
PHYSICAL REVIEW E MAY 1998VOLUME 57, NUMBER 5
Karhunen-Loève analysis of spatiotemporal flame patterns
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The ability of Karhunen-Loe`ve ~KL ! decomposition to identify, extract, and separate the spatial features that
characterize a spatiotemporal system is demonstrated using video images from a combustion experiment and
nonstationary states from a phenomenological model. Cellular flames on a circular porous plug burner exhibit
a variety of stationary and nonstationary patterns. KL decomposition is used to analyze the spatiotemporal
dynamics of four experimental states: one- and two-cell rotating states, two counterrotating rings, a standing-
wave state, and two one-cell rotating states from numerical simulations of a phenomenological model designed
to study pattern formation in a circular domain. The KL technique optimally captures the dynamics of the
states by producing a linear subspace on which the reconstructed dynamics has a minimum truncation error. It
identifies the dominant spatial structures whose coupling produces the observed patterns and distinguishes
between uniform and nonuniform rotational motion. The implementation of this technique using video images
as input is explained and the implications of symmetry in interpreting the KL analysis of the dynamics are
described.@S1063-651X~98!07105-0#

PACS number~s!: 82.40.Ra, 82.40.Py, 11.30.Qc, 82.20.Mj
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I. INTRODUCTION

Cellular flames form ordered patterns of concentric rin
of cells when stabilized on a circular porous plug burner
low pressure. As the control parameters are var
symmetry-breaking bifurcations are observed to dyna
states in which the cells move, exhibiting both periodic a
complex dynamics. This paper demonstrates the ability
Karhunen-Loe`ve ~KL ! decomposition to identify the domi
nant spatial structures of nonstationary flame patterns an
characterize the time dependence of the pattern of evolu
The spatial modes and their time evolution are extracted
rectly from two-dimensional video images produced in t
experiment, in contrast to applications that use o
dimensional spatial information or that rely on time series
isolated points.

In an attempt to quantify flame dynamics using KL d
composition, a pulsating single-cell state found in metha
air flames was considered by Stoneet al. @1#. A distinctive
feature of this state is the coexistence of time-periodic p
sations with spatial chaotic motion in the orientation of t
cell. To unravel the complexity, Stoneet al. applied KL de-
composition to a data set consisting of the cell boundar
They found that the motion of the boundaries could be
scribed by three KL eigenvectors. The reconstruction w
these three eigenvectors resembled the original t
dimensional motion, and the long-term evolution indicat
the presence of a limit cycle in phase space. Insight i
multiple-ring formation was obtained using synthetic data
mimic the spatial structure of the cells and their motion.

*Electronic address: palacios@nomad44.laptop.uh.edu
†Electronic address: gemunu@uh.edu
‡Electronic address: gorman@uh.edu
§Electronic address: krobbins@runner.utsa.edu
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In subsequent work, a boundary extraction procedure
developed and implemented to study several nonstation
states with multiple rings@2#. Four representative cases we
studied: an outer rotating ring of cells concentric with
almost fixed inner ring, a single rotating ring surroundi
one central cell, a ratcheting motion described by a perio
locking-unlocking mechanism of two rotating rings, and
intermittent state characterized by recurrent appearance
ordered patterns. The Karhunen-Loe`ve analysis using bound
ary extraction revealed the presence of two intrinsic types
dynamics: one describing the large-scale motion of the ri
and one representing the small-scale oscillatory motion
the cells. The rings appeared to be weakly coupled and
temporal evolution of the modes was used to describe
long-term evolution of the patterns.

While the analysis of cell boundaries was useful for d
scribing the overall motion of the patterns, some import
issues remain unresolved. There was little indication as
how the patterns emerge and whether the nonstation
states represent cases of uniform or nonuniform motion.
other point of interest is the study of more complicat
states. Since the boundary extraction procedure is only
plicable to states where the number of cells remains cons
the analysis cannot be used to describe states where
merge and split. Many of these limitations arise because
boundary extraction is strictly a one-dimensional techniq
that fails to recognize and identify the role played by t
two-dimensional character of the spatial dynamics. Howev
the investigation of the boundary motion offers the adva
tage of requiring less computational time and memory tha
two-dimensional analysis based directly on the images.

