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We report the first observations of numerical “hopping” cellular flame patterns found in computer
simulations of the Kuramoto–Sivashinsky equation. Hopping states are characterized by nonuni-
form rotations of a ring of cells, in which individual cells make abrupt changes in their angular
positions while they rotate around the ring. Until now, these states have been observed only in
experiments but not in truly two-dimensional computer simulations. A modal decomposition analy-
sis of the simulated patterns, via the proper orthogonal decomposition, reveals spatio-temporal
behavior in which the overall temporal dynamics is similar to that of equivalent experimental states
but the spatial dynamics exhibits a few more features that are not seen in the experiments. Simi-
larities in the temporal behavior and subtle differences in the spatial dynamics between numerical
hopping states and their experimental counterparts are discussed in more detail. ©2005 American
Institute of Physics. fDOI: 10.1063/1.1848311g

Previous experimental works have revealed that the
spatio-temporal dynamics of pre-mixed flames exhibit a
wide variety of cellular patterns that can change in space
and time. Aided by a new numerical scheme, we have
found a particular dynamic pattern, called hopping state,
through the integration of the Kuramoto–Shivashinsky
flame instability model. In this work, we employ the
proper orthogonal decomposition to unravel the spatio-
temporal characteristics of the numeric hopping states
and compare their spatial and temporal features with
those obtained in laboratory experiments.

I. INTRODUCTION

Premixed gases burn irregularly, which can lead to cel-
lular flame patterns7 formed through a mechanism that re-
sembles that of reaction-diffusion systems described first by
Turing.2 When the gases are confined to circular domains,
the cells generically become organized in stationary and non-
stationary concentric rings. Stationary patterns are steady
states with petal-like structures and well-defined spatial sym-
metries. Nonstationary patterns are dynamical states that
change continuously in space and time. The cells move either
individually or collectively within the ring structure. The
global dynamics could be as simple as a uniformly rotating
cell or more complicated as an aggregation of cells moving
chaotically.3 An individual pattern, either stationary or non-
stationary, is selected based on control parameters such as
type of fuel, pressure, flow rate, and fuel-to-oxidizer ratio.

In previous work,4 we analyzed the behavior of certain
dynamic patterns, called “hopping” states,1,5 in which indi-
vidual cells sequentially make abrupt changes in their angu-
lar positions while they keep rotating in a ring structure. We

considered isolated rings of hopping states as well as con-
centric rings of cells in which the outer ring remains station-
ary while the inner ring exhibits hopping motion. The analy-
sis was based solely on experimental data and the use of the
proper orthogonal decompositionsPODd. A comparative
analysis against computer-simulated hopping states was pre-
cluded by the lack of a reliable model of the combustion of
premixed gases that can produce solutions with truly two-
dimensional features similar to those observed in
experiments.6 There have been, however, reports of similar
states, described as “Pushme-Pullyou,” found in a quasi-one-
dimensional thermodiffusive model.7 But now, aided by a
new numerical DAF-based scheme that we describe in a
companion paper,8 we have observed for the first time a truly
two-dimensionals2Dd hopping state. The state was found in
simulations of the Kuramoto–SivashinskysKSd model,9,10

which is considered to be one of the simplest models of
thermodiffusive instability and one that can produce solu-
tions that closely resemble experimental states, including sta-
tionary and dynamic patterns. The actual hopping state is a
single-ring state made up of three cells and it was found in a
very small region of parameter space bounded by two sta-
tionary patterns, one with three cells and one with four. A
POD analysis reveals the emergence of a spatio-temporal
pattern whose temporal characteristics are in good agree-
ment, up to a few subtle differences in spatial behavior, with
those of experimental states. More importantly, we show that
the POD analysis suggests that numerical hopping patterns
are created in an invariant subspace where three steady-state
modes compete for stability. The spatial symmetries of these
modes are described by the Dihedral groupsD3, D2, andD4.
With this information, we can derive appropriate normal
forms equivariant underG=Os2d, the group of rotations and
reflections of the experiments, and then use the normal forms
to study hopping-modulated rotating states and hopping–
rotating state transitions and interactions. This task is part of
future work.
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The paper is organized as follows. In Sec. II we discuss
the experimental work in more detail. In Sec. III we describe
the Kuramoto–Sivashinky model, carry out a linear stability
analysis, and review the basic principles and properties of the
proper orthogonal decomposition relevant to this work. In
Sec. IV we derive the marginal stability curves that guided us
in the search for hopping states; we show results of the nu-
merical integration of the KS model with the new DAF-
based technique; and present a complete bifurcation analysis,
via the POD technique, of the observed spatio-temporal dy-
namics. Similarities in the temporal behavior and subtle dif-
ferences in the spatial dynamics between numerical hopping
states and their experimental counterparts are discussed in
this section as well.

II. COMBUSTION EXPERIMENTS

A. Experimental setup

Experiments with pre-mixed gases on a circular porous
plug burner were conducted at the University of Houston by
collaborator M. Gorman.1 The burner was mounted inside a
combustion chamber and pressure was kept within the range
0.3–0.5 atm. Fuel and air were mixed prior to their entrance
into the porous medium. Pressure, flow rate, and fuel/
oxidizer ratio were controlled to within 0.1%. Depending on
initial conditions, a steady uniform flame in the form of a
circular luminous disk, 5.62 cm in diameter and 0.5 mm
thick, appears roughly 5 mm above the surface of the burner.
We call this initial state the “trivial solution” or “uniform
state” of the experiment. To the experimentalist, the trivial
solution looks the same if the burner is rotated by an arbi-
trary angle, or if the experiment is observed through a verti-
cal mirror. It is then reasonable to identify the orthogonal
groupOs2d, i.e., the group of rotations and reflections on the
plane, as the underlying group of symmetries of the flame
experiments. Upon changes of principal parameters, the
trivial solution loses stability and then ordered patterns of
concentric rings of cells emerge viaOs2d symmetry-breaking
bifurcations. In a typical experiment, different patterns are
selected by varying the flow rate and the equivalence ratio.
Variations in the pressure are made to adjust the range of the
number of cells. For example, single rings of cells are stable
at 0.3 atm, but not at 0.5 atm. Changing the fuel can lead
to additional patterns; ratcheting states, for instance, are
found in isobutane–air mixtures but not in propane–air
mixtures.1

Brighter cells correspond to hotter regions on the burner.
They are separated by darker regions corresponding to cusps
and folds which extend an additional 5 mm away from the
surface of the burner. Emergent patterns include a wide va-
riety of steady state ordered patterns and dynamical states in
which the cells are able to move orderly within a ring con-
figuration or chaotically.11 Steady states can be classified
based on their spatial symmetries—usually, a subgroup of
Os2d would suffice for single-ring patterns while direct prod-
ucts of subgroups might be necessary for multiple rings. In
contrast, dynamical states would require a combination of

spatial and temporal symmetries. Of particular interest to this
work are a special type of nonuniformly traveling wave pat-
terns, called “hopping states,” in which individual cells se-
quentially make abrupt changes in their angular positions.
These type of dynamic states appear in either single-ring or
multiple-ring configurations. And they have been observed
only in isobutane–air flames but not in propane–air flames.
Figure 1 depicts four different configurations of hopping
states. In Figs. 1sad and 1sdd, hopping occurs in a single ring
array of cells, while in Figs. 1sbd and 1scd, an inner ring of
hopping cells is surrounded by a stationary outer ring.

Cells in hopping states evolve collectively like rotating
waves, yet individually, their motion appears more compli-
cated and very different from other types of traveling wave
patterns found in experiments.12 For instance, hopping cells
do not rotate rigidly. Each cell seems to hop independently
while still preserving the overall dynamics of the ring. That
is, there is a timingly rhythm for each cell to move faster and
to slow down. Closer observation also reveals that when a
cell is hopping, its shape is more asymmetric than the other
cells which appear temporarily stationary.

B. Experimental measurements

Video images of relevant flame experiments were col-
lected with a Dage-MTI Charge-Coupled Device camera
mounted vertically on top of the experimental system. The
video images capture the emitted chemiluminescence from
the flame front and provide a two-dimensional measurement
proportional to the temperature at various points on the
burner. Such measurements are commonly used in flame
models.10,13 The spatial and temporal resolution, the time

FIG. 1. Four sequential frames of videotape of four different experimental
states with hopping motion in:sad A single ring state with three cells;sbd an
inner ring of three cells surrounded by a stationary outer ring with eleven
cells; scd an inner ring of two cells surrounded by a stationary outer ring
with ten cells;sdd a single ring state with four cells.
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interval, and the dynamic range are limited only by the re-
cording device. Images of 6403480 pixel resolution, taken
at 1/30 second intervals with 7 bit dynamic range, are typi-
cal for dynamics recorded on S-VHS video tape.

III. MODEL OF FLAME INSTABILITY

A. The Kuramoto–Sivashinsky equation

Motivated by a new numerical DAF-based scheme that
we have recently developed and described in Ref. 8, we now
explore in this work the formation and evolution of hopping
states through a modified version of the Kuramoto–
Sivashinky equation

] u

] t
= «u − s1 + ¹2d2u − h1s¹ud2 − h2u

3, s1d

whereu=usx ,td represents the perturbation of a planar flame
front in the direction of propagation,« measures the strength
of the perturbation force,h1 is a parameter associated with
growth in the direction normal to the burner, andh2u

3 is a
term that was added to help stabilize the numerical integra-
tion. This model is derived by making a series of simplifying
assumptions on a pair of diffusion equationsffor a single
chemical species and temperatureusx ,tdg coupled to fluid
equations. We have chosen this model because it is one of
the simplest models of the thermodiffusive instability9,10 and
because through previous work14 we have established that
the DAF-based numerical scheme can produce accurate
simulations of various experimental flame patterns. Addition-
ally, we have validated the accuracy of the KS model and of
the DAF technique by comparison with simulations of the
Brusselator equations, which were carried out in previous
work using an alternating direction implicitsADI d numerical
scheme.12 Both schemes, DAF and ADI, produce qualita-
tively similar results, except that the ADI rapidly develops a
divergence near the origin of a polar grid. Our aim is now to
use the numerical simulations to get insight into the under-
lying bifurcations that lead to hopping states. We treat the
radius of the burner as the distinguished bifurcation param-
eter, while the other parameters are held fixed. In order to
conduct simulations that are relevant to the experiments, i.e.,
simulations that preserve theOs2d symmetry of the burner,
we integrates1d in a circular domain of radiusR through
polar coordinatesx=sr ,ud and Dirichlet boundary conditions
usx ,td=0 outside of this domain. In the next section we
present a brief description of the DAF-based integration
scheme. More in-depth details of the actual numerical algo-
rithm can be found in Ref. 8.

B. Second-generation DAF integration scheme:
Basic ideas

Efforts to numerically investigate Gorman’s flames with
the KS equations1d had been unsuccessful due to a singular-
ity that arises in the Laplacian operator¹2=s]rr +2r−1]r

+r−2]ffd near the origin of a polar gridscircular burnerd.
Even though the singularity can be avoided by partitioning
each diameter into an even number of equally spaced lattice
points, the presence of small denominators at grid points
close to the origin necessitates very accurate estimates of

spatial derivatives. To solve this problem, we originally de-
veloped an algorithm14 that uses “distributed approximating
functionals”15–17 to approximate the flame frontusx,td and
its derivatives with a specified accuracy on and off grid
points close to the origin as follows. A distributed approxi-
mating functionalsDAFd is an approximation of identity in
the weak sense:

s− 1dnf sndsxd =E
−`

`

dsndsxdfsxddx→ s− 1dnf sndsxd

< E
−`

`

dDAF
snd sxdfsxddx. s2d

Robust DAFs are built by multiplying a Gaussian by a finite
sum of Hermite polynomials,15

dDAFsxd =
1

Î2ps
es−x22/s2d 3 o

n=0

M/2 S− 1

4
Dn 1

n!
H2nS x

Î2s
D ,

s3d

whereM is the order of approximation, ands an appropriate
decay-rate for the exponential. DAFs are particularly well-
suited for approximating spatial derivatives on nonuniform
grids since the error bound for the approximation is uniform
over the entire domain, even off the node points. The DAF-
based time-integration scheme for the KS model can be writ-
ten in the form

ust + hd − ustd
h

= FSx,t +
h

2
,
ust + hd + ustd

2
D ,

whereFs·d is the right-hand-side ofs1d; the nonlinear terms
in F are thenlinearizedby the following first-order approxi-
mation:

Fust + hd + ustd
2

Gn

< S1 −
n

2
Dustdn +

n

2
ustdn−1ustdst + hd.

Shortly after the scheme was completed, we observed for the
first time several stationary cellular flame patterns with mul-
tiple rings and a few dynamic states such as single rings of
rotating cells, see Ref. 15 for more details. More complicated
dynamic states were also observed but only for brief periods
of time. The resulting scheme was linear, and consequently,
unstable for integration over long periods of time, which are
typically required for simulating highly complex patterns.
But recently,14 we have developed a second-generation code
with a new stable DAF-based time-integration algorithm,
based on a Crank–Nicolson scheme

ust + hd − ustd
h

=
Fsx,t,ustdd + Fsx,t + h,ust + hdd

2
. s4d

Advantages of this new algorithm are:sid Unconditional
stability,18 andsii d time-discretization becomes second order.
We remark that the Crank–NicolsonsCNd scheme is used
only for the discretization in time. Furthermore, by keeping
the full nonlinearity ofFs·d, the spatial approximation retains
the order of the DAF-approximation. Once the DAF-
approximation is used for the spatial derivatives ins4d, the
resulting nonlinear system of equations is solved for the un-
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known uWsxW ,t+hd. We formulate this step as a root finding

problemGW suWsxW ,t+hdd=0, which we solve using an iterative
Newton-based method:

uWn+1sxW,t + hd = uWnsxW,t + hd − fdGW suWnsxW,t + hdg−1GW suWnsxW,t + hdd,

uW0sxW,t + hd = uWsxW,td,

where dGW is the Jacobian dGW suWnsxW ,t+hdd=fG1suWnsxW ,t
+hddT,… ,GksuWnsxW ,t+hddTgT, and k is the number of grid-
points.

C. Stability analysis

To guide us in the search for hopping states, we perform
a linear stability analysis as follows. First, we assumeu0

=0 to be the uniform state or homogenous flame front that is
commonly observed in the experiments. Then we investigate
the stability of this uniform state to small perturbations of the
form:

wsr,u,td = eltCnmsr,ud + c.c., s5d

whereCnmsr ,ud=Jnsanmr /Rdeinu smù0 andn.0d andJnsrd
is thenth order Bessel function of the first kind andanm is its
mth nontrivial zero, and c.c. denotes complex conjugate
terms, which renderwsr ,u ,td a real-valued solution. It fol-
lows that the uniform flame front is stable ifl,0, and un-
stable if l.0. In physical space,Cnmsr ,ud has the appear-
ance of a cellular pattern withn cells whose orientation is
determined bym. Thus a perturbation based on Fourier–
Bessel functions is a natural choice.12 Now substitutings5d
into s1d and using the fact that¹2Cnm+k2Cnm=0, and
¹4Cnm−k4Cnm=0, wherek2=sanm/Rd2, we arrive ats«−1

+2k2−k4−ldw=0. Since we are looking for nontrivial solu-
tions forw, thenl is determined by the roots of characteris-
tic polynomial«−1+2k2−k4−l=0. Hence a marginal stabil-
ity curve, which corresponds to those parameters wherel
=0, is givensas a function of the radius of the burnerd by

«nmsRd = 1 − 2Sanm

R
D2

+ Sanm

R
D4

. s6d

A critical observation is the fact that beyond this curve,
on increasing«, the uniform stateu0=0 destabilizes to
Cnmsr ,ud. More importantly, we now have a tool to system-
atically search for the right type of pattern, at least with the
right number of cells. Similar marginal stability curves were
derived to aid the numerical explorations of cellular patterns
in a phenomenological model.4,12,19

IV. SIMILARITIES AND DIFFERENCES
IN SPATIO-TEMPORAL DYNAMICS

Without loss of generality, we choose to focus the inte-
gration of the model equations1d in a region where the evo-
lution of a single-ring pattern with three cells can be traced.
Such regions can be found in a neighborhood of the mini-
mum of the marginal stability curve«31 shown in Fig. 2. As
the curved is crossed, on increasingR, a stationary pattern of
three cells with purely spatialD3-symmetry emerges via a
symmetry-breaking bifurcation from theOs2d-invariant
trivial solution.

IncreasingR further, and upon crossing the left edge of
the shaded region, the three-cells pattern loses stability, the

FIG. 2. Marginal stability curves outline the stability domains where the trivial solutionu0=0 srepresenting a uniform flame frontd bifurcates to Fourier–Bessel
modesCnm.
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D3-symmetry of the ring is broken, and a dynamic pattern of
three cells rotating “almost” uniformly and counter-
clockwise bifurcates subcritically. Figure 3 depicts a sample
of snapshots of the space and time evolution of theusr ,u ,td
field obtained atR=7.36. Although at first glance the cells
appear to be rotating uniformly and rigidly, i.e., without
changing shape, the POD analysis that follows will help us
determine in more detail the exact spatio-temporal character-
istics of the dynamics.

An ensemble of 2000 consecutive snapshots was gener-
ated for the POD analysis. Figure 4 shows the time-average
scan be considered modeF0d followed by the ten modes,
F1–F10, with the highest POD energyssee the Appendix for
an exact definitiond. The actual amount of energy in each
mode is indicated below each graph. Each mode shows some
amount of symmetry. The symmetry of the time-average, in
particular, reflects theOs2d-symmetry of the burner, even
though none of the instantaneous snapshots has this symme-
try. This feature is studied in more detail in Ref. 20. The
remaining ten modes exhibit, approximately, the following
symmetries:F1 andF2 haveD3-symmetry, meaning that one
third of a revolution leaves them unchanged;F3 and F4

show D1-symmetry, i.e., the patterns are restored after one
complete revolution;F5 andF6 exhibit D6-symmetry, which
is just a higher harmonic of the first two modesF1 andF2;
F7 and F8 are D2-symmetric; and F9 and F10 are
D4-symmetric. Observe also that the energy is almost
equally distributed between consecutive pairs of modes, in-
dicating the existence ofcoupling pairs or invariant sub-
spaces for reconstructing the dynamics:V3=spanhF1,F2j,

V1=spanhF3,F4j, V6=spanhF5,F6j, V2=spanhF7,F8j, and
V4=spanhF9,F10j, where the indexn in Vn indicates
Dn-symmetry.

The fact that five pairs of modes are needed to capture
about 95% of the energy is in clear contrast to the energy
distribution of certain uniformly rotating cells that we stud-
ied through simulations of a phenomenological model and
simulations of the KS model as well.12,19 Such uniformly
rotating cells were also created via steady-state mode inter-
action but only two pairs of modes were needed to capture
almost 100% of the energy. Another significant difference is
the fact the Dihedral group of symmetries of the invariant
subspaces found in the decomposition of the uniformly ro-
tating cells are in a 1:2 ratio. These assertions suggest that
the cells of the state shown in Fig. 3 do not rotate uniformly
and that they are created via a steady-state mode interaction
through the spacesV3 % V1 % V6 % V2 % V2. Phase-space pro-
jections and relative phase angles shown in Fig. 5 further
confirm that the pattern rotates nonuniformly. The temporal
modulations are visible in the graph ofa7 vs a8 and in the
associated relative phase angles that appears just below it.
Clearly the modulations are very small but this is the case
because the pattern is very close to its bifurcation point, i.e.,
it appears just slightly to the right ofR=7.36. Recall that to
the left of R=7.36 the three cell state becomes
stationary.

Computer animations of the reconstructed dynamics
through

FIG. 3. Ten sequential timestop indexd snapshots of a dynamic state of three cells rotating counter-clockwise, with small modulations, found in simulations
of s1d. Parameter values are:«=0.32,h1=1.0, h2=0.013, andR=7.36.

FIG. 4. POD decomposition of the three-cells dynamic state of Fig. 3.
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usx,td = ũ + o
k=1

M

akstdFksxd, s7d

show the following features. WithM =2 modes, a dynamic
state emerges with three cells rotating counter-clockwise and
almost rigidlysunder the naked eyed. The asymmetry on each
individual cell is almost indistinguishable, but we know from
previous work20,21 that rotating cells cannot posses reflec-
tional salso called “chiral”d symmetry. The argument is
straightforward. If a solutionscellular stated of a system of
differential equations has certain symmetries at one instant of
time, then that solution must have the same symmetries at all
times. Consequently, any cellular state with reflectional sym-
metry cannot rotate. WithM =4 cells, however, the asymme-
try in the cells becomes more visible. The cells do not seem
to change shape too much, but rather, it is their size that
periodically increases and then decreases as the cells rotate.
With M =6, the cells behave in a similar manner except that
their size increases moderately. WithM =8, the asymmetry in
the cells is more pronounced as well as the variations in
shape. Also the cells move more independently with small
“jumps” in angular position. WithM =10, the jumps are
more visible and the overall temporal motion shows similar
characteristics to those of experimental hopping states.4,5

This last assertion is not a big surprise given the fact that in
a POD decomposition of experimental hopping states4 we
found similar modes to those shown in Fig. 4. In particular,
we found F1, F2, F7, F8, F9, and F10, to be the most
dominant modes. It is a surprise, however, thatF3–F6 do not
appear in the experimental states, not even at lower energy
levels. To understand this subtle difference, we performed a
numerical experiment of reconstructing the dynamics with-
out F3, F4, andF5. Interestingly, now the reconstructed dy-
namics resembles more of the hopping motion that is typi-
cally observed in the experiments. This better-fit can be

attributed to the fact that now the spatial dynamics is
stripped from the oscillations in cell sizeswithout changing
shaped that we previously observed in the reconstructions
with M =4 andM =6. Consequently, the periodic “hops” in
angular position are more distinguishable.

We now return our attention to the marginal stability
curves. On moving right into the shaded region, the modula-
tions on the three-cells state of Fig. 3 become progressively
stronger. NearR=7.74, in particular, the cells repeatedly
make abrupt changes in their angular position while they
rotate around the ring; in a manner that more closely re-
sembles experimental observations of hopping cells.1,5 Fig-
ure 6 depicts a few representative snapshots of the spatio-
temporal dynamics atR=7.7475. Observe that changes in
cell shape are more noticeable. In fact, a hopping cell
changes its shape more than the other two and also appears
more asymmetric. The hops are small in comparison with
experimental states but, up to a time-scale factor, the overall
characteristics of the dynamics appear to be in good agree-
ment with experiments. To confirm these observations, we
perform next a POD analysis of the space-time behavior.

An ensemble of 6000 consecutive snapshots was gener-
ated for the POD decomposition. Figure 7 shows the time-
average, principal modes, and POD energy, in the same for-
mat as they appeared in Fig. 4. A direct comparison of the
modes yields the following observations. The invariant sub-
spacesV3, V2, andV4 are present in both cases. ModesF3,
F4, andF5, in Fig. 7, do not appear in Fig. 4. ModeF10 in
Fig. 7 corresponds to modeF11 in Fig. 4, though this mode
is not shown in Fig. 4. ModesF3 and F4 in Fig. 7 can be
thought of being a linear superposition of two concentric
modes withD1-symmetry. In this sense, they are similar to
the same modesF3 andF4 of Fig. 4.

Computer animations of the reconstructed dynamics
through Eq.s7d shows the following features. WithM =2

FIG. 5. sTopd Phase-space projections produced by the time coefficients of the POD decomposition of the rotating pattern shown in Fig. 3;sbottomd associated
relative phase angles.
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modes, a three-cell dynamic pattern emerges, the cells rotate
counter-clockwise and their size and shape is relatively con-
stant at all times. WithM =4 modes, the cells now periodi-
cally change shape, each cell takes turns changing size, in-
creasing as it moves closer to the edge of the simulated
burner and decreasing as it moves toward the center of the
burner. This behavior supports the interpretation ofF3 and
F4 as being made up of two concentric modes with
D1-symmetry. WithM =5 modes, the excursions toward the
center and boundary of the burner are more noticeable. The
smallest cell is always the one pulled towards the center of
the burner, just before the leading cell makes an abrupt hop
towards the cell behind it. This pulling effect occurs every-
where around the center of the burner, which explains the
apparent loss in structure in the fifth mode. WithM =7 the
cells look more asymmetric with larger changes in shape.
With M =9 modes, each cell periodically makes abrupt
changes of angular position, jumping closer to the cell im-
mediately in front. This type of hopping motion is clearly
more noticeable as compared to the small jumps seen in the
previous dynamic state of Fig. 3.

The thickness in the phase-space projections of the POD
time coefficients, see Fig. 8, confirms the presence of stron-
ger temporal modulations as compared to those seen in Fig.
5. Stronger modulations explain why the “hopping” motion
is now more noticeable. Computer animations of the numeri-
cal results will be posted online at http://terminus.sdsu.edu/.

Hence, except for the periodic excursions between the
center and boundary of the burner, the spatio-temporal fea-
tures described by the dynamic state of Fig. 6 are in good

agreement with experimental observations of hopping
motion.4,5 The excursions are governed by modesF3, F4,
andF5 of Fig. 7. Removing these modessandF10 to make
the comparison relevant to the states shown in Fig. 1d we
observe a dynamic state with spatio-temporal characteristics
strongly similar to those seen in Fig. 1, especially in Fig.
1sad.

V. CONCLUSION

We have reported the first observations of “hopping” cel-
lular flame patterns, discovered in numerical simulations of
the Kuramoto–Sivashinsky equation through a modified
DAF-based integration scheme. Hopping states are charac-
terized by nonuniform rotations of a ring of cells, in which
individual cells make abrupt changes in their angular posi-
tions while they rotate around a ring. The hopping states that
we found exhibit the same temporal features of the experi-
ments but they also show additional spatial features. In par-
ticular, a periodic change in the size of the cells followed by
periodic excursions between the center and boundary of the
simulated burner. A POD analysis of computer simulations
reveals the presence of several modes that are similar to
those found in experiments, but it also shows the existence of
a few other modes that are responsible for the added spatial
dynamics. Furthermore, the POD analysis suggests that the
numerical hopping states are created through a steady-state
mode interaction between three modes whose spatial symme-
tries are described by the Dihedral groupsD3, D2, andD4,
respectively. A derivation and analysis of normal form equa-

FIG. 6. Space and time evolution of a three-cells hopping state found in simulations ofs1d. The cells move nonuniformly and their shapes change periodically.
Parameter values are:«=0.32,h1=1.0, h2=0.013, andR=7.7475.

FIG. 7. POD decomposition of the three-cell dynamic state depicted in Fig. 6.
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tions invariant under the action of these three groups will
provide the opportunity to study in more detail the bifurca-
tions of hopping–modulated rotating states and hopping–
rotating state transitions and interactions. This task is
planned for future work together with a group
decomposition22 of the numerical hopping states.
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APPENDIX: MODAL DECOMPOSITION

In this appendix we provide a self-contained review of
basic definitions and properties of the proper orthogonal de-
compositionsPODd technique relevant to this work and dis-
cuss how the method can be applied to computer simulations
in order to separate spatial and temporal behavior. Readers
familiar with the technique can skip this section. The POD is
a well-known technique for determining an optimal basis for
the reconstruction of a data set.23,24 It has been used in vari-
ous disciplines that include fluid mechanics,25–27 identifica-
tion and control in chemical engineering,28 oceanography,29

and image processing.30 Depending on the discipline, the
POD is also known as Karhunen–Loève decomposition,
principal components analysis, singular systems analysis, or
singular value decomposition.

1. Theoretical aspects

Let us consider a sequence of numerical and/or experi-
mental observations represented by scalar functions
usx ,tid , i =1…M. Without loss of generality, the time-
average of the sequence, defined by

usxd = kusx,tidl =
1

M
o
i=1

M

usx,tid, sA1d

is assumed to be zero. The proper orthogonal decomposition
extracts time-independent orthonormal basis functions,
Fksxd, and time-dependent orthonormal amplitude coeffi-
cients,akstid, such that the reconstruction

usx,tid = o
k=1

M

akstidFksxd, i = 1,…,M sA2d

is optimal in the sense that the average least squares trunca-
tion error

«m =KIusx,tid − o
k=1

m

akstidFksxdI2L sA3d

is minimized for any given numbermøM of basis functions
over all possible sets of orthogonal functions. Herei ·i is the
L2-norm, ifi2=sf , fd, where s· , ·d denotes the standard Eu-
clidean inner product;k·l denotes an average operation, usu-
ally over time; and the functionsFksxd are calledempirical
eigenfunctions, coherent structures, or POD modes. In prac-
tice the state of a numerical model is only available at dis-
crete spatial grid points, so that the observations that form
the data set are vectors rather than continuous functions. In
other words,D=sx1,x2,… ,xNd, wherexj is the j th grid point
andusx ,tid is the vectorui =fusx1,tid ,usx2,tid ,… ,usxN,tidgT.
The data set can be obtained from numerical simulation, ex-
perimental investigation or a combination of the numerical
and experimental results. More importantly, it can be shown
that the eigenfunctionsFk are the eigenvectors of the tensor
product matrix

FIG. 8. sTopd Phase-space projections produced by the time coefficients ofnthe POD decomposition of the rotating pattern shown in Fig. 6;sbottomd
associated relative phase angles.
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Ssx,yd =
1

M
o
i=1

M

uiui
T. sA4d

2. Computational implementation:
Method of snapshots

A popular technique for finding the eigenvectors ofsA4d
is themethod of snapshotsdeveloped by Sirovich.31–33It was
introduced as an efficient method when the resolution of the
spatial domainsNd is higher than the number of observations
sMd. The method of snapshots is based on the fact that the
data vectors,ui, and the eigenvectorsFk, span the same lin-
ear space.26,31This implies that the eigenvectors can be writ-
ten as a linear combination of the data vectors

Fk = o
i=1

M

vi
kui, k = 1…M . sA5d

After substitution in the eigenvalue problem,Ssx ,ydFsyd
=lFsxd, the coefficientsvi

k are obtained from the solution of

Cv = lv, sA6d

wherevk =sv1
k ,… ,vM

k d is thekth eigenvector ofsA6d, andC
is a symmetric M 3M matrix defined by fcijg=s1/Md
3sui ,u jd. Heres· , ·d denotes the standard vector inner prod-
uct, sui ,u jd=usx1,tidusx1,tjd+¯+usxN,tidusxN,tjd. In this
way the eigenvectors of theN3N matrix S sA4d can be
found by computing the eigenvectors of anM 3M matrix C
sA6d, a preferable task ifN@M. The results presented in
Sec. IV were obtained with an implementation of the method
of snapshots.

3. Properties of the POD decomposition

Since the kernel is Hermitian,Ssx ,yd=S*sy ,xd, accord-
ing to the Riesz theorem,34 it admits a diagonal decomposi-
tion of the form

Ssx,yd = o
k=1

N

lkFksxdFk
*syd. sA7d

This fact is particularly useful when finding the POD modes
analytically. They can be read off from the diagonal decom-
positionsA7d. Then the temporal coefficients,akstid, are cal-
culated by projecting the data set on each of the eigenfunc-
tions

akstid = susx,tid,Fksxdd, i = 1,…,M . sA8d

It can be shown that both temporal coefficients and
eigenfunctions are uncorrelated in time and space,
respectively.26,31–33In addition, the POD modeshFksxdj and
the corresponding temporal coefficients,hakstidj, satisfy the
following orthogonality properties:

sid F j
*sxdFksxd = d jk,

sii d kajstidak
*stidl = d jkl j ,

whered jk represents the Kronecker delta function.
Propertysii d is obtained when the terms in the diagonal

decomposition sA7d are compared with the expression

Ssx ,yd=okajstidak
*stidlF jsxdFk

*syd. The nonnegative and self-
adjoint properties ofSsx ,yd imply that all eigenvalues are
nonnegative and can be ordered accordingly:l1ùl2…
ù…ù0. Statistically speaking,lk represents the variance of
the data set in the direction of the corresponding POD mode,
Fksxd. In physical terms, ifu represents a component of a
velocity field, thenlk measures the amount of kinetic energy
captured by the respective POD mode,Fksxd. In this sense,
the energy measures the contribution of each mode to the
overall dynamics.

The total energy captured in a proper orthogonal decom-
position of a numerical or experimental data set is defined as
the sum of all eigenvalues

E = o
k=1

M

lk. sA9d

The relative energy captured by thekth mode, Ek, is
defined by

Ek =
lk

o j=1

M
l j

. sA10d

Note that the cumulative sum of relative energies,oEk, ap-
proaches one as the number of modes in the reconstruction
increases toM. The relative phase-angle between two POD-
time coefficients is defined by

ui j = a tanSai

aj
D . sA11d

1M. Gorman, M. el Hamdi, and K. Robbins, “Experimental observations of
ordered states of cellular flames,” Combust. Sci. Technol.98, 37–45
s1994d.

2A. Turing, “The chemical basis of morphogenesis,” Philos. Trans. R. Soc.
London, Ser. B237, 37–72s1952d

3M. Gorman, M. el Hamdi, and K. Robbins, “Rotating and modulated
rotating states of cellular flames,” Combust. Sci. Technol.98, 25–35
s1994d.

4A. Palacios, G. Gunaratne, and M. Gorman, “Modal decomposition of
hopping motion in cellular flame patterns,” Chaos9, 755–767s1999d.

5M. Gorman, M. el Hamdi, and K. Robbins, “Hopping motion in ordered
states of cellular flames,” Combust. Sci. Technol.98, 71–78s1994d.

6J. Buckmaster,The Mathematics of CombustionsSIAM, Philadel-
phia,1985d.

7A. Bayliss, B. Matkowsky, and H. Riecke, “Structure and dynamics of
modulated traveling waves in cellular flames,” SIAMsSoc. Ind. Appl.
Math.d J. Appl. Math. 74, 1–23s1994d.

8P. Blomgren, S. Gasner, and A. Palacios, “A stable second-order scheme
for integrating the Kuramoto–Sivashinky equation in polar coordinates,”
Phys. Rev. E. submitted.

9Y. Kuramoto, “Diffusion induced chaos in reaction systems,” Suppl. Prog.
Theor. Phys.64, 346–367s1978d.

10G. Sivashinsky, “Nonlinear analysis of hydrodynamic instability in lami-
nar flames. Part I. Derivation of basic equations,” Acta Astraunica4,
1177–1206s1977d.

11M. Gorman, C. Hamill, M. el Hamdi, and K. Robbins, “Four types of
chaotic dynamics in cellular flames,” Combust. Sci. Technol.98, 79–93
s1994d.

12A. Palacios, G. Gunaratne, M. Gorman, and K. Robbins. “Cellular pattern
formation in circular domains,” Chaos7, 463–475s1997d.

13B. J. Matkowsky, L. J. Putnick, and G. I. Sivashinsky, “A nonlinear theory
of cellular flames,” SIAM sSoc. Ind. Appl. Math.d J. Appl. Math. 38,
489–504s1980d.

14D. Zhang, G. Wei, D. Kouri, D. Hoffmann, A. Palacios, M. Gorman, and
G. Gunaratne, “Integrating the Kuramoto–Sivashinsky equation in a cir-
cular domain,” Phys. Rev. E60, 3353–3360s1999d.

013706-9 Hopping behavior in flame patterns Chaos 15, 013706 ~2005!

Downloaded 17 May 2005 to 199.60.1.20. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



15A. M. Frishman, D. K. Hoffman, R. J. Rakauskas, and D. J. Kouri, “Dis-
tributed approximating functional approach to fitting and predicting poten-
tial surfaces atom–atom potentials,” Chem. Phys. Lett.151, 62–70s1996d.

16D. Hoffman, M. Arnold, and D. Kouri, “Properties of the optimum dis-
tributed approximating function class propagator for discretized and con-
tinuous wave packet propagations,” J. Phys. Chem.96, 6539–6545
s1992d.

17D. Hoffman, T. Marchioro II, M. Arnold, Y. Huang, W. Zhu, and D. Kouri,
“Variational derivation and extensions of distributed approximating func-
tionals,” J. Math. Chem.20, 117–140s1996d.

18J. C. Strikwerda,Finite Difference Schemes and Partial Differential
Equations,2nd ed.,sSIAM, Philadelphia, 2004d sfirst edition is out of
printd.

19A. Palacios, G. Gunaratne, M. Gorman, and K. Robbins, “A Karhunen–
Loève analysis of spatiotemporal flame patterns,” Phys. Rev. E57, 5958–
5971 s1998d.

20M. Dellnitz, M. Golubitsky, and M. Nicol, “Symmetry of attractors and
the Karhunen–Loève decomposition,” inTrends and Perspectives in Ap-
plied Mathematics, edited by L. SirovichsSpringer-Verlag, New York,
1994d, Vol. 100, pp. 73–108.

21G. Gunaratne, M. el Hamdi, M. Gorman, and K. Robbins, “Asymmetric
cells and rotating rings in cellular flames,” Mod. Phys. Lett. B10, 1379–
1388 s1996d.

22A. Palacios, “Identification of modulated rotating waves in pattern-
forming systems withOs2d symmetry,” Discrete Contin. Dyn. Syst., Ser.
B 2, 129–147s2002d.

23K. Karhunen, “Zur spektraltheorie stochasticher prozesse,” Ann. Acad.
Sci. Fenn., Ser. A37, 3–76s1946d.

24M. Loève,Probability TheorysVan Nostrand, New York, 1955d.
25G. Berkooz, P. Holmes, and J. L. Lumley, “The proper orthogonal decom-

position in the analysis of turbulent flows,” Annu. Rev. Fluid Mech.25,
539–575s1993d.

26P. Holmes, J. L. Lumley, and G. Berkooz,Turbulence, Coherent Struc-
tures, Dynamical Systems and SymmetrysCambridge University Press,
Cambridge, 1996d.

27J. L. Lumley, “The structure of inhomogeneous turbulent flows,” inAtmo-
spheric Turbulence and Radio Wave Propagation, edited by A. M. Yaglom
and V. I. TatarskisNauka, Moscow, 1967d, pp. 166–178.

28M. D. Graham, S. L. Lane, and D. Luss, “Proper orthogonal decomposi-
tion analysis of spatiotemporal temperature patterns,” J. Phys. Chem.97,
889–894s1993d.

29R. Preisendorfer,Principal Component Analysis in Meteorology and
Oceanography, edited by C. MobleysElsevier, Amsterdam, 1988d.

30K. W. Pratt,Digital Image Processing, 2nd ed.sWiley, New York, 1991d.
31L. Sirovich, “Turbulence and the dynamics of coherent structures, Part I:

Coherent structures,” Q. Appl. Math.45, 561–590s1987d.
32L. Sirovich, “Turbulence and the dynamics of coherent structures, Part II:

Symmetries and transformations,” Q. Appl. Math.45, 573–582s1987d.
33L. Sirovich, “Turbulence and the dynamics of coherent structures, Part III:

Dynamics and scaling,” Q. Appl. Math.45, 583–590s1987d.
34F. Riesz and B. Sz.-Nagy,Functional AnalysissDover, New York, 1990d.

013706-10 Blomgren, Gasner, and Palacios Chaos 15, 013706 ~2005!

Downloaded 17 May 2005 to 199.60.1.20. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp


