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Abstract

Periodic switching of cryptographic keys is commonly employed as a mechanism to enhance the security of encryption
methods. In this Letter, cycling chaos, in which orbits of certain coupled iterated maps make periodic excursions between
chaotic sets, is proposed as a new encryption approach that combines chaotic behavior with periodic switching of keys. The
actual encryption process is similar to the one used by Baptista [Phys. Lett. A (1998) 50], except that now different chaotic
attractors, and consequently different keys, are periodically switched to encrypt each character of a message. Advantages and
disadvantages of this approach are also discussed.
 2002 Elsevier Science B.V. All rights reserved.
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In the past decade, methods and ideas from the
theory of dynamical systems and chaos have gained
wide attention in applications to communication and
cryptography. For example, the seminal work by Pec-
ora and Caroll [2] first lead to the application of syn-
chronization in chaotic systems to transmit messages.
The basic idea requires the transmitter to produce a
chaotic signal to mask the message to be transmitted,
also called theplaintext. At the receiver end, a second
chaotic system is induced to synchronize with the in-
coming masked signal, also calledciphertext. A sim-
ple subtraction operation would then reveal the mes-
sage. Other popular ideas for transmitting encoded
messages are based on another seminal work in con-
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trol of chaos [3] and control via targeting [4]. See the
works of Hayes et al. [5], Schweizer and Kennedy [6],
and Gligoroski [7] for more details. Recently, Ko-
carev and Jakimoski [8] have proposed a four-step pro-
cedure for developing block cipher algorithms based
on chaotic maps. The four steps consist of choos-
ing a chaotic map, discretizing the chaotic map, key
scheduling, and cryptanalysis, which studies the re-
covering of plaintexts without access to the key, i.e.,
security. Also recently, Baptista [1] proposed to ex-
ploit the ergodicity property of chaotic systems for en-
cryption purposes as follows. First, a one-dimensional
attractor is partitioned intoS equally spaced units,
where each unit corresponds to a character of the al-
phabet under consideration. Then, in the simplest im-
plementation version, a character is encrypted based
on the initial condition of the orbit and the number of
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iterations that are necessary to reach the unit associ-
ated with that particular character. Invoking the ergod-
icity property of chaotic systems allows Baptista to de-
velop an encryption method where almost any orbit is
forced to visit each and every one of theS alphabet
units many times, thus guaranteeing that each char-
acter will eventually become encrypted. Well-known
plaintext attacks, however, can be used to break the al-
gorithm and uncover plaintexts without having access
to the key. The security of this algorithm is analyzed
in great detail by Jakimoski and Kocarev [9].

In this Letter, we propose the use of “cycling chaos”
[10–12] to implement the security enhancement sug-
gested by Baptista and other authors [1,13], i.e., se-
curity enhancement via periodic switching of cryp-
tographic keys. By cycling chaos me wean orbits
of discrete-time systems (or solution trajectories of
continuous-time systems) that linger around various
chaotic sets. Our implementation is based on discrete-
time coupled cell systems but it can also be readily de-
veloped with continuous-time cell systems. Each char-
acter is also encrypted based on the number of iter-
ations necessary to reach a portion of the attractor
associated with that particular character, except that
now we propose to periodically switch between sev-
eral chaotic attractors—just as they are visited by a
nearby cycling orbit. Each attractor can be used to
form individual partitions of the alphabet. In addition
to a periodical switch of keys, another immediate ad-
vantage of this approach is a natural increase in the
number of keys, and consequently, in the security of
the encryption process. Next, we first present a self-
contained introduction to the phenomenon of cycling
chaos, and then a description of its actual application
to cryptography.

A generic pattern of collective behavior of sym-
metric networks of coupled identical cells is cycling
behavior. In networks modeled by symmetric systems
of differential (difference) equations, cycling behav-
ior appears viaheteroclinic cycles [14,15], in which
solution trajectories (orbits) linger around symmetri-
cally related steady-states (fixed points) or periodic so-
lutions (orbits). As time evolves, a typical trajectory
(orbit) stays for increasingly longer periods near each
solution before it makes a rapid excursion to the next
solution. Dellnitz et al. [10] have shown that symmet-
ric identical cell systems can also produce, as a fea-
ture of the global dynamics of the network, hetero-

clinic cycling behavior that persists independently of
the internal dynamics of each individual cell. Using
Chua’s circuit equations and Lorenz equations, Dell-
nitz and collaborators further illustrate this conclusion
with simulations of a network of three identical cells
connected in a directed ring fashion. In these sim-
ulations, solution trajectories can cycle around sym-
metrically related chaotic sets. Thus producing “cy-
cling chaos”. In later work, we demonstrated, first
numerically [11] and then analytically [12], that cy-
cling chaos also occurs in symmetric systems of cou-
pled identical cells described by discrete-time maps. In
more recent work [16], we generalized the existence
of cycling behavior in larger (more than 3 cells) net-
works of discrete-time and continuous-time cell sys-
tems formed by identical and near-identical cells. By
“near-identical” cells we mean cells whose internal
dynamics is governed by identical model equations
but with possibly different parameter values. Cycling
behavior in near-identical cell systems is more com-
plex in the sense that it allows for trajectories to con-
nect a wider range of solutions, including steady-states
(fixed points), periodic solutions (periodic orbits), and
chaotic attractors—all in the same trajectory. And it is
precisely the type of cycling chaos produced by near-
identical cell systems that we propose next as a basis
for a new cryptography method.

We first consider systems withN near-identical
cells, where the internal dynamics of each cell is
governed by ak-dimensional difference equation of
the form

(1)Xin+1 = f (Xin , λi),

where Xi = (xi1, . . . , xik ) ∈ Rk denotes the state
variable of celli and λi = (λi1, . . . , λip ) is a vector
of parameters. A network ofN cells is modeled by a
system of coupled difference equations of the form

(2)Xin+1 = f (Xin , λi) +
∑

j→i

αij h(Xin ,Xjn),

whereh is the coupling function between those cells
j that are coupled to celli, 1 � i � N , and αij

represents the strength of the coupling. Observe that
f is independent ofi because the cells are assumed to
be identical. Similarly,h is also independent of both
i andj due to identical coupling. Additionally, if we
let X = (X1, . . . ,XN) denote the state variable of the
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network, then we can write (2) in the simpler form

Xn+1 = F(Xn,λ).

Following Dellnitz et al. [10], we distinguishlocal
symmetries fromglobal symmetries.L ⊂ O(k) is the
group of local or internal symmetries of individual
cells if, for all l ∈ L, we have

f (lXi) = lf (Xi).

While local symmetries are dictated byf , global
symmetries are induced by the pattern of coupling.
More precisely,G ⊂ O(N) is the group of global
symmetries of the network if, for allσ ∈ G, we have

F(σX) = σF(X).

Depending on the coupling functionh, it is possible
for the local symmetriesl to be also symmetries of the
network equations (2). In particular, when the action
of l on each cell individually is a symmetry of the
coupling function, so that

h(Xi, lXj ) = h(Xi,Xj ),

h(lXi,Xj ) = lh(Xi,Xj ),

for all l ∈L, then the coupling is calledwreath product
coupling [17].

As a representative example, we consider a network
of three cells, with state variablesx, y, andz, inter-
connected in a directed ring. The internal dynamics
of each individual cell is governed by aZ2-symmetric
cubic map

(3)f (x,λ) = λx − x3, λ > 0,

whereZ2 = {1,−1}. The bifurcation diagram of Fig. 1
depicts the long-term dynamics of orbits for values of
λ in the range 0� λ � 3. A wide range of complex
behavior can be observed in this diagram, including
period-doubling cascades and chaotic attractors. In
fact, the bifurcations in (3) are reminiscent of those
found in thelogistic map [18], except that now local
Z2-symmetry forces two nontrivial fixed points (one
with x > 0 and one withx < 0) to bifurcate from the
trivial solution x = 0 at λ = 1. Each fixed point, in
turn, undergoes a period-doubling cascade leading to
a pair of chaotic attractors. LocalZ2-symmetry again
forces the cascades to occur at the same parameter
values for each fixed point [19]. Forλ < λc = 3

√
3/2,

the attractors are confined to opposite sides of the
x = 0 axis and each attractor has its own basin of
attraction. Atλ = λc , the basins of attraction collide
and the two attractors merge into a single one. See
Rogers and Whitley [20] for a more comprehensive

Fig. 1. Bifurcation diagram for a cell with internal dynamicsf (x,λ) = λx − x3.
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analysis of a similar mapf (x, a) = ax3 + (1 −
a)x, 0 � a � 4.

To form the interconnected network equations (2),
we consider a wreath product coupling function of the
form

(4)h(xi, xj ) = |xj |mxi,

where 0< m < 1. We will assume identical coupling
strength given byαij = −γ , whereγ > 0. Observe
that, as expected,h is equivariant under theZ2
action. The four-cells network, which possesses local
Z2-symmetry, and globalZ3-symmetry whenλ1 =
λ2 = λ3, then takes the form

xn = λ1xn − x3
n − γ |yn|mxn,

yn = λ2yn − y3
n − γ |zn|myn,

(5)zn = λ3zn − z3
n − γ |xn|mzn.

The value of the coupling strengthγ and the
parameterm are critical for the creation of cycling
behavior because they control the global dynamics
away from the internal dynamics of an individual cell.
More specifically, the fact that 0< m < 1 prevents
the global dynamics from escaping to infinity and
controls the rate at which the excursions from the
dynamics of one cell to the next one occur. Asm

decreases, a typical orbit near a cycle spends longer
time lingering around the dynamics of an active cell
before it makes an excursion to the dynamics of the
next cell. Additionally, if we letXn = (xn, yn, zn)

denote the state variable of the entire network, and
Λ = (λ1, λ2, λ3) the vector of internal parameters,
then we can write (5) in the simpler form

(6)Xn+1 = F(Xn,Λ).

Numerical simulations of (5) with parameter val-
ues forλi at which the internal dynamics of each cell
is known to yield chaotic behavior were conducted.
In particular, we chooseΛ = (3.0,2.98,2.87). Other
parameter values arem = 1/4, andγ = 3.05. Fig. 2
depicts the results of the simulation with initial condi-
tions (x0, y0, z0) = (−0.01,0.03,0.02). According to
Fig. 1 and Lyapunov spectra (not shown for brevity),
the long-term dynamics of each cell is captured by
three different chaotic attractors, each one covering
parts of the[−2,2] interval. At any given time, how-
ever, only one cell is active on one of the chaotic at-
tractors, while the other cells are quiescent. The time
that a typical orbit spends on each attractor is, approx-
imately, constant. We now explain this apparent con-
tradiction to our early definition of heteroclinic cycles.

Fig. 2. Cycling chaos in a network of three near-identical discrete cells. The internal dynamics of each cell is governed by the cubic map
f (x,λ) = λx − x3. A single trajectory cycles around three different chaotic attractors.
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The fact that the internal parametersλ1, λ2, and
λ3, are all distinct can be considered as a symmetry-
breaking perturbation of the globalZ3-symmetry of
the network, and of the saddle-sink connections that
make up the heteroclinic cycles. Recall also that
saddle-sink connections are structurally stable. Thus,
a perturbation might destroy certain connections, and
consequently the exponential increase in the time that
a nearby trajectory spends around each attractor, but
the overall cycling behavior would persist in the form
of intermittency.

We now turn to the actual application of cycling
chaos to cryptography. We use a similar encryption
mechanism to the one used by Baptista, where each
character is encrypted based on the number of itera-
tions necessary to reach a portion of the attractor as-
sociated with that particular character. However, we
now use a cycling chaos orbit of (6) to periodically
switch the bifurcation parameter keyλ, and conse-
quently, the chaotic attractor and alphabet partition,
which also play the role of cryptographic keys. On
each attractor, we form individual partitions of the
alphabet as follows. We denote by[Ximin,Ximax] the
portion of attractori to be used for an individual al-
phabet partition. Similarly, we useSi to denote the
number of partition units or alphabet units associated
with attractori, and εi = (Ximax − Ximin)/Si to de-
note the size of each partition unit. It follows that
(Ximin + (Si − 1)εi ,Ximin + Siεi) defines the range of
each chaotic attractor that is used to form each alpha-
bet. A discussion of the advantages of this approach is
postponed for the closing remarks of this Letter.

Denote byp = (p1, . . . , pM) the plaintext or mes-
sage to be encoded. Following Baptista’s work, to en-
crypt the first character of the plaintext,p1, we start
with an initial conditionX0 = (x0, y0, z0), and iterate
(6) until the dynamics of either one of the three cells
in Fn1(X0,Λ) falls within the alphabet unit associ-
ated withp1, whereFn1 denotes then1-iterate of (6).
Since at any given time only one cell is active, while
the others are quiescent, there is no conflict of which
cell to choose. The ciphertext ofp1 is thenn1. To en-
code the next character,p2, we setX′

0 = Fn1(X0,Λ)

and iterate again untilFn2(X′
0,Λ) falls within the al-

phabet unit associated withp2. The ciphertext ofp2
is thenn2. This process is repeated until the last char-
acter,pM , is encrypted. At the end, the ciphertext is
composed by the sequence{n1, . . . , nM }. For instance,

usingSi = 256 alphabet units,Ximin = 0, Ximax = 2,
transient timeN0 = 250, and the coupled cell system
(6) with Λ = (3.0,2.98,2.87), the plaintext “hello san
diego” gets encoded (including spaces) as is shown be-
low:

hello san diego

= (204,69,41,160,126,404,215,34,

117,531,57,186,95,45,154).

The transient timeN0 is the number of pre-iterations
before we start testing whether the iterations fall or not
within a particular alphabet interval. As in [1], varia-
tions of the basic encryption method with additional
parameters can also be readily implemented with the
cycling chaos method. For instance, a random number
κ and a threshold valueη so that the ciphertextnk is
accepted only ifκ > η, can also be used as a one-to-
many encryption function. Thus guaranteeing that the
resulting ciphertext is not unique—even if a plaintext,
or portions of it, are repeated. Under this scheme, and
with η = 0.7, our previous plaintext can be encrypted
as follows (only two different ciphertexts are shown
for brevity)

hello san diego

= (786,2135,598,120,84,443,626,1122,

135,80,37,171,361,85,349),

hello san diego

= (745,984,984,923,174,356,763,520,

600,452,560,1095,64,1243,209).

Similar ergodicity principles to those invoked in
Baptista’s work, which guarantee that each of the
ε-intervals is visited many times, also apply to our
implementation with cycling chaos. Recall now that
using distinct internal parametersλi in (6) is consid-
ered a symmetry-breaking perturbation of the global
Z3-symmetry of the network. This in turn, leads to in-
termittent cycling behavior instead of ciphertexts cy-
cles. That is, a typical orbit spends, approximately,
similar amounts of time around each chaotic attractor.
It follows that the natural invariant measure of the cy-
cling chaos attractors is, approximately, a scaled ver-
sion of the measure of each individual attractor. In the
particular case where the internal dynamics of each
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cell in (6) is governed by the cubic map (4), the nat-
ural measure of the chaotic attractors generated with
Λ = (3.0,2.98,2.87) exhibit a flat profile (not shown
for brevity) similar to that of the logistic map. Con-
sequently, each of theεi intervals in our approach is
also visited many times and with almost constant fre-
quency.

In summary, we have presented a modified ap-
proach of encryption through cycling chaos, in which
individual characters are encrypted based on Baptis-
ta’s method. Our approach incorporates, however, a
periodical switching of the bifurcation parameter keys
that control the type of attractor that is used to form
a partition of the alphabet. The main advantage of our
approach is to enhance the security of the encryption
process via a periodic switching of keys—chaotic at-
tractors in our case. An intruder who might attempt
to break the code by reconstructing the dynamics, now
faces the extra challenge of having to reconstruct more
than one attractor. If the attractors are not symmetri-
cally related, then this task becomes even more com-

plicated. To a potential intruder, an intercepted sig-
nal produced by the cycling chaos method would ap-
pear to have similar characteristics as if it was gener-
ated by a single chaotic attractor. Thus, not knowing
how many chaotic attractors are part of the encryption
scheme will add an extra level of security. In this way,
cycling chaos can be used to mask the existence of
more than one chaotic signal under one single orbit.

Although the results presented in this Letter were
obtained with a network of three cells, cycling chaos in
bigger networks is also possible. The interconnection
scheme with similar coupling functionh(xi, xj ) =
−γ ‖xj‖xi , however, should include an all-to-all cou-
pling between those cells that are not nearest neigh-
bors (see Fig. 3). Otherwise, more than one cell might
become active simultaneously. A disadvantage of the
cycling chaos approach is the fact that the switching of
attractors can potentially increase the encryption time
of each character. We do not attempt to quantify such
delay in this Letter.

(a) (b)

(c) (d)

Fig. 3. Interconnection scheme that supports cycling chaos. Nearest neighbors are connected in a directed ring fashion, while all remaining cells
are connected in an all-to-all fashion. All couplings are identical.



A. Palacios, H. Juarez / Physics Letters A 303 (2002) 345–351 351

Acknowledgements

I would like to thank Marty Golubitsky and Ian
Melbourne for many stimulating conversations.

References

[1] M.S. Baptista, Phys. Lett. A (1998) 50.
[2] L. Pecora, T.L. Caroll, Phys. Rev. Lett. 64 (1990) 821.
[3] E. Ott, C. Greboggi, J.A. Yorke, Phys. Rev. Lett. 64 (1990)

1196.
[4] T. Shinbrot, E. Ott, C. Greboggi, J.A. Yorke, Phys. Rev.

Lett. 65 (26) (1990) 3215.
[5] S. Hayes, C. Grebogi, E. Ott, A. Mark, Phys. Rev. Lett. 73

(1994) 1781.
[6] J. Schweizer, M.P. Kennedy, Phys. Rev. E 52 (1995) 4865.
[7] D. Gligoroski, D. Dimovski, L. Kocarev, V. Urumov, L.O.

Chua, Int. J. Bifurc. Chaos 6 (1996) 2119.

[8] L. Kocarev, G. Jakimoski, Phys. Lett. A 289 (2001) 199.
[9] G. Jakimoski, L. Kocarev, Phys. Lett. A 291 (2001) 381.

[10] M. Dellnitz, M. Field, M. Golubitsky, J. Ma, A. Hohmann, Int.
J. Bifurc. Chaos 5 (4) (1995) 1243.

[11] A. Palacios, Int. J. Bifurc. Chaos 12 (8) (2002), in press.
[12] A. Palacios, Int. J. Diff. Eq. Appl. (2002), in press.
[13] A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, Handbook of

Appl. Cryptography, CRC Press, New York, 1996.
[14] P.L. Buono, M. Golubitsky, A. Palacios, Physica D 143 (2000)

74.
[15] M.J. Field, Trans. Am. Math. Soc. 259 (1) (1980) 185.
[16] A. Palacios, P. Longhini, Int. J. Bifurc. Chaos 12 (8) (2002), in

press.
[17] B. Dionne, M. Golubitsky, I. Stewart, Nonlinearity 9 (1996)

559.
[18] R.M. May, Nature 261 (1976) 459.
[19] P. Chossat, M. Golubitsky, SIAM J. Math. Anal. 19 (6) (1988)

1259.
[20] T. Rogers, D.C. Whitley, Math. Modelling 4 (1983) 9.


	Cryptography with cycling chaos
	Acknowledgements
	References


