes. It is a surprise, however, thatd; do not  Fig. 7 corresponds to mode,, in Fig. 4, though this mode
appear in the experimental states, not even at lower energg not shown in Fig. 4. Mode®; and®, in Fig. 7 can be
levels. To understand this subtle difference, we performed thought of being a linear superposition of two concentric
numerical experiment of reconstructing the dynamics with-modes withD;-symmetry. In this sense, they are similar to
out @5, d,, andds. Interestingly, now the reconstructed dy- the same mode®$; andd, of Fig. 4.

namics resembles more of the hopping motion that is typi- Computer animations of the reconstructed dynamics
cally observed in the experiments. This better-fit can behrough Eq.(7) shows the following features. WitM =2
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FIG. 6. Space and time evolution of a three-cells hopping state found in simulati¢hs Bhe cells move nonuniformly and their shapes change periodically.
Parameter values are=0.32, 7,=1.0, 7,=0.013, andR=7.7475.

modes, a three-cell dynamic pattern emerges, the cells rotatgreement with experimental observations of hopping
counter-clockwise and their size and shape is relatively conmotion*® The excursions are governed by modes ®,,
stant at all times. WitiM =4 modes, the cells now periodi- and ®5 of Fig. 7. Removing these mod¢and ®,, to make
cally change shape, each cell takes turns changing size, ithe comparison relevant to the states shown in Fjgwé
creasing as it moves closer to the edge of the simulatedbserve a dynamic state with spatio-temporal characteristics
burner and decreasing as it moves toward the center of th&rongly similar to those seen in Fig. 1, especially in Fig.
burner. This behavior supports the interpretationdgfand  1(a).
®, as being made up of two concentric modes with
D;-symmetry. WithM =5 modes, the excursions toward the V. CONCLUSION
center and boundary of the burner are more noticeable. The
smallest cell is always the one pulled towards the center of We have reported the first observations of “hopping” cel-
the burner, just before the leading cell makes an abrupt hojular flame patterns, discovered in numerical simulations of
towards the cell behind it. This pulling effect occurs every-the Kuramoto—Sivashinsky equation through a modified
where around the center of the burner, which explains th®AF-based integration scheme. Hopping states are charac-
apparent loss in structure in the fifth mode. Wih=7 the  terized by nonuniform rotations of a ring of cells, in which
cells look more asymmetric with larger changes in shapeindividual cells make abrupt changes in their angular posi-
With M=9 modes, each cell periodically makes abrupttions while they rotate around a ring. The hopping states that
changes of angular position, jumping closer to the cell im-we found exhibit the same temporal features of the experi-
mediately in front. This type of hopping motion is clearly ments but they also show additional spatial features. In par-
more noticeable as compared to the small jumps seen in theular, a periodic change in the size of the cells followed by
previous dynamic state of Fig. 3. periodic excursions between the center and boundary of the
The thickness in the phase-space projections of the POBimulated burner. A POD analysis of computer simulations
time coefficients, see Fig. 8, confirms the presence of strorreveals the presence of several modes that are similar to
ger temporal modulations as compared to those seen in Fighose found in experiments, but it also shows the existence of
5. Stronger modulations explain why the “hopping” motion a few other modes that are responsible for the added spatial
is now more noticeable. Computer animations of the numeridynamics. Furthermore, the POD analysis suggests that the
cal results will be posted online at http://terminus.sdsu.eduiumerical hopping states are created through a steady-state
Hence, except for the periodic excursions between thenode interaction between three modes whose spatial symme-
center and boundary of the burner, the spatio-temporal fedries are described by the Dihedral groupg D,, and Dy,
tures described by the dynamic state of Fig. 6 are in goodespectively. A derivation and analysis of normal form equa-
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FIG. 7. POD decomposition of the three-cell dynamic state depicted in Fig. 6.
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FIG. 8. (Top) Phase-space projections produced by the time coefficients ofnthe POD decomposition of the rotating pattern shown ibd&Egme;
associated relative phase angles.

tions invariant under the action of these three groups will 1 M
provide the opportunity to study in more detail the bifurca-  U(x) ={u(x,t;)) = MZ ux,t), (A1)
tions of hopping—modulated rotating states and hopping— i=1

rotating state transitions and interactions. This task isIS assumed to be zero. The prooer orthogonal decomposition
planned for future work together with a group ) prop 9 P

decompositioﬁz of the numerical hopping states. extracts tlm_e—mdependent orthonormal baS|_s funct|on_s,
d,(x), and time-dependent orthonormal amplitude coeffi-
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is optimal in the sense that the average least squares trunca-
APPENDIX: MODAL DECOMPOSITION tion error

In this appendix we provide a self-contained review of
basic definitions and properties of the proper orthogonal de- m
composition(POD) technique relevant to this work and dis-  &m =\ ||U(.t) = 2 a(t)®y(x) (A3)
cuss how the method can be applied to computer simulations k=1
in orQer t9 separate ;patial and Femporal b.ehavior. Read_e@ minimized for any given numben<M of basis functions
familiar with the tec_hmque can sk|p_ t.h's section. The POD iSqy 61 41 possible sets of orthogonal functions. Htgis the
a well-known technique for dgeéttezrmmlng an optimal basis forl_g_norm IfI2=(f,f), where(-,-) denotes the standard Eu-
the reconstruction of a data $8£*It has been used in vari- ! L ' .

A . . 57 . clidean inner product:) denotes an average operation, usu-

ous disciplines that include fluid mechanfcs?’ identifica- P &) ge op

tion and control in chemical en ineeriﬁ% ceanoara h§[g ally over time; and the function®,(x) are calledempirical
: i 9 pceanograpny, eigenfunctions, coherent structures POD modesin prac-
and image processw?@.Dependmg on the discipline, the

. R ... tice the state of a numerical model is only available at dis-
POD is also known as Karhunen-Loeve decomposition . . : :
rincinal components analvsis. sinqular svstems analvsis trete spatial grid points, so that the observations that form
princip P AYSIS, Sing Y YSIS: Qfe data set are vectors rather than continuous functions. In
singular value decomposition.

other wordsD=(xy,Xy, ..., Xn), Wherex; is the jth grid point

andu(x,t) is the vector; =[u(xy,t),u(Xs,t), ..., u(Xy, t)]".

The data set can be obtained from numerical simulation, ex-
Let us consider a sequence of numerical and/or experiperimental investigation or a combination of the numerical

mental observations represented by scalar functionand experimental results. More importantly, it can be shown

u(x,t), i=1...M. Without loss of generality, the time- that the eigenfunction®, are the eigenvectors of the tensor

average of the sequence, defined by product matrix

2

1. Theoretical aspects
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1M S(x,y)=2(a(t)a (1) P;(x)®,(y). The nonnegative and self-
S(x,y) ==> UiUiT- (A4) adjoint properties ofS(x,y) imply that all eigenvalues are
Mo . .
nonnegative and can be ordered accordingly=\,...
=...=0. Statistically speakingy, represents the variance of
2. Computational implementation: the data set in the direction of the corresponding POD mode,
Method of snapshots ®,(x). In physical terms, ifu represents a component of a
velocity field, them\,, measures the amount of kinetic energy
captured by the respective POD modg(x). In this sense,
the energy measures the contribution of each mode to the
Bverall dynamics.
The total energy captured in a proper orthogonal decom-
Sosition of a numerical or experimental data set is defined as
the sum of all eigenvalues

A popular technique for finding the eigenvectorsA#l)
is themethod of snapshotieveloped by SirovicA %It was
introduced as an efficient method when the resolution of th
spatial domair(N) is higher than the number of observations
(M). The method of snapshots is based on the fact that th
data vectorsy;, and the eigenvectosd,, span the same lin-
ear spacé®>!This implies that the eigenvectors can be writ-

ten as a linear combination of the data vectors M
M E= k§_‘1 Ay (A9)
O = > vku;, k=1...M. (A5) B
i=1 The relative energy captured by th¢h mode E,, is
o . defined by
After substitution in the eigenvalue problerS(x,y)®d(y)
=\®d(x), the coefficientsv!‘ are obtained from the solution of Y (AL0)
Cv=)v, (AB) DRV

wherevk=(vk, ... ,v%) is thekth eigenvector ofA6), andC

is a symmetricM XM matrix defined by [c;]=(1/M)

X (uj,u;). Here(-, ) denotes the standard vector inner prod-
uct, (uj,u;)=u(Xq, uxg, t)) +---+u(Xy, t)u(xy, t). In this
way the eigenvectors of thBl X N matrix S (A4) can be
found by computing the eigenvectors of BhX M matrix C g = atan(
(AB), a preferable task iN>M. The results presented in Y

Sec. IV were obtained with an implementation of the method
of snapshots.

Note that the cumulative sum of relative energiEg,, ap-
proaches one as the number of modes in the reconstruction
increases tdM. The relative phase-angle between two POD-
time coefficients is defined by

ﬁ). (A11)
a,
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