In a recent paper@3# we presented a phenomenologic
model that described general characteristics of pattern for
tion in a circular domain. Certain dynamical states of t
experiment were reproduced in the model, and KL deco
position was used to demonstrate the similarity between
5958 © 1998 The American Physical Society
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57 5959KARHUNEN-LOÈVE ANALYSIS OF SPATIOTEMPORAL . . .
experimental states and the numerical results. In this pa
we focus on the implementation of KL decomposition for t
video image data, we relate the symmetry of the dynam
states to the symmetries of the KL eigenfunctions, and
amplify our analysis of each dynamical state by presen
phase-space trajectories of the KL coefficients.

KL decomposition optimally captures the behavior
two-dimensional flame patterns by producing a linear s
space on which the reconstructed dynamics has a minim
truncation error. Certain properties of this subspace can
used to explain the symmetries of the cells in nonstation
states@4#. The structure of the KL eigenfunctions is used
explain the formation of the patterns and to differentiate
tween uniform and nonuniform motion.

The experimental system is described in Sec. II. T
mathematical development of KL decomposition relevan
this study is presented in Sec. III. Important aspects rela
to the implementation of the KL decomposition with vide
images are discussed and the implications of symmetry
emphasized. Representative cases of experimental flame
terns and simulations from a phenomenological model
analyzed in Sec. IV. The results are discussed in Sec. V

II. COMBUSTION EXPERIMENT

The experimental system consists of a circular por
plug burner that burns premixed gases inside a low pres
~0.3–0.5 atm! combustion chamber. Mixtures of isobutan
and air were used for the experiments described in this pa
The pressure, flow rate, and fuel-to-oxidizer ratio are c
trolled to within 0.1%. A steady uniform flame appears a
circular luminous disk, 5.62 cm in diameter and 0.5 m
thick. The flame front forms roughly 5 mm above the surfa
of the burner.

A Dage-MTI charge coupled device camera, moun
vertically on top of the combustion chamber, is used
record the evolution of the flame front. A distinctive featu
of premixed flames, as a system exhibiting spatiotemp
dynamics, is that an important dynamical variable is the lo
temperature which can be measured using the emitted ch
luminescence from the flame front. The spatial and temp
resolution, the time interval, and the dynamic range
limited only by the recording device. Images of 6403480
pixel resolution, taken at 1/30-sec intervals with a 7-bit d
namic range, are typical for dynamics recorded on S-V
video tape.

Upon changes of parameters~type of fuel, pressure, tota
flow, and equivalence ratio! the flame front forms ordered
patterns of concentric rings of cells. Brighter cells cor
spond to hotter regions on the burner. They are separate
darker regions corresponding to cusps and folds that ex
an additional 5 mm away from the surface of the burner.
the parameters are varied, the O~2! symmetric uniform state
bifurcates to other stationary states or to dynamical st
with less spatiotemporal symmetry@5#. In the former case
new ring structures emerge with different spatial symmet
and various numbers of cells. In this paper we consider f
nonstationary states: a single rotating cell, two rotating ce
two counterrotating rings, and a standing wave of two ce
Figure 1 shows four sequential frames of videotape fr
these states. Each state was reached by an abrupt chan
er

al
e
g

f
-
m

be
ry

-

e
o
ed

re
at-

re

s
re

er.
-

a

e

d
o

al
al
mi-
al
e

-
S

-
by
nd
s

es

s
ur
s,
s.

e in

the control parameters during a coarse survey of parame
space.

III. KARHUNEN-LOE` VE DECOMPOSITION

Karhunen-Loe`ve decomposition is a well-known tech
nique for determining an optimal basis for a data set@6–10#.
This section reviews the definitions and properties of K
decomposition relevant to this paper and discusses how
method can be applied to image data in order to separ
spatial and temporal behavior.

Consider a sequence of observations represented by
scalar functionsu(x,t i),i 51, . . . ,M . The functionsu are
assumed to beL2 on a domainD that is a bounded subset o
Rn. The functions are parametrized byt i , which represents
time in this application. The~time! average of the sequence
defined asū(x)5^u(x,t i)&5(1/M )( i 51

M u(x,t i), is assumed
to be zero. The KL decomposition extracts time-independe
orthonormal basis functionsFk(x) and time-dependent or-
thonormal amplitude coefficientsak(t i) such that the recon-
struction

u~x,t i !5(ak~ t i !Fk~x!, i 51, . . . ,M , ~3.1!

is optimal in the sense that the average least-squares tru
tion error

«N5K I u~x,t i !2 (
k51

N

ak~ t i !Fk~x!I 2L ~3.2!

FIG. 1. Four sequential frames of videotape of four differe
experimental cellular flame states:~a! a single rotating cell,~b! two
rotating cells,~c! counterrotating rings, and~d! a standing wave
between two cells.
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5960 57PALACIOS, GUNARATNE, GORMAN, AND ROBBINS
is always a minimum for any given numberN of basis func-
tions over all possible sets of orthogonal functions.

The functionsFk(x), calledempirical eigenfunctions, co-
herent structures, or KL modes, are the eigenvectors of th
two-point spatial correlationfunction

r ~x,y!5
1

M(
i 51

M

u~x,t i !u
T~y,t i !. ~3.3!

A. Application to image data

KL decomposition can be generally applied to find
optimal basis for a data set. To separate the spatial and
time behavior for a physical system, each point in the d
set should represent an observation of the spatial state o
system at a particular time. KL decomposition is applied
the observations to find an optimal basis for the spatial
servations. The data set is projected on the resulting KL b
functions to obtain the time behavior in much the same w
as normal mode expansions are used for partial differen
equations. The KL technique is based purely on the obse
tions and thus has the advantage of not requiring knowle
of an underlying model equation or normal modes.

In practice the state of a numerical model is only availa
at discrete spatial grid points and so the observations
form the data set are vectors rather than continuous fu
tions. In other words,D5(x1 ,x2 , . . . ,xN), wherexj is the
j th grid point and u(x,t i) is the vector ui
5„u(x1 ,t i),u(x2 ,t i), . . . ,u(xN ,t i)…

T.
Experimental data also undergoes a discretization pro

when it is acquired for processing. In the case of the co
bustion experiment, images of the flame front were digitiz
to obtain the observations at different times. Each image
w3h5N array of pixels. A pixel is a scalar value in th
interval @0,255#. An image can be converted to a vector
ordering the pixel values in row major form@e.g., the pixel
( j ,k) in the image is stored in the positionn5 j 3w1k in
the vector#.

B. Method of snapshots

A popular technique for finding the eigenvectors of E
~3.3! is themethod of snapshotsdeveloped by Sirovich@10#.
It was introduced as an efficient method when the resolu
of the spatial domain (N) is higher than the number of ob
servations (M ). The method of snapshots is based on the f
that the data vectorsui and the eigenvectorsFk span the
same linear space~see@6,10# for details!. This implies that
the eigenvectors can be written as a linear combination of
data vectors

Fk5(
i 51

M

v i
kui . ~3.4!

After substitution in the eigenvalue problemr (x,y)F(y)
5lF(x), the coefficientsv i

k are obtained from the solutio
of

Cv5lv, ~3.5!
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wherevk5(v1
k , . . . ,vM

k ) is thekth eigenvector of Eq.~3.5!
and C is a symmetric M3M matrix defined by
@ci j #5(1/M )(ui ,uj ), where ( , ) denotes the standa
vector inner product (ui ,uj )5u(x1 ,t i)u(x1 ,t j )1•••

1u(xN ,t i)u(xN ,t j ). In this way anN3N eigenvalue prob-
lem @the eigenvectors of Eq.~3.3!# is reduced to computing
the eigenvectors of anM3M matrix, a preferable task ifN
@M . Throughout the remaining of this work,M will denote
the number of measurements of a laboratory or numer
experiment andN will represent the maximum number o
KL eigenfunctions employed in a particular reconstruction
an experiment. The results presented in Sec. IV were
tained with an implementation of the method of snapsho

C. Properties of KL decomposition

Since the kernel is Hermitianr (x,y)5r * (y,x), it admits,
according to the Riesz theorem@11#, a diagonal decomposi
tion of the form

r ~x,y!5 (
k51

N

lkFk~x!Fk* ~y!. ~3.6!

This fact is particularly useful when finding the KL mode
analytically. They can be read off from the diagonal deco
position ~3.6!.

The temporal coefficientsak(t i) are calculated by project
ing the data set on each of the eigenfunctions

ak~ t i !5„u~x,t i !,Fk~x!…, i 51, . . . ,M . ~3.7!

It can be shown that both temporal coefficients and eig
functions are uncorrelated in time and space, respectiv
@6,10#.

Proposition 1. The KL modes$Fk(x)% with correspond-
ing temporal coefficients$ak(t i)% satisfy the following or-
thogonality properties: ~i! F j* (x)Fk(x)5d jk and ~ii !
^aj (t i)ak* (t i)&5d jkl j , whered jk represents the Kronecke
delta function.

Property~ii ! is obtained when the terms in the diagon
decomposition ~3.6! are compared with the expressio
r (x,y)5(^aj (t i)ak* (t i)&F j (x)Fk* (y). The non-negative and
self-adjoint properties ofr (x,y) imply that all eigenvalues
are non-negative and can be ordered accordin
l1>l2>•••>0. Statistically speaking,lk represents the
variance of the data set in the direction of the correspond
KL mode, Fk(x). In physical terms, ifu represents a com
ponent of a velocity field, thenlk measures the amount o
kinetic energy captured by the respective KL modeFk(x). In
this sense, the energy measures the contribution of e
mode to the overall dynamics.

Definition 1. The total energy captured in a Karhune
Loève decomposition of a numerical or experimental data
is defined as the sum of all eigenvalues

E5 (
k51

N

lk . ~3.8!

The relative energy captured by thekth mode,Ek is defined
by
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Ek5
lk

(
j 51

N

l j

. ~3.9!

The cumulative sum of relative energies(Ek approaches one
as the number of modes in the reconstruction increases.

Spatiotemporal systems are capable of producing diffe
kinds of behavior including periodic, quasiperiodic, and no
periodic motion in space and time. In some cases, the
decompositions of qualitatively different states may produ
seemingly similar spectra. However, the decomposition
still be used to differentiate between different solutions. O
possibility is to apply the KL decomposition to the state
interest and then use the KL energy spectrum to calculate
entropy of the data set. The entropy is a measure of orde
disorder and provides an objective way of classifying
complexity in experimental or numerical data.

Definition 2. The entropyE of a KL decomposed data se
u can be calculated from its energy spectrum according

E~u!52 lim
N→`

1

lnN (
k51

N

Ek lnEk , ~3.10!

where lnN is a normalization factor that allows compariso
between different data sets.

The entropy, as defined by Eq.~3.10!, measures the en
ergy distribution among the modes in the KL spectra a
varies between 0 and 1, as the number of modes increa
The entropy is low when the energy is concentrated in a
modes. A zero entropy indicates that only one eigenfunct
with maximal energyE151, is needed to reproduce the d
namics. The entropy approaches 1 when the energy spr
across a large number of modes, indicating complex beh
ior.

Equation~3.2! states that Karhunen-Loe`ve decomposition
produces a basis that minimizes the least-squares trunc
error. This property can also be stated in terms of the ene
captured by the KL modes.

Proposition 2. Let $ak(t i),Fk(x)% be the KL basis pairs
obtained from a scalar fieldu(x,t i) satisfying Eqs.~3.1!,
~3.6!, and ~3.7!. Let $bk(t i),Ck(x)% be any arbitrary ortho-
normal basis pair satisfying Eq.~3.1!. The KL basis is opti-
mal in the sense that the total cumulative energy capture
the sequence$ak(t i),Fk(x)% is always greater than or equ
to the total cumulative energy captured by$bk(t i),Ck(x)%
provided the number of eigenfunctions~respecting their or-
dering from most to least energetic! employed is the same
Formally

(
k51

N

Ek5 (
k51

N

^ak~ t i !ak* ~ t i !&5 (
k51

N

lk>(
k51

N

^bk~ t i !bk* ~ t i !&.

~3.11!

D. Consequences of symmetry

One motivation for applying KL decomposition is to ob
tain information about the long-term behavior of the syste
Suppose that this behavior is captured by an attractor,
noted byA ~see@12# for a precise definition!. Assume also
that scalar measurements of the systemg(x,t i), i
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51, . . . ,M , are provided. In practice, one must first com
pute the averageḡ(x)5(1/M )( i 51

M g(x,t i) in order to pro-

duce a new set of measurementsu(x,t i)5g(x,t i)2ḡ(x)
with zero average. LetG denote the group of symmetries o
the system of interest. The symmetries of the attractor for
subgroup ofG defined by

G~A!5$gPGugA5A%. ~3.12!

The critical observation is that the symmetries of the attr
tor A appear as symmetries of the time averageḡ(x) inde-
pendently of the symmetries of the instantaneous scalar
g(x,t i) @14#. Unfortunately, the converse is not always tru
The symmetries of the time average do not necessarily re
the symmetries of the underlying attractor. Furthermore,
KL decomposition satisfies the following symmetry prope
ties.

Proposition 3. Let $F(x)% be the KL eigenfunctions sat
isfying the eigenvalue problem^u(x,t)u* (y,t)&F(y)
5lF(x). Then ~i! ^gu(x,t)gu* (y,t)&gF(y)5l@gF(x)#
for all gPG, ~ii ! ^su(x,t)su* (y,t)&5^u(x,t)u* (y,t)& for
all sPG (A) , and ~iii ! ^u(x,t)u* (y,t)&sF(y)5l@sF(x)#
for all sPG (A) .

Property~i! establishes that the eigenfunctions in the K
decomposition ofgu(x,t) are those ofu(x,t) under the ac-
tion of g. This property explains the observation that the K
decomposition of a periodic data set is not unique. IfF(x) is
an eigenfunction, so isgF(x) for all gPG. Which one is
then chosen? In the case of experimental or computatio
data, the answer depends on how the data are collected.
forming the decomposition with different initial condition
may produce a rotated version ofF(x). Nevertheless, the
important point is to realize that they are all symmetrica
related. Properties~ii ! and ~iii ! indicate that the KL kernel
and its eigenvectors have at least the same symmetries a
attractor.

E. Traveling waves and KL decomposition

Consider a periodic traveling wave represented by a p
odic function in the formu(x,t)5 f (x2ct), wherec denotes
the speed of the wave. As noted in@13#, the KL decomposi-
tion coincides with the Fourier decomposition

f ~x2ct!5 (
k52`

`

cke
2 ikp~x2ct!. ~3.13!

The alternative form

f ~x2ct!5 (
k50

`

Aak
21bk

2@cos~kpct1ak!sin~kpx!

2sin~kpct1ak!cos~kpx!# ~3.14!

shows the KL modes explicitly. Hereck5(ak1bki )/2 are
the Fourier coefficients of f (x2ct) with phase ak
5tan21(2ak /bk). The KL modes can be written as ordere
pairs of the form$F2k21 ,F2k%5$cos(kpx),sin(kpx)%. The
traveling wave is produced by the coupling of pairs of mod
that contain the same energy and maintain a constant rela
phase.
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By analogy with pure periodic traveling waves, adjace
KL modes with the same symmetry and equivalent ene
may be associated with traveling-wave solutions. Such a
cent modes are calledcoupling modes.

Definition 3. Let u(x,t i)5(k51
N ak(t i)Fk(x), i

51, . . . ,M , represent the KL decomposition of a data s
The relative phase of KL eigenfunctionsm andn, mÞn, is
defined by

fmn~ t i !5tan21S 2
an~ t i !

am~ t i !
D . ~3.15!

The relative phasefmn between KL modesFm andFn has
the following geometric interpretation. If the temporal coe
ficients am(t i) and an(t i) are represented by a point in
phase plane plot, thenfmn(t i) are observations of the angu
lar displacement of the plotted point as it moves in the ph
plane. A relative phase between coupling modes that is lin
indicates an underlying traveling-wave solution that is mo
ing uniformly. Similarly, a nonlinear relative phase indicat
a modulated traveling wave or perhaps more complica
behavior.

In the traveling wave described by Eq.~3.14!, we find that
f (2k21)(2k)(t)5kpct1ak ~mod p) is the relative phase be
tween coupling modes. Observe that this relative ph
f (2k21)(2k) is not uniquely defined. An alternative expressi

f ~x2ct!5 (
k50

`

Aak
21bk

2@cos~kpct!sin~kpx1ak!

2sin~kpct!cos~kpx1ak!# ~3.16!

shows thatf (2k21)(2k)(t)5kpct ~mod p! is also possible.
From the viewpoint of symmetry, each pair of KL mod
$cos(kpx),sin(kpx)% forms an irreducible subspace for th
representation of the traveling wave. Any left-right shift
these modes, with temporal coefficients shifted accordin
can also be used as a KL basis.

IV. RESULTS

A. Computational details

For each of the flame patterns analyzed in this sectio
representative sequence of video images was digitized.
pending on the speed of the motion, a capturing rate of 1
30 frames per second was employed. Sufficient fram
(;200) for each state were captured to obtain a well-defi
time-average pattern and several full multiples of the peri
Each image frame was then scaled to 64364 pixels and con-
verted from an audio-video interlace movie format to
stream of intensity values ranging from 0 to 255. T
KLTOOL software package@15# was used to perform an inter
active KL decomposition. For each case analyzed, a c
puter animation comparing reconstructions from differe
KL modes can be found on the World Wide Web@16#.

B. Single-ring rotating states

Ordered states of concentric rings of cells bifurcate
states in which entire rings of cells rotate either clockwise
counterclockwise@5#. Rotating states, which are typicall
found in isobutane-air flames, represent traveling-wave s
t
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tions of the underlying system. It has been demonstra
@17,18# that in one-dimensional interfaces, traveling cells a
pear as a result of a parity breaking in which the cells lo
their left-right symmetry. A manifestation of parity breakin
in a two-dimensional system is demonstrated by these ro
ing cellular flame states@19#. Figure 2~a! shows an experi-
mental state in which a single cell executes clockwise ro
tion, while Fig. 2~b! shows a related state in which a sing
cell rotates in the counterclockwise direction.

1. One-cell rotating state: Experiment

The single rotating cell state shown in Fig. 2~a! was cho-
sen for the KL analysis. Sixty frames, digitized at a rate of
frames/sec, contain about seven complete revolutions of
cell. Figure 3~a! shows some instantaneous snapshots,
3~b! shows the eigenfunctions extracted by the KL deco
position, and Fig. 3~c! shows the KL reconstructions base
on the corresponding eigenfunctions. The top snapsho

FIG. 2. Examples of one-cell states from the experiment rota
~a! clockwise and~b! counterclockwise.

FIG. 3. A KL decomposition of a rotating one-cell state fro
the experiment:~a! four instantaneous snapshots showing a clo
wise rotating cell;~b! the time average of the data set appears at
top, followed ~from left-to-right and top-to-bottom! by the four
most energetic modesF1, F2, F3, andF4; and~c! the reconstruc-
tion of the dynamics using the four most energetic KL modes.
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57 5963KARHUNEN-LOÈVE ANALYSIS OF SPATIOTEMPORAL . . .
Fig. 3~b! is the time average of the images. The four m
energetic KL modesF1, F2, F3, andF4 are depicted below
the time average~from left to right and top to bottom, re
spectively! in Fig. 3~b!. The KL reconstruction using the firs
two modesF1 andF2 captures the rotation of the cell. Th
reconstruction with the first four KL modes@Fig. 3~c!# fur-
ther improves the representation of the motion and shap
the cell. The similarity to the original state is clearly visibl

The KL energy spectra~Fig. 4! shows that 75% of the
total energy is captured by the first four modes. The ene
is almost equally distributed betweenF1 andF2, indicating
that they form a coupling pair. Similarly,F3 and F4 also
form a coupling pair. The remaining modes capture less
ergy ~25%! and contain high-dimensional information.
75% cutoff between low-dimensional and high-dimensio
dynamics has also been observed in the KL analysis of o
experiments@20#.

The long-term motion of a cell can be understood fro
the temporal coefficientsa1(t), a2(t), a3(t), anda4(t) asso-
ciated with the most energetic KL modes~Fig. 5!. The sinu-
soidal nature of these projections is evidenced by their t
plots @Figs. 5~a! and 5~b!#. The $a1(t),a2(t)% pair forms a
traveling wave, which results in a uniform rotation of 3
rev/sec. The$a3(t),a4(t)% pair oscillates at twice the fre
quency of the first pair@compare Fig. 5~a! with Fig. 5~b!#,
indicating their role as a higher spatial harmonic in defin
the cell shape. This phenomenon can be understood from
spatial symmetries of the two pairs of modes.F1 and F2
have~approximately! D1 symmetry, meaning that they wil
return to their original pattern in one complete rotation.
contrast,F3 andF4 haveD2 symmetry. They return to thei
original pattern in half a revolution. In general, the prima
spatial harmonic of a periodic pattern withDn symmetry will
haveD2n symmetry. The harmonic only has to rotate half
far as the original mode to reestablish the original patter

Figure 6~a! shows the behavior off12, the relative phase
between the first pair of KL modes. The nearly linear beh
ior of the relative phase indicates that the cell is rotat
uniformly.

The SO~2! or O~2! symmetry of the time average in Fig
3~b! @on the plane SO~2! and O~2! symmetries cannot be
distinguished# reflects the symmetry of the burner, eve
though none of the instantaneous snapshots of Fig. 3~a! has

FIG. 4. Energy spectrum for the KL decomposition of the rot
ing one-cell state of Fig. 3~a!.
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FIG. 5. Temporal coefficients for the four most energetic mod
in the KL decomposition of a single rotating cell shown in Fig.
~a! time plots ofa1(t) and a2(t) and ~b! time plots ofa3(t) and
a4(t).

FIG. 6. Behavior of the relative phasef12(t) for the one-cell
rotating state from the experiment.
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this symmetry. Each of the pairs of KL modes$F1 ,F2% and
$F3 ,F4% forms an irreducible subspace@4# under the action
of the symmetries of the system,G5O(2)3S1 for the cir-
cular burner.S1 is the circle group that accounts for th
temporal phase-shift symmetries of periodic states. The
variance of these subspaces implies that if a cellular state
certain symmetries at one instant of time, then it must h
the same symmetries at all times. Consequently, any cel
state with a reflectional symmetry must have the same s
metry at all times and it therefore cannot rotate.

Also note that based on Proposition 3~i!, these irreducible
subspaces are not unique. The particular subspace repre
ing each symmetry is selected by initial conditions. Onc
particular subspace is chosen, the KL reconstructed dyn
ics on that subspace corresponds to a unique branch of
odic solutions with group symmetry(,G. According to the
equivariant Hopf theorem with O(2)3S1 symmetry@4#, two
types of periodic states can appear with( symmetry: rotat-
ing waves and standing waves. The one-cell rotating s
and the other states in this section are examples of rota
waves.

2. One-cell rotating state: Phenomenological model

Numerical simulations of a phenomenological model@3#
that is closely related to flame dynamics have demonstr
the formation of both stationary and nonstationary sta
These states emerge as a result of symmetry-breaking b
cations in which several spatial modes couple and com
for existence. The model describes the evolution of t
coupled, diffusive spatiotemporal fieldsu(x,t) and v(x,t)
through

ut5k1¹2u1~B21!u1A2v2hu32n1~¹u!2,

v t5k2¹2v2Bu2A2v2hv32n2~¹v !2, ~4.1!

where k1 and k2 are the diffusion coefficients of the tw
linearly coupled fields. The cubic terms control the growth
the linearly unstable modes. The nonlinear gradient te
render the model nonvariational and are similar to the n
linear term of the Kuramoto-Sivashinsky equation@21,22#,
which is often used to model flame dynamics. In order
simulate the circular geometry of the experimental burn
the integration of Eqs.~4.1! is carried out in polar coordi-
nates over a circular grid of radiusR. Small changes in the
radiusR can produce qualitatively different flame pattern
This observation leads us to consider the radius as a di
guished bifurcation parameter.

Figure 7~a! shows four snapshots of a single-cell sta
simulated with Eqs.~4.1! for parameter values (h52.0, n1
50.5, n251.0, k150.2, k252.0, A55.0, B56.8, andR
51.35). It consists of a single cell rotating clockwise th
does not change its shape. The KL decomposition of a c
plete period produces an O~2! invariant time-average patter
@Fig. 7~b!# and four KL modesF1, F2, F3, and F4 ~de-
picted from left to right and top to bottom, respectively!. A
similar KL spectrum indicates that the first two modesF1
and F2 capture about 94% of the energy as compared
65% ~considering only the first two modes! for the experi-
mental one-cell rotating state shown in Fig. 3~a!. Only two
modes are necessary to reconstruct the dynamics and
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remaining modes affect other aspects such as cell sh
Nearly 100% of the energy is captured by the first fo
modes. The reconstruction with these four KL modes
shown in Fig. 7~c!.

The details of the temporal behavior of the cell are e
tracted from the KL projections. Figure 8~a! shows phase
plots of a1(t) vs a2(t), a3(t) vs a4(t), anda1(t) vs a3(t).
The first pair indicates the uniform rotation of the cell. Th
second pair indicates a periodic oscillation at twice the f
quency of the dominant pair. The plots of the relative pha
for each pair of KL modes shown in Fig. 8~b! confirm this
relationship.

The group-theoretical interpretