Super-resolution in time-reversal acoustics

Peter Blomgren® and George Papanicolaou®
Department of Mathematics, Stanford University, Stanford, California 94305

Hongkai Zhao®
Department of Mathematics, University of California at Irvine, Irvine, California 92697-3875

(Received 3 May 2000; accepted for publication 27 September)2001

The phenomenon of super-resolution in time-reversal acoustics is analyzed theoretically and with
numerical simulations. A signal that is recorded and then retransmitted by an array of transducers,
propagates back though the medium, and refocuses approximately on the source that emitted it. In
a homogeneous medium, the refocusing resolution of the time-reversed signal is limited by

diffraction. When the medium has random inhomogeneities the resolution of the refocused signal

can in some circumstances beat the diffraction limit. This is super-resolution. A theoretical treatment

of this phenomenon is given, and numerical simulations which confirm the theory are presented.
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I. INTRODUCTION distanceL =1-50km, TRM sizea=50-100m. In nonde-
/Structive testing with ultrasound these lengths are scaled by a

In time-reversal acoustics a signal is recorded by an a 3 ,
factor of 10°°, so that typical wavelengths ake=1 mm.

ray of transducers, time-reversed, and then retransmitted in S : ]
the medium. The retransmitted signal propagates back !f the medium is randomly inhomogeneous the focusing
through the same medium and refocuses approximately gigsolution of the backpropagated signal can be better than the

the source. The refocusing is approximate because of th&solution in the homogeneous case. This is referred to as
finite size of the array of transducefreceivers and transmit- SuPer-resolutionRoughly speaking, the random inhomoge-
ters, which is called aime-reversal mirror(TRM; see Fig.  neities produce multipathing and the TRM appears to have
1). The possibility of refocusing by time reversal has many@n aperture that is larger than its physical sizee#iactive
important applications in medicine, geophysics, nondestruc2Perture a=>a. This means that the recompressed pulse is
tive testing, underwater acoustics, wireless communicationdlarower than in the homogeneous medium and we have
etc., and has been studied in a variety of settifgsk, 1997, super-resolution with a spatial scale of orddr/a,. This
1999; Hodgkis®t al, 1999; Dowling and Jackson, 1990n phenomenon was observed in underwater acoustics experi-
the frequency domain, time reversal is equivalent to phasgents(Dowling and Jackson, 1990; Hodgkiss al, 1999;
conjugation which has been studied extensively in opticdupermanet al, 1997 as well as in the ultrasound regime
(Porter, 1989 (Derodeet al,, 1995; Fink, 1997, 1999

Time-reversed signals propagate backwards through the An attempt at a theoretical explanation of super-
time-independent medium and go through all the multiple'esolution by multipathing is given in Dowling and Jackson
scattering, reflections, and refraction that they underwent i#1992. This, however, requiresnsemble averages ran-
the forward direction, which is why refocusing occurs. How- dom media and does not account for the remarkable stability
ever, the size of the TRM is often small compared to theof the compressed pulse, without any averaging, as seen in
propagation distance, that is, the aperture of the time-revers#te actual experiments. In Fig. 2, numerical computations
mirror is small, and only a small part of the advancing waveWith time-harmonic signals illustrate the lack of any resolu-
is captured and time reversed. In homogeneous media, tHn realization-by-realization, while on average the resolu-
spatial resolution of the time-reversed signals is limited bytion is remarkable. For time-harmonic signals, time reversal
diffraction and is inversely proportional to the aperture sizeiS the same as phase conjugation on the TRBually called
and proportional to the wavelength times the propagatiorihe phase conjugation mirrorin this setting.
distance. In the notation of Fig. 1, the time-reversed and The key to the statistical stability of time-reversed sig-
backpropagated signal due to a point source will focus in &als is their frequency spread. This stabilization of pulses has
region around the source with spatial width of orddr/a. been seen in other contexts in stochastic equations and ran-
Here, \ is the wavelength of the carrier signal for the pulse,dom media(Solna and Papanicolaou, 2000ut not in con-
L is the distance from the source to the TRM, anis the  nection with time reversal, as it is presented and analyzed
size of the TRM. here.

In underwater acoustics, typical parameters are: propa- In this paper, we explore analytically and numerically
gation speed,= 1.5 km/s, wavelength =1 m, propagation the phenomenon of super-resolution in time reversal in a

regime of parameters where the effects of the random me-

¥Electronic mail: blomgren@math stanford.edu dium are fully developed. This _regime can be des_cribed
bElectronic mail: papanico@math.stanford.edu roughly as follows. The propagation distante,the carrier
®Electronic mail: zhao@math.uci.edu wavelength,\, the aperture of the TRMa, the correlation
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X (i)  Derive aneffective aperturormula for a TRM in
DTBC ) .

_______ N < random media. In particular, we show that the effec-

tive aperture for a finite aperture or Gaussian TRM is

.................. L3’y
I ! agl)=ay\/1+ ==

where y is a constant with dimensions of reciprocal
length that depends on the statistics of the fluctuations
of the propagation speddee Sec. VII for detai)s It

is assumed that the effective aperture is still small
compared to the propagation distanag(L)<<L.

Show that for a pulse in the time domain, super-

resolution is linked to thesffective aperturea,, of
FIG. 1. Setting for time-reversal acoustics. A point source emits a wave, the TRM, and that self-averaging due to the frequency
which is received on a screen of width—the time-reversal mirror . . L
(TRM)— at a distancé. from the source. The domain of numerical solution spread of the signal makes super-resolution in time

of the (parabolid wave equation is shown with a dotted line, and DTBC reversal statistically stable.
stands fordiscrete transparent boundary conditions
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Numerical Domain (iii)

In Sec. I, we set up equations for backpropagated fields
length of the medium fluctuationk, and the variance of the and quantities of interest in the frequency domain. In Sec.

sound-speed fluctuationéu?), are scaled by a single pa- I1l, we introduce an invariant embedding approach in order
rametere=\/L, which we assume to be small. We assumel© derive transport- and Winger equations for the time-
also thatl~\ and that{u2)~ . In this regime reversed signal originating from a point source. Then, in Sec.
i) IV, the diffraction limit for a homogeneous medium is calcu-

i

The _propagation distgnce Is mUCh. I_arger than_the COMated, in both the frequency and time domain for Gaussian
relation length of the inhomogeneities, which is large

and finite aperture TRMs. Scaling for the Wigner equation
or comparable to the wavelength. for the transport limit, from which the effective aperture will
(i)  The aperture of the TRM is relatively small so that the ) _p s ’ . ) _p L
effect of the random medium and multipathing can bebe derived, is introduced in Sec. V. Pulse stabilization in the
felt. time domain and the beam approximation are discussed in
(i) The random fluctuations of the propagation speed ar&€cs- VI and VII, respectively. Details of the numerical
weak so that waves are scattered mostly in the forimplementation and numerical results are shown in Sec. VIIl.
ward direction. The concept of dynamic TRM placement is introduced in

Sec. IX and is explored with numerical simulations. Finally,
Many situations in underwater acoustics and in ultrasoungh Sec. X we consider time reversal in a waveguide and show
propagation fall into this regime. The objectives of this papefne results of several numerical simulations without discuss-

are to ing here the theory that explains them. In the Appendix we

(i)  Systematically calculate statistics of the backpropa€xplain carefully the various scaling limits which lead to
gated phase-conjugated field using transport anguper-resolution and statistical stability in the time domain as
Wigner equations in the frequency domain. described here.

1| - KNP (D ?

(a) Average (b) Relative Variance (c) Realizations

FIG. 2. Time-harmonic waves in random media. Propagation distance 1000 m, TRM width 50 m, width of numerical domain 150 m, width of random medium
112.5 m, contrast-5%, 428 realizationsia) Amplitude of the mean: Homogeneo(ght) and average over random realizatiqdark) case.(b) Relative
variance,>0O(1) except for a very small intervalc) Individual realizations that show super-resolutidigh) as well as no resolution at allow).
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Il. BACKPROPAGATED FIELDS on the TRM aty, phase-conjugated, backpropagated and ob-

) . ) ) __served até. In the following section we derive an equation
The time-reversed signal is synthesized from time-¢0r I which is a form of invariant embedding
harmonic waves by the inverse Fourier transform. We start LJsing T(L,y.y:& 7:K), the time-harmonic, phase-

with the _Ii—fflmholtz equation for time-harmonic waves conjugated, and backpropagated field at the source pfane,
u(xy.z)e =0, can be written as
Uyx+Uyy+ Uz, +k2n2(X,y,z)u=0. (1)
B ) — SN g
Here, k= w/cy is the wave numbex, is a reference speed, 4 (é’l"k)_f G(L.Oy.&k) gy, LK) xa(y)dy
c(x,y,z) is the propagation speed and(x,y,z)

=cg/[c(X,y,2)] is the index of refraction. When the time- =j f a(Y) o( 7:K)G(L, 0y, £K)
reversal mirror has small apertufieeam geometyyand the
fluctuations in the propagation speed are weak, we can use ><G(LO'—yr/'k)d77dy

the parabolic or paraxial approximatidsee Tappert, 1977

We let u=e*?y(x,y,z) and ignore backscattering in the S

Helmholtz equatiorithe termy,,) to obtain a parabolic ini- :f f XaY)o( 7 KL (L,y,y; € 7 K)dn dy.

tial value problem for the wave amplitudg in which the )
direction of propagatiornz plays the role of timgsee Bam-

bergeret al., 1988 Here, xa(y) is the aperture function for the TRM occupying

ik A K2(n2 _ the regionA and is equal to 1 iy A, and 0 otherwise. We
2ikip+ AL+ KA(n"=1) =0, use the same notation for other aperture functions as well.
W,— 0= (%K), X=(X,y), The backpropagated, time-reversed field is obtained by Fou-

. _ rier synthesis
where A | is the transverse Laplacian (2

We note that the parabolic approximation is not valid in ‘I’B(§,L,t)=f yB(&,Lwlcp)e " do. (8)
the immediate neighborhood of a point source. The full
Helmholtz equation must be solved near the source and theere.t is relative time, on the scale of the pulse width. The
matched with the parabolic equation further away from it.travel time to and from the TRM has been eliminated.
We will use a Gaussian beam in the frequency domain as an
initial wave amplitudeyq, that is, a Gaussian in the trans- | |INVARIANT EMBEDDING AND THE WIGNER
verse space coordinates. We take the pulse to be Gaussiang@UATION
time as well, which means a Gaussian in the wave nurkber

or frequencyw. By Fourier synthesis, the wave function in From the equation for the Green's function

the time domain is given by G(z,29;%,¢;k), we can derive an equation for
(L x.y; &, 7:k)
\P(t,x,y,z)zf e @@ Yy (x,y,z:w/co)dw. (3) ar
’ 2ik ——+ (A= AT +K*(p(x,L) = u(y,L))T=0

. . N . aL
We will also use a point source and consider it as the limit of

a Gaussian in space whose width is very small or zero. F'ox,y; & n,k)=68(x—§&)6(y—7n).
The Green’s functiolis(z,zy;x, &;K) with a point source
at (zp,&) satisfies

(€)

Here,A, andA, are the Laplacians in the transverse variable
x andy, respectively. We introduce the following change of

2ikG,+A,G+k?u(x,2)G=0, transverse variables:

oy E ) — Sy X+ Y
G(29,20:%,£:K) = 8(x— &). X=X x- X
Here, 2>z, w(X,z)=n?%x,z)—1, (4
By recipr_oci_tyG_(z,zO;x,g;I_()=G(zo,z;§,x; k). If the ir_1itia| Y=y—x, y=X+ I (10)
source distribution aty= 0 is /y( 77;K) then the wave field at 2
z=L Is Ay—Ay=(Vy= V) (Vyk V) = — 2V4 V.

y.Lik) = f G(L.Ow, 7:K) ol i)l 7. (5)  This transforms Eq(9) into

ar Y Y
In time-reversal problems it is convenient to introduce2ikI— ZVXVYr+k2(M<X— E’L) —M(x+ E’L))F
the tensor product of two Green'’s functions

T(Lx,Y: & 7:K)=G(L,0x, &K)G(L,0, 7ik), -0 .
. LN _ _ (6) def Y Y
T(OX.Y; £ 7:K) = 8(x—£) 8(y— 7). L OX.Y £ mk) 5(X_ §_§> 5(X+ ~ ,7)_
becauseI'(L,y,y;&,7;k) describes the response, at the
source plane, of a point sourcesgtwhose signal is recorded With the Fourier transform defined by
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. 1 .
f(p)=WfRde'p'xf(X)dx, F(L,y,y;é,n;k)=J W(L,y,P; &, 7)dP

12 1 (k)d i(KIL)(y—=[&+7]2)- (=)
f — —ip'x? d ) — —] ! y—L&+nll2)- -,
(X) fRde (p)dp 2milL
and the scaling ruleS(x)=|a|%8(ax) for & functions ind (19
dimensions, witld=1,2, here we introduce the Wigner dis- From this we get the following expression for the phase-
tribution conjugated and backpropagated time harmonic field:
W(L,X,P;&,7:K) EA™Y
=—d1 Je“’-Yr(L X,Y: € p:k)dY (13) 0 1
(2m) SRR ' = ol 17,K) xalY) 2
It satisfies the Wigner equatigRourier transform irY of the d
I' equation X[ —| e IKLy-[&t 72 (= mdy d
k6W+P VW k\¢
Py
o :(E) f ( (7~ 5))%(7; e/l 7
ZEjeiQ'Xﬁ(Q L) K\ 2o
2 2([ glzuf ( (7~ 5)) THTT2Y (k) d .
Q Q
x| W{LX,P+ 5| ~W L X,P- 5| |dQ, (14) (20)

Here, xa is the Fourier transform of the aperture function
xa. If the source is a5 function in spacepoint source,
Yo(7m)=8(n), then the expression fap® simplifies to

with the initial condition

W(OX,P; &, 7;k) = Lde PE=m (X —[ £+ ]12).

(2m) B ‘ ik o —k¢
(15) po(E Lk =+ e Xa| /|- (21)
Here, u(P,L) is the Fourier transform ofu(x,L) in the ] ] )
transverse variable. We can recovel from W by a Fourier We will now use this result for two different types of

time-reversal mirrors. First, we consider a finite aperture

transform, and in particular ! ) X
TRM, from which we have edge diffraction effects. Then, we

TLy.y:EnK)= | W(L,y.P:& n)dP. 16 consider a TRM with a Gaussian aperture function. We com-
(Ly.yi&mk) f (L.y.Pig.) (16) ment briefly on the resolution limits in time reversal for these
Thus, the phase-conjugated, backpropagated time harmorf¢© kinds of TRMs.

field is given by A. Finite aperture TRM

B ) — RN For simplicity we consider only one transverse dimen-
yreLib J J Yo(mkXA(Y) sion,d=1. Let ya(y) be the indicator function of a TRM of
sizea centered ay=0. The Fourier transform ofa(y) is

x( f W(L,y,P;& 7,k)dP|dydz, (17) xa(P)=sin (Pa/2)/7P. Plugging this into Eq(21) gives

in terms of the solutioW of the Wigner equatioril14). YB(& LK) = ism kéa

7§

IV. DETERMINISTIC DIFFRACTION LIMIT The diffraction-limited resolution can be measured by the
distanceér from the origin to the firskresnel Zonethat is,

In this section we will use the expressi¢hi7) for the e first er0 of the phase-conjugated backpropagated field
backpropagated field and the invariant embedding and

Wigner equations from Sec. Ill to calculate the deterministic 2wl AL
diffraction limit for a time-dependent pulse, emanating from F " ka a_
a point source in space.

For a homogeneous medium, with=0, the solution to
the Wigner equatioril4) with the initial condition(15) is

|k§2/2L. (22)

(23

If the pulse is a point source in space and a Gaussian in the
time domain with carrier frequenay,, that is

W(L,X,P;¢,7)= (—1)de P-(=m) Wo(7,t)=38(7) — o (P20) g iagt
t
X O(X—[LP/k]—=[&+ 7]/2). (18 (29

( )= i S( )e—[(w—wo)zaf/ZJ
Now, Eq.(16) gives Yolme) =5 0(n :
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FIG. 3. The left figure shows the spatial diffraction pattern of the amplitud@®fat timet= 0. The right figure is a space-time contour plot of the amplitude
of (25) and shows the parabolic shift in arrival time. Here, the pulse widtlr s 1.33 ms, the TRM widtha=50 m, the propagation speed &3
=1500 m/s, the propagation distanceLis 1000 m, and the period of the carrier is 0.22 ms at 4.5 KHz.

then thetime-reversedand backpropagated signal in time at 1 —_
. — —y|/2a 28
the source plane is XalY) (2ma2)2® : (28)
WE(E,LLY)
In this case, the phase-conjugated backpropagated time-
:iJ ol el @) g0 0p2el2g- 0t harmonic field from a point source is
2’77 ’ ,CO
d
B ) — —a2k?| 21212 Lik| 2121
:J‘ 1 (elivéalzeol) _ o= (iwéal2col )y Yo(E LK) = 27TL) g2k elkl€“2L (29
(2m)%ié
><e<iw§2/2€oL>e*[<w*wo>20t2/2]e*iwt do The resolution of the refocused signal is proportional to the

variance of this Gaussian, which Xd./a.

1 . 5 If the pulse is a point source in space and a real Gauss-
— ; e—mo(t—(g 12cql)) . in ti ith . £ th
2mPéa, ian in time with carrier frequencyg, then

% {e(iwogafzcoL) e—[(t—§2/2COL)—§a/2c0L]2/20t2

1 )
Wo(n.)=3(n) Je rig ivg,

_ e iwptal2col o~ [(t—€2/2coL) + §a/2C0L]2/20't2}' (25) Oy
(30

Diffraction from the two edges of the TRM is seen 8(n) )

clearly. At the wavefront, where= £2/2c,L, we have bo(n,0)= ?e_[(“’_‘”f’) ot/2],
§2
VBl &L, ZCOL) We use the inverse Fourier transform to synthesize the self-
averaging, time-reversed, and backpropagated signal at the
_y2m 1 ir{woga ~ &2 20coL/a)?. (26) source plane

Oy 277258 ZCOL

; A - B 1 B @ | o [(0—wp)202]2p—iwt

If the width of the pulse in timer, is large compared to WE(£L.t)=5— | ¢%| 6L, e (o= wo)oi]i2g=iot g,

No/cCo, the time period, then the variance of the Gaussian in . 0

B is 1 ( 0}
20CoL  209Co Mok _ . Aol - 27w ) \2mcoL

a Ao a ZEE=g 27)

d
) e—(a2w2§2/2c§L2)eiwgzlchL

« e—[(w—wo)zof]/ze—iwt do
Thus, the diffraction limit is determined by the carrier fre-

; d qd
quency. A plot of#B(£,L,0) is shown in Fig. 3. - i e d [e—iwo(t—[ézlzcoLD
2\ 2mcol ) dtd

2 2,252, 2
_ X e~ (012 2 /[ (22¢%/c5L?) + o]
B. Gaussian TRM
. . « e[i(t—[gZIZCOL])+[azwogzlchz]]2/[(2a2§2/cSL2)+Zatz]
We now consider the case where the aperture function, :

XA, IS @ normalized, isotropic Gaussian with variarce (31
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1 - ' - T - - parable to the correlation length,that isl ~\. This allows
full interaction between the waves and the random medium,
which is an interesting case to studyi) The fluctuations,
o8f ] w=n?—1, of the index of refraction are weak and isotropic,
ork | ||~ \e. If the fluctuations are very strong or very aniso-
tropic (as in a layered mediunthe parabolic wave equation
cannot be used. If they are very weak then stochastic effects
osf E will not be observable.

We want to analyze long-distance and long-time propa-
gation, so we rescale the space variablesxbyx/e, L
o3| . —L/e. We do not rescale the time-t/e in (8) because in
this papert is alwaysrelative time on the scale of the pulse
width. So, it will remain of order one. The Green’s function
01 1 in the scaled variables is

[oX-1 4 T

04 1

0.2 q

o L L L L ( ¢ L
-60 -40 -20 o 20 40 80

FIG. 4. The spatial shape of the compressed pulse with a Gaussian aperture
function at timet=0, from (31). Here, the pulse width is,=1.33 ms, the

TRM width isa=50 m, the propagation speedds- 1500 m/s, propagation
distance is.=1000 m, and the time period of the carrier is 0.22 ms. Note Ce(L,xy; &7 K)=G(L,0;x,&; k)EE(L,O;y, 7,K),
the absence of Fresnel zones for a Gaussian TRM.

L x &
GE(L,O;X,f;k)=G(—,0;—,—:k),
€ € €
(32

andI'¢ satisfies the scaled equation

shown in Fig. 4. When the aperture is smallL<1, and the 2ik€’9re + (A~ AT+ K2\ e
X y
pressed pulse in space is approximateht/a. With the X
s = 7’).

Here,£%/2c,L is the a parabolic shift in time of the front and

d=1,2. Aplot of the absolute value of this functiontat0 is

time duration of the pulse is large compared to the time aL

period of the carrierg;>\q/cq, then the width of the com- < L y L

in space o appro i W 225

parameters as in Fig. 4, this ratio is 6.6 m, which is roughly € € € €

the width at midlevel of the curve shown. (33
1 (x—¢&

V. SCALED WIGNER EQUATION AND THE IE0x,y; € k) = ;5( = ) ( c

TRANSPORT LIMIT

In order to study the effect of random inhomogeneitiesThe scaling of the initial conditions fdr € is adjusted so that
we introduce a scaling of parameters as folloWis: The  the wave energy is independent of the small parameter
wavelength\ is short compared to the propagation distance  Since we are interested in the local coherence of wave
L and we lete=\/L<1 be a small, dimensionless parameterfields, within a few wavelengths or correlation lengths, we
which scales all other variable@i) The wavelength is com- introduce the scaled change of variables

1 T {3 T T T T 1 T T T T T T
09F g 0.9} B
0.8f E ‘o8t 4
07f g 07} ! g
06 | g 0.6 It 4
| I
05f 1 05} I g
0.4l 4 0.4f I 4
I
03| - 03} ( -
02t 4 02f A ” 4
|
I i
o1t g 01f Il | n g
N RTAVR
0 . " . s L i . 0 ' f AR A RS ARALYS i . i
-60 -40 20 0 20 40 60 -60 -40 -20 0 20 40 60

FIG. 5. Comparison of the theoretical formyB6) at timet=0, for a medium with_. =600 m,a,=195m, y=2.12x10"°m™L. The left figure shows a plot
of (56) for a homogeneous mediuny=0, with a TRM of width a=40 (light/wide Fresnel zone and the random medium witg=2.12x10"° anda
=40 (dark/narrow Fresnel zoneThe right figure shows a plot @66) for a homogeneous mediung=0, with a=a,= 195 (light), and the random medium
with y=2.12x 10" ®, anda=40 (dark. The match confirms the validity ¢67). The values of, andy originate from the numerical estimates of the effective
aperture summarized in Table | in Sec. VIII.
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X+y €Y

X=— - X=X=5,
oy (34)
eY=y—X, Yy=X+ T

so thatA,—A=(V,=V)(V,+V,)=—-2/eVyxVy. In the
new variabled ¢(L,X,Y;¢; n;k) satisfies

€

2ik ETR _ZVXVYFG FIG. 6. Structure of the numerical domain: In the center strip the random
medium is at full strengtli75% of the thicknegs then there is a smooth
transition layer(5%-10% where the strength decreases. In the outer layer

2
k X Y L X YL e the medium is homogeneous, allowing for effective implementation of dis-
M T A 1 - - /1’ - >y 1 - F - 0!

€ 2 € € 2'€

e

+ crete transparent boundary conditions.

PeOX, YVt mk) =~ ol e v & o X Y7 (35) AL YL
OXYibml=coe 2Tz </ gL o=
We again letW<(L,X,P; ¢, 7;k) be the Fourier transform of . [P?P—Q?
I'¢(L,X,Y;&,7;k) in Y, and thenwe satisfies J R 2k P=Q
kﬂ&“p.vxwe X[W(L,X, Q& 7k —W(L,X, P& 7k)]dQ, (38
. +
ik? L W(0X,P;€,7;k) =€l 1P (&7 Wﬂ/(zw)da(x— g—”) :
- e—(iQ~X/6)Ia(Q,_) 2
2\e € whereR is the correlation function
R = +z,y+
and R(p,P) is its Fourier transform in Z,x), that is, the
with the initial condition power spectral density of the fluctuations of the refractive

It is important to note that the initial condition f&¥ in
(38) depends on the small paramegeeven though we have
(37) passed to the asymptotic limit in the equation. Snaatieans
By the asymptotic theory which we review briefly in the high-frequency asymptotics, that is, long propagation dis-
Appendix, the average Wigner functionlW¢(L,X, tances compared to the wavelength, as well as long propaga-
P; &, 7:K))—W(L,X,P; ¢, 7;k), ase—0, andW satisfies the tion distances compared to the correlation length, which pro-
transport equation duces the incoherent scattering terms on the right-side of the

) index.

1 n
WH(OX Pig mik) = o5 ge PIE Wf]a( x— X7 7

0.09[

0.08[

007}

0.06[

0.05F

0.04

~100” o e e i
Space Time -100 -80 -80 -40 -20 ) 20 40 80 80 100

(a) TRM-received (b) Recompressed

FIG. 7. Numerical simulation of time reversal. The width of the time-reversal mirror and the numerical domain are 50, and 200 m, respectivelyntihe maxi
contrast is+10%, that is|u|<0.1. The left figure shows the signal as received on the TRM plane. This signal is restricted to the mirror, time-reversed, and
re-emitted into the medium. The right figure shows a spatial section through the refocused signal. Here, the propagation distance is very §idom, only 2
or about 20 correlation lengths. We see that there is not enough randomness to observe super-resolution.

236  J. Acoust. Soc. Am., Vol. 111, No. 1, Pt. 1, Jan. 2002 Blomgren et al.: Time-reversal acoustics



equation in(38). By keeping thee dependence of the initial correlations, and long propagation distances, described in the
conditions we retain coherent diffraction effects in the trans{previous section, we also have statistical decorrelation of the
port approximation, which are clearly important in time re- wave functions for different frequencies. Hox k' we have
versal. B 8 , 8 8 ,

In the Appendix we discuss several scaling limits in (¥ (L. &RKIPE(LEK)) = (YL, EK))(¢7(L,£K)),
which multipathing effects are relevant. We also discuss the (41)
validity of the paraxial approximation in these limits. In par- jn the limit e— 0. This is the property that gives pulse stabi-

ticular, the paraxial approximation may be violated in thejization in the time domain. To see this, we note that the
transport limit, but its validity is restored in the narrow beamtime-reversed, backpropagated field is
limit of Sec. VII.

wB(L,g,t):f e "tyB(L, ¢ wlc)dw, (42)
VI. PULSE STABILIZATION
As we noted in the Introduction, time reversal of time and thus
harmonic or very narrow-band signdfghase conjugatigris ‘ © 2
statistically unstable. This means that (\I’B(L,g,t)2>=<(f e""’th( L,&, C—)dw) >
0
($B(&,L k)
:f f e—i(a)1+w2)t< wB( L,§. %)
= [ [| [ WPt map|vtmionsmayay 0
w
(40) X 8| L, ¢, C—2>>dwldw2
gives no information at all about the behavioryt(&,L k) °
for individual realizations of the medium, as demonstrated in QJ f e iorronn( g8l | o
Fig. 2, which is obtained by numerical simulations. How is yo| LG, Co
it, then, that super-resolution in time reversal is clearly seen
in a variety of physical_ experiment_s wherg there i_s no en- ><< Y8l L,¢, 2)>dw1dw2
semble of random media or averaging? This issue is not ad- Co
dressed in the time-reversal literature and poor understanding —(WB(L,£1)2. 43)

of it tends to make super-resolution counterintuitive and
somewhat mysterious, especially to those familiar with phasehis means that for any>0, the probability
conjugation.
The explanation is that super-resolution is a time-P{WB(L,&)—(WB(L,&1))|> 8}
domain phenomenon and it is the recompressed pulse in ((WB(L,&,1) —(WB(L,£D)))2)

spaceand time that is statistically stable. Pulse stabilization < > , (44)
in randomly layered media is well understo@8olna and g

Papanicolaou, 2000and references therein, and the reasorhy the Chebyshev inequality arfd3). That is

for this stabilization is similar to the one encountered in time

reversal here. In the asymptotic limit of high-frequency, short ~ WB(L,&,t)~(WB(L,&,1)), (45)

0.09
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0.08[

0.05

0.04

0.031

(a) TRM-received (b) Recompressed

FIG. 8. In this simulation the propagation distance is 600 m. Now, we clearly see the super-resolution phenomenon: the peak of the recompregked pulse i
random mediun{uppe) is sharper than the one for the homogeneous mediawer). (All other parameters are as in Fig) 7.
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FIG. 9. In this simulation the propagation distance is 1000 m. Although the first peak of the recompressed signal in the random medium is much narrower,
there is really no super-resolution in this case because of the large sidelobes. The limits of the numerical simulations are discussedAfi Sterll.
parameters as in Fig.)7.

so that the time-reversed and backpropagated fiekkls in L. The additional information obtained this way affects
averaging in this asymptotic regimBut in another way, av- only the tail of the time-reversed and backpropagated field, a
eraging over frequencies is like averaging over realizationgpghenomenon that is well understood in randomly layered
in the appropriate asymptotic regimas discussed in the media(Solna and Papanicolaou, 2000; Asehal, 1997).
Appendix. This is why super-resolution is observed in physi-Tail behavior, that is, largebehavior of(8), and hence two-
cal situations as well as in numerical simulations. In Secfrequency statistics, is important in a more refined theory of
VIII we will discuss Figs. 7, 8, and 9, where the self- super-resolution where there are several sources of different
averaging property is quite clearly seen in the numericaktrengths, in different but nearby locations in space as well as
simulations. in time. We then want to find theoretical limits of when these
From(43) it is clear that, in general, fluctuation statistics sources can be discriminated in the time-reversed and back-
of the time-reversed and backpropagated field depends giropagated field, and for that we do need to know the tail
the two-frequency correlation function behavior.
(YB(L,& w1 /co) YB(L, €, w,/Cp)). This differs substantially
from its incoherent limit — (B(L,& wq/co))

B ~
X(§P(L,€,w,/Co)) only when |wy—wy|~e(wit@2)/2. g will assume from now on that the differenge 7 is
The two-frequency correlation function can be expressed N order e and we will drop thee in the phase of the initial
terms of the two-frequency Wigner function, for which a

VIl. BEAM GEOMETRY

transport equation lik€38) can be derived for its evolution C10°
22 T T T T T T T }3\ T T
// \
TABLE I. The table shows the propagation distancén meters; the nu- | ~ ___ 6. )/ \
merically estimated effective apertum;,E in meters; the corresponding es- 2 ,Q N Y 1
timate for y, in inverse meters, using E@57); a “theoretical” effective ) ‘e

aperturea] , computed using57) with y=2.12x10"° (the median of the \
estimatedy's); and the number of realizations used for each estimated pair f~ =~~~ "~ 7" """ [ T
of (af,y). The other parameters are: TRM widt=40 m; maximal con- ! / \
trast 10%, width of the numerical domain 150 m; width of the random \ \

media 112.5 m. e / | )
\ . P A
L aE Y ag N \\ /O . \0
181 \ ’ N 1
300 77 2.0x10°° 77 207 VS
350 86 1.6%10°5 92 418 VS \
400 104 1.8%10°° 109 202 L ]
450 123 1.8&10°° 127 202
500 150 2.1x10°° 147 205
600 195 2.1%x10°° 190 213 800 0 400 4s0 550 600 6% 700 750 800 850
650 217 2.0&10°° 213 260
700 248 2.1%10°° 238 202 FIG. 10. The estimated values ¢for Table I. The estimate stabilizes as the
750 266 2.0%10°° 263 235 propagation distance increasastil the numerical setup cannot capture ad-
800 275 1.8x10°° 289 201 equately the multipathing and the rapidly growing effective aperture. In our
850 293 1.7x10°° 316 223 setup we can simulate an effective aperture up to about twice the width of
the random medium.
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FIG. 11. Dynamic TRM placement: 600-m propagation. The left figure shows the pulse in space-time as received on the TRM plane. The center figure shows
a spatial cut through the peak of the recompressed pulse using static TRM placement. The right figure shows a spatial cut through the peak ofseedecompre
pulse using optimal dynamic TRM placement. Note that each plot is for one random realization of the medium. The maximum contrast is 10g4, that is
<0.1. The TRM is 50 m wide and the numerical domain 200 m wide. The red curves correspond to time reversal in a homogeneous medium and the blue
curves to time reversal in the random medium.

condition in the transport equatidB8). This means that we the solutionW of the transport equatiof88). This is simply

will restrict our attention to the behavior of the time- a diffusion approximation irP space that is valid when the

reversed, backpropagated field in the vicinity of the sourcepower spectral densitiR(p,P) is peaked near zero in the
We will now introduce thebeam approximatiorfor the  transverse wave number We will describe this approxima-
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FIG. 12. Dynamic TRM placement: 1000-m propagati@for parameter information see the caption for Fig) 11.
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FIG. 13. The recompressed pulse for homogenélafis and randon{right) media. The propagation distance is 800 m, the domain width is 100 m, and the
maximal contrast is 10%. The boundary conditions &€BC. TRM width 100 m. Here, we can clearly see super-resolution as the recompressed peak is
narrower in the random medium.

: - : : : IW 7k® [ [PP-Q°
tion qualitatively without introducing a small parameter k—+P~VxW=—f R —k,P—Q
or doing a formal asymptotic analysis. We do this because JL 4 2

it is a relatively simple and well-known approximation,

and in any case does not involve high-frequency asymptotics

1
or statistical considerations like the derivation (38). X[VW(P)+ 3 VVW(P)(Q—P)]-(Q—P)dQ,  (46)
The narrow-beam approximation is discussed further in the
Appendix. 1 £+
The physical basis for the narrow-beam approximation — w(0X,P; &, 7;k) = ———e P& n>5(x_ —,
is this: When we are in the transport regime and the aperture (2) 2

of the TRM is small, that isa<L in Fig. 1, then only mul-

tiply scattered waves that stay near thaxis contribute sig- WhereVVW is the matrix of second derivatives f. The
nificantly to the time-reversed and backpropagated field. Scgradient term on the right is zero becaudsés even, sq46)
the wave goes over many correlation lengths in the directiolpecomes

of propagation but only over a few in the transverse direc-

tion. This is what makes the power spectral density appear to IW 7k3D(P)
be peaked in the transverse direction. ka—L+ P-VxW= TAPW(P)’
A quick derivation of the beam approximation is as fol- (47)
lows. We expandV around the poinP up to second order on
the right side 0f(38) to obtain W(OX,P; & 7:K) = Lde*iP-(f* 77)5( X — é:"‘_?? ,
(27) 2
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oos} 1 oos}-
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FIG. 14. Homogeneous medium on the left, random medium on the right. Here, wd\laaeguiddoundary conditions with TRM width 100 m. We capture
all the energy inside the waveguide on the TRM, so the waveguide effect is much stronger than the random-medium effect. There can be no super-resolutio
in this setting.
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FIG. 15. Homogeneous medium on the left, random medium on the right. Type of boundary con@f@Gwith TRM width 60 m. We can clearly see
super-resolution as the recompressed peak is narrower in the random medium case. The fluctuations in the sidelobes are partly due to the fact that we are
pushing the paraxial approximation beyond its limit; the 10% contrast is stretching the “low-contrast” assumption.

where Ap is the Laplacian in wave number space and the kK 1d e e
wave number diffusion constalt(P) is given by =51 © kILly=¢&+n/2)- (6= )
def r (P2 Q2 X @~ TDL(§- %2 (49)
D(P)= R(T,P—Q)IP—QIZdQ- (48)  Let
D
=g (50

When this wave number diffusion constant, which is a recip-
rocal length, is essentially independent of the wave numbeFhen, the mean phase-conjugated and backpropagated time-
P, then Eq.(47) is the narrow-beam approximation to the harmonic field is given by
transport equatio(88). In many interesting scaling limits the (y8(£,L k))
phase-space diffusion coefficieDtdoes turn out to be con-
stant, as we discuss in the Appendix. _ e Y

For D constant, Eq(47) can be solved by elementary _f j U W(L’y’P’g'ﬁ’k))dP} Vol k) xa(y)dydz
methods. To get the time-reversed, backpropagated field we
needI'(L,y,y; &, 7;K), which is the inverse Fourier trans- =
form of WatY=0. Thus

K\¢ k
o] e /ZLJS(A(E(n—g))

x e k2l e REE P . (51)

PLyy:&mk= WLy, P& rkjdP Comparing this result with the exact solution of the deter-
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FIG. 16. Homogeneous medium on the left, random medium on the right. Type of boundary condlitmeguidenith TRM width 60 m. The waveguide
effects are quite strong, but an argument for super-resolution can be made, since the peak is better defined. Randomness does not, in any t&se, degrade t
results.
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FIG. 17. Homogeneous medium on the left, random medium on the right. Type of boundary contlitmegjuidenith TRM width 50 m. The waveguide
effects are quite strong, but there is super-resolution since the peak is better defined in the random medium.

ministic phase-conjugated and backpropagated @0 we  consistent with the beam approximation. Fr@®8) and from
see that the effect of the random medium is just the Gaussiaine numerical experiments that we report in Sec. VIII, it is
factore™ "¢~ 7% Using (51) we can now compute aef-  clear thaiag(L)>a when the propagation distantss large.
fective aperturefor the phase-conjugatg@r time-reversed The self-averaging, time-reversed, and backpropagated
and backpropagated mean field due to a point source in thigeld can be calculated exactly as in the deterministic case by
case of Gaussian TRM and finite aperture TRM, in both theeplacinga with a, in Eq. (31). If a,=a,(L) is much smaller
frequency and the time domain. than the propagation distante as it must be by54), then
our analysis for the deterministic field carries over, which
means that we get the saragin the time domain.
A. Gaussian TRM Super-resolution is now precisely the phenomenon of
For a point source and a Gaussian aperture of the for&?avmg_ the self-averaging, time-reversed, z?m_d .ba_ckpro.pa-
(28), we obtain from(51) gated field be essent-|ally equal to the deterministic field with
a replaced bya,, which is much larger thaa for large L.
The width in space of the recompressed field is proportional
to NgL/a., where\, is the wavelength of the carrier wave.

d
e—([a2/2L2]+yL)k2§Zeik§2/2L. (52)

(B L-k>>=(L
Y 2L

Comparing this with the deterministic fiel@9) we deter- o
mine aneffective aperturdor the TRM for the mean time- B- Finite aperture TRM

harmonic wave With a finite aperture TRM the formula for the com-

pressed pulse is more complicated. Stochastic, multipathing
effects modify edge diffraction from the TRM, in the time
2yL° domain, in a complicated way. The mean phase-conjugated
a2 - (53) and backpropagated time-harmonic field is

a,=a\/1+

This result was also derived in a different way in Dowling
and Jacksoii1992. We will see that it is essentially univer-

sally valid in the beam approximation, both in the frequency- B _ 1  [kéa KE2I2L o YL K2E2
and in the time domain. It is clearly not valid unless (FE(&, LK) = Pl et e e (55
ael(_L) <1, (54) We do a Fourier synthesis to get the self-averaged, time-

reversed, and backpropagated signal in the time domain for a
point source, Gaussian pulse. The result is a combination of
which means that theffectiveTRM aperture size must be (25) and(31)
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2w &

" 2m i_i Vot + (v2L £21c3)]e ot L€ g (YLugeicy

X { &l @oal2eol gl (t—[£%12coL]) —i(£al2cl) + (2y2Lwoélcd) 12 [202+ (4y2LE%CE)]

_ el —iwggarzcol) o[ (t-[€212coL 1) +i(£a/2coL) + (Zyszogzlcg)]z)/[Zater(4y2L§2/c§)]}_ (56)
|
In Fig. 5 we show formuld56) att=0, with various param- The effective aperture formulé7), or (53), cannot be
eter values. We use the effective aperture formula used wherl so small that there is not enough multipathing,
29L3 or so large that the beam approximation is not valid. We must
a,=a\/1+ @2 (57)  have ag(L)<L. Using (57), this means thal<(8y) !

S _ _ ~6 km. The range 300—400 m to 1 km is roughly where the
which is like the Gaussian TRM effective aperture formulaeffective aperture formula is valid for random media like the
(53) but with the constants adjusted using the numerical regne we simulated. At 600 m the effective TRM aperture is

SU|tS| pres”entetlj i? sec. VI h ) _919 already 195 m, nearly five times larger than the physical size
n all calculations we use the estimatg=2. of the TRM, which is 40 m.

% 10> m~? that we obtained from direct numerical simula- ) :
tions. This is discussed further in the next section. At the wavefrontt=£%/2c,L, expression56) becomes

2
WB| &L t= 3 _ 1 ™ e—[(a2/4c§L2+(2afy2Lw§/c§))§2/(zcrt2+(4y2L§2/c§))]
T 2c0L) 2mig 2 22
0 . o vLé
2 co2
g N wogalzcoLe—(i2ay2w§§3/(2c3(rf+ 4cgyPLED)) _ e—iwoga/2c0|_ei2ay2w§§3/(2c3(rt2+4coy2L§2)}' (58)
|
VIIl. NUMERICAL SIMULATIONS where
In this section we present the results of some numerical " —y
experiments highlighting the theoretical results of the previ- & i = "”‘Z il
ous sections. We transmit a time-dependent pulse through the z
random medium. It is synthesized from 64 frequencies, (61)
which allow for enough zero padding to avadasing prob- S = Ynzim™ ¥nm
X n,m -

lems, and at the same time allow for a sufficient number of AX

energy-carrying frequencies to resolve time-domain effects.

The unit of length is the peak-energy wavelength, We  This numerical approach may seem overly direct, for there
use a discretization with 10 points per wavelength, i, are widely used phase-screen methods which do not require
=Az=0.1\,. For the random medium fluctuations we  subwavelength resolutiofDashenet al,, 1985; Flatteet al,

take a Gaussian random field with exponential correlation1987. However, for this series of numerical simulations we

constructed spectrally. The correlation length-i¢0\y, and  really wanted to resolve everything. Our code is limited to

the maximum contrast is 5%, or 10%. 2D. Extension of this direct approach to 3D is no longer
We use a second-order accurate Crank—Nichol{§dy)  viable in the long-range regime where we would want to use
discretization of the paraxial wave equation it. There are, however, good numerical methods for solving
. o the paraxial wave equation in 3[Becacheet al, 1998.
2ikip+ it Kpp=0, (59) We use discrete transparent boundary condititio§-
oo 1ot o BCsy) to limit the numerical domain while simulating an in-
21K0; Ynmt 206 O (W nam) finite medium. They are obtained by matching the interior
+3K%(ns 1 m@ns 1t Ynm@nm =0, (600  CN-finite-difference-time-domaiiCN-FDTD) scheme with
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an exact exterior CN-FDTD, yielding an exatiscreteradi-  dium. In Table | we show estimates fa, and for the
ating boundary condition. This is worked out in detail in medium-characterizing parameter in inverse meters, for
Arnold (1995. different propagation distances with fixed domain and TRM
We have validated our implementation of the DTBCs forwidths.
long distances, up to 1000 m for random media and up to It is reasonable to expect the growtha{L) with L for
5000 m for homogeneous media, by comparing the solutionthe finite aperture case to be similar to the one for a Gaussian
in domains of widthx [ —w,w] to the ones in domains of aperture, that is> L2 as in Eq.(53). We have found from
double the widthx e[ —2w,2w]. In a random medium, or a the numerical simulations that, a, andy are related by Eq.
medium with scatterers, the DTBCs work very well as long(57), for a finite aperture TRM. If we use this formula to
as the random medium or the scatterers are sufficiently fagstimatey, we might expect it to approach a constant as we
away from the boundary. In practice this means about -5 sample an increasing part of the random medium. However,
with a resolution of 10 points pex. In this setting, the esti- Table | and Fig. 10 show that this is not the case. Given the
mated error is of the order of machine precision. width of the numerical domain, there is a range of propaga-
In the numerical simulations we use a random mediuntion distances for which the estimateds close to constant.
at full strength in the center 75% of the numerical domain.For larger propagation distances there is a drop-off since the
The strength smoothly approaches zero in a region of 5%-aumerical setup cannot adequately capture the multipathing
10% of the domain width in order to avoid artificial reflec- and the growing effective aperture. The numerical limitations
tions from the numerical random-homogeneous interface. lof the effective aperture formul&?7) are more severe in our
the outermost layer of the domain the medium is homogesetup than the theoretical ones coming from the beam ap-
neous. This allows for effective DTBGsee Fig. 6. proximation, which are discussed at the end of Sec. VII.
The code is written entirely imATLAB, compiled under Our numerical calculations show that it is hard to simu-
MATLAB 5.2 with compiler 1.2 andvATLAB 5.3 with compiler  late super-resolution with long propagation distances. We
1.2.1. Atypical simulation, with a 1000-s200-m numerical have used more than 200 time-harmonic realizations per
domain, and 64 frequencies, completes in approximately 2propagation distance to estimateanda,., whereas the self-
h, on a dual-Pentium Il Xeon 550-MHz Linux workstation, averaging for Figs. 7—-9 uses only 64 frequencies, and one
where the embarrassingly parallel nature of the problem igealization of the random medium, and therefore cannot be
exploited. expected to be as stable statistically. By using more frequen-
cies, and widening the medium, these simulations should be-
come more stable statistically.
We show numerical results for propagation through ran-
dom media with maximum fluctuations contrast of 10%, i.e.,
|u|=<0.1. This is actually quite a bit of randomness and isIX. DYNAMIC TRM PLACEMENT
really pushing the validity of the paraxial approximation.

. . It is possible that the main part of the energy misses a
The reason we use such high contrast is to observe super:_.. . . .
Statically placed time-reversal mirror. This can occur when

resolution phenomena in a numenca_l domain that is manager . dium has a systematic driéross wind, or when the
able on a small network of workstations. . ) . .
. o . randomness is anisotropic. In such cases it may be advanta-
The width of the finite aperture TRM is 50 m, and the

} . ) . . .. geous to be able to move the TRM laterally so as to capture
numerical domain in 200 m wide. Simulations for three dif- . . . .
ferent propagation distances are sho@hWhen the propa as much energy as possible. In this section we consider the

propag X prop 7effects of dynamic placement of the TRM. At this time, we

9"’.‘“”? d|stanqe is short, only 200 m. As can be seen in Flgi do not have a theory that covers dynamic TRM placement,
this distance is too short for the randomness to have an im- . .
he study is numerical.

act on the resolution of the self-averagin time—reversedSOt
b ging, ’ We dynamically move the TRM with infinite speed, that

and backpropagated signail) With a propagation distance is, we place the TRM in the optimal lateral location where it

of 600 m the super-resolution effect is quite noticeable. The
captures the most energy.

peak of the recompressed signal in the random medium is o2 .
. . . . We show two realizations, each for the time-reversal ex-
about 40% higher and quite a bit narrower than the one in the . . ; .
. C . eriment for a propagation distance of 600(kig. 11) and
homogeneous medium. This is very stable from realization t . . 4
realization; Fig. 8 shows a typical cadei) As we increase 000 m (Fig. 12, comparing the centered static placement
' 19 yp ith the dynamic placement. For the first realization in Fig.

the propagation distance to 1000 m, more energy spills out o 1, the pulse energy is quite smeared out when it reaches the

the.domam py rgdlatlon through thg boyndarles, aqd mUItIp:I'RM plane, and the statically placed screen just barely man-
athing contributing to super-resolution is lost. In Fig. 9 we

L . ages to capture enough information to resolve the source.
are past the limit of what our numerical setup can do. . o :
The dynamically placed TRM recompression is approxi-

mately three times better, and clearly super-resolves the

source. In the second realization in Fig. 11, the pulse energy
For a given width of the numerical domain, and of theis still quite concentrated when it reaches the TRM plane, but

random medium, there is a limit to how long a propagationit is a little bit off-center, so moving the mirror enhances the

distance can be used in the numerical experiments. As theecompression.

effective aperturea, exceeds the size of the domain, the As discussed earlier, in Sec. 2, the 1000-m propagation

configuration can no longer accurately model an infinite me<calculation cannot capture enough multipathing to give an

A. Numerical results

B. Numerical limits
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accurate picture of super-resolution. However, as can be se@areful and extensive numerical calculations, using exact

in the first realization shown in Fig. 12, dynamic placementnonreflecting boundary conditions in one transverse direction

can improve the recompression, even in this case. There ate simulate an infinite medium. Full two-dimensional trans-

settings, as in the second realization, when the energy is togerse propagation is intractable on a workstation, at present,

spread out, where dynamic placement does not help. especially for long distances. This is because the discrete
transparent boundary conditions are nonlocal.

X. TIME REVERSAL IN A WAVEGUIDE

. . . . ) ACKNOWLEDGMENTS
In this section we briefly explore numerically time re-
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This is physically the case in underwater acoustics, where
sound is reflected from the surface and from the bottom off\PPENDIX: COMMENTS AND REFERENCES FOR THE

the ocean, or in sound propagation in a channel. TRANSPORT APPROXIMATION

Dirichlet- or Neumann-boundary conditions are, of The paraxial equatiot®), or (4), is a Schrdinger equa-
course, a very simplified way to account for the physicaltion in which z plays the role of time and the fluctuations
boundaries where the surface is rippled, and the bottomy,=n?-1 are the random, “time”-dependent potential.
rough. However, it is still of interest to see how the reflec-\when these fluctuations agcorrelated inz, then we have

tions off the boundaries and the randomness of the mediurgxact closed equations for moments of products of Green’s
interact. We use homogeneous Dirichlet boundary conditionfynctions
in our numerical simulations.

We compare time reversal through homogeneous and
random media in a series of numerical calculations as fol-
lows. The numerical domain has width 100 m, the propaga- . . . .
tion distance is 800 m, and the maximum contrast, in the\'\/heregIS the source locatior; are observat!on points, _an_d
random case, is 10%. The first and third numerical experi%jhe wz_;\vanuTbelrgbmay _bet';]he s?_mle or djrﬁ?[renl'i.__'l'hlls IS
ments (Figs. 13 and 1f are standard time reversal in an oneé in Furu SU1993 or in the articles in atarskiet al.
infinite domain(radiating boundary conditiopswith a stati- (1993, and in a more mathematical way in Dawson and

. . Papanicolaoy1984). In the case of two factord=M =1,
cally placed TRM. The second and fourth experiments are nE . L .
a waveguide with zer@Dirichlet) boundary conditions. In the product is denoted Wy, and satisfie$9). The mean of its

the second caséFig. 14), the TRM is of the same width as Fourier transform(13) is the mean Wigner function that now

the domain, so it captures all available energy and the reconfdtisfies Eq(38) exactly The power spectral densif§ is a
pressed signals are very good for both the homogeneous affgnction of P—Q only, so the transport equatiass) is a
random media. In the fourth, and most interesting d&ig. convolution equation and can be solved explicitly. One can
16), the TRM is 60 m(or 60% of the waveguide and we then do the narrow-beam approximation as we did in Sec.

clearly see how the randomness helps us achieve supeY-”’ and this can be found. in tr_]e Iiteraturg in many _place_s, in
resolution. The sidelobes are eliminated by multipathing inFurutsu(1993 as well as in this Appendix. The white noise

N+M

N
<,—H1 G(L,0x; .g;k,»)j:l;[+l G(LOX.&k) ), (A1)

side the waveguide. or &correlation limit leading to(38) is also considered in
We also consider smaller TRMs, in the same setting, t¢0UC and Pardoux1984. _
make sure that the results for 60 (fig. 16 are not special The mathematical idealization of havingcorrelated

or a typical. In Fig. 17, where the TRM width is 50 m, we fluctuations is relevant in many situations in underwater
see clearly that the incoherence induced by the randomne&§0ustics and in many other propagation problems, as we
dampens the sidelobes and the peak is much better resolvéill explain in this Appendix with a careful scaling of the

in the random case. This is super-resolution in a waveguidé?mb'em- Usingé-correlated fluctuations is convenient ana-
lytically but may obscure other limits that are relevant, such

as the high-frequency limit. This makes little difference for
singlefrequency statistics but it needs to be analyzed care-
We have presented a detailed analytical and numericdllly in order to explain pulse stabilization in the time do-
study of how multipathing in random media enhances resomain, as discussed in Sec. VI. That is why we presented the
lution in time-reversed acoustics, that is, how super+esolution analysis of time reversal in a random medium as
resolution arises in random media. We have clarified, in parwe did here.
ticular, the statistical stabilization of the recompressed pulse  When backscattering is important, then the transport ap-
in the time domain. We have also shown that when theroximation is more involved and must be used carefully. A
propagation distance is large compared to the wavelengttheory for the transport approximation using Wigner func-
and the correlation length of the inhomogeneities, and théions is given in Ryzhiket al. (1996, where many other
time-reversal mirror is small, there is an exact expression foreferences can be found. A recent survey of transport theory
the effective size of the TRM, iteffective aperturg57), for random media is van Rossum and Nieuwenhuizen
valid in both in the time- and frequency domain. Multipath- (1999. Time reversal in randomllayeredmedia is analyzed
ing makes the effective size of the TRM much larger than itsn Clouet and Fouquél1997. Transport theory in a wave-
physical size. We have verified the theoretical results withguide is considered in Kohler and Papanicol&b877).

Xl. SUMMARY AND CONCLUSIONS
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1. Scaling | which implies thatB<1 also holds, corresponding to the
We will now consider some specific scalings that resulthlgh—frequency limit We: see from the scaled Sciimger

- e : tion(A6) that this regime has the following interpreta-
in the phase-diffusion equatigqd7), and have the frequency equa . 4 -
decorrelation property41) that gives pulse stabilization. tion. We have first take &igh-frequencyiimit 6—0, then a

We begin by rewriting the Schdinger equation2) or white—_noiselim_it €0, gnd then.ebroad—bearrﬁm.it .5_)0'
) in dimegnsiorilless forn? Let. and Lg be qchararc(te)ristic We will now discuss briefly and interpret these limits. A full
. z X

length scales in the propagation direction, the distdnbe- analysis is given in Papanicolaet al. (2001). Other order-

tween the source and the TRM for example, and in the trandl'9s aré considered in the next section.

verse direction, respectively, arld) a characteristic wave di For the ;:gh\;\?reque?cy lt'.m't' espemaII)l/ n r:nt;i(}m mi-t
number. We introduce a dimensionless wave numker ¢! W€ USEne Wignerunction as we explained belore. Le

=k/ky with kg=wq/cy and wg a central frequency. We Yo(2,x) be a solution qf the rescaled Sctimger eque_ltion .
rescalex andz by x=L,x', z=L,z’ and rewrite(2) in the (A6). The Wigner function depends on the propagation dis-
new coordinates dropf:()in:q the Srimes tancez, the transverse position, and wave vectop, and is

given by
ap L,

0 97 2
2k g+ (A KoLaon

xL, zL,
D

)"”:0' (A2) Wa(Z,X,P)=JRd—d(2(jTy) ePY

The physical parameters that characterize the propaga-

tion problem arei(a) th_e central wave numbdfo; (b) the X gl Z,X— ﬂ) Pl Z, X+ ﬂ ] (A9)
strength of the fluctuations; and(c) the correlation length 2 2
The length scalegx, L, and the_centra! wave Iengﬁhp It satisfies the evolution equation
=2/Kqy characterize the propagation regime that we wish to
consider. The random fluctuatiopsare normalized to have W, P
unit variance and unit correlation length. We introduce now gz + K VxWo
three dimensionless variables
ik . z
I I 1 =—— e'Q'X’5ﬁ<Q,—)
= = = — €
= = B (A3) 2\e
. . . 0Q 0Q
which are, respectively, the reciprocals of ttransverse W,y P— —=| =W, P+ —=
scalerelative to correlation, th@ropagation distanceela- % 2 2 dQ
tive to correlation, and the correlation length relative to the 0 2m)%

centralwavelengthWe will assume first that the dimension-

In the limit 6—0 the solution converges in a suitable weak
less parameterg, o, and § are small

sense, for each realization, to the solution of the random
B<l, o<1, 65<1. (Ad) Liouville equation

This is a regime of parameters where super-resolution phe- sw P z

nomena as described here can be observed. It is a high- 5, T3 - VxW+ z_ﬁVXM(S'; VpW=0.  (A10)
frequency regime X<I,8<1), not the one on which this

paper is based, but it is important physically and is easier tdhe initial condition atz=0 is that W equals the limit
deal with analytically. The “transport” regimed~1) that = Wigner functionW,(X,P) of the initial wave function. This
we analyze in the paper is taken up later, as is the regimi, of course, what we expect in the high-frequency limit

e<1 that gives white noise. since the characteristics 0A10) are the ray equations in the
The Fresnel number is defined by random medium.
L 52 We next consider the white-noise limit-0 in the ran-
o= —>=p—. (A5) dom Liouville equation(A10). Then,Wz,X,P) converges
KoL € weakly (in a probabilistic sengeto the stochastic process
After multiplying by 6 we can rewrite the Scheinger equa- \é\(/q(uzéﬁ;) that satisfies the Ttstochastic partial differential

tion (A2) in the form

. K [x z dW=[—E~V w+k2—DAWdz—5V W~dB(§ z).
2ik 0y, + 62A i+ —l,w(—, —) =0, (A6) kX 2 °F 2P 5’
€ o € (A11)
provided that we relate to o and & by Here,B(X,z) is a Brownian random field, that is, a Gaussian
e= 23543 (A7) process with mean zero and covariance

The asymptotic regiméA4) is realized with the order- (Bi(X1,21)Bj(X2,22))
ng (aZRo«xl—xz))) S
=—| ———c——|min{z,,2,},
f<e<o<1, (A8) IX;9X; Loz
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where 2. Scaling Il

" The second scaling we want to consider is the one de-
R(s,X)ds, scribed in Sec. V, where the wavelength is comparable to the

* correlation lengthA~I, the small parametee=\/L,<1,

and the standard deviation of the fluctuatians \e. The

scaled Schrdinger equation follows front33) and has the

form

Ro(X)= J

R(z,X)=(u(s+2,Y +X)u(s,Y)),

and

2ikey,+ A+ k261’2ﬂ(5 5) =0.
D=— = ARy(0), z X €€

_ . _ i To connect with the precise scaling @86) we simply
which is the negative Laplacian of the reduced covaridfe | ,ve to seth=e. s=¢ ande=o2. which implies thatg

at zero. We call Eq(A11) the Ito-Liouville equation. Note =1. This is the transport scaling. If, however, we want to
that the Brownian field that enters the stochastic partial difToIIow this with the narrow-beam limit of Sec. VII. we must

ferential equation(A11l) depends explicitly on the dimen-

- ) ) o allow for different horizontal and vertical length scales by
sionless correlation lengtl® in the transverse direction.

lettin
Therefore, the limit process also dependssoNote also that 9
the average oV, (W(z,X,P)), satisfies the phase-space dif- (= f, (A13)
fusion equation(47) but with a diffusion constanD that 6

differs from (48). The first argument oR in the integral in  which from (A5) gives
(48) is now set to zero, which then becomes the Fourier 29—
transform of the reduced covarianRg. TheD above agrees {ro=ep.
with (48) after this change. A detailed discussion of theWith o= ¢/e, the scaled Schrbnger equation is now
white-noise limit is found in Papanicolaat al. (2001), and X 7
the theoretical background of stochastic partial differential ik 72eBy,+ (eB)%A )+ k2§3\/glu(_,_) =0.
equations like(Al1l) is presented in Kunit&1997). € €

From the lfo-Liouville equation (A1l) we can get Letting e—0 with 8 and¢ fixed is thetransport limit Let-
closed equations for all the moments of the Wigner functionting g/;—0 is the high-frequency, phase-space diffusion
W, not only for its mean but for moments with different wave Jimit, and letting{—0 restores the validity of the parabolic

numbersk as well. The wave number entef&11) as a pa-  approximation. We refer to these last two limits as the
rameter. To have the decorrelation properg), we need to  narrow-beam approximation

show that The transport limit is analyzed in Ryzhigt al. (1996
and in Balet al. (2001), where a rigorous proof of conver-
(W(z,X,P;k1)W(z,X,Pika)) gence of the mean Wigner function is given. It is the same as
~(W(z,X,P;Kky)Y(W(Z,X,P:Ky)) (A12) (38) in Sec. V except that we now have the paramegeasd
¢, so that the average Wigner function satisfies
for ky#k,. This is true in the limits—0, as is explained in k3¢t

detail in Papanicolaoet al. (2001), because it is as if the kM+P~VXW= 4—34

Brownian fieldsB in (A11) have a spatial correlation of zero.

After a scaling change this translates into decorrelation for ~[2(PP—Q?) {(P-Q)

different wave numbers. Xj R( kg ' B
We can summarize the results of performing the scaling

limits 6— 0, followed bye— 0, followed by 5—0 by noting X[W(L,X,Q; &, 7;k)

that they represent a precise analytical way to study the re- e

gime where the wavelength is much smaller than the corre- WIL,X,P;&,7:K)1dQ.

lation length(high-frequency limi}, the propagation distance The narrow-beam limi{3/{—0 followed by {—0 comes

is much larger than the correlation length, and the fluctuafrom a two-term Taylor expansion of the integrandAi.4),

tions are weakwhite-noise limi}, and the transverse length leading to the phase-space diffusion equaién, with the

scale is much larger than the correlation length+0). The ~ phase-space diffusion coefficient given by

first two limits are fully compatible with the paraxial or para- P.Q

bolic wave approximation of Sec. Il, while the last one re- D(P):f ﬁ(g—,Q)|Q|2dQ.

quires that the beam, which is narrow because of the first two k

limits, must not be too narrow. Note that this scaling-limit We must now letf—0 as well, otherwise the parabolic ap-

analysis is different from the one we use in the paper, buproximation itself may be violated. This will then give the

appropriate for underwater acoustics. It leads to the samsame phase-diffusion coefficient obtained in the high-

phase-space diffusion equati¢siv) for (W(z,x,p)), but the  frequency limit(A8) of the previous section.

structure of the higher moments is different here, coming  What we have not been able to show in Bahl. (2001

from (A11), than under the scaling followed in the paper. Weis that in the transport limit the decorrelation propeiyl2)

now consider this scaling. holds exactly. However, formal asymptotic analysis as well

(A14)
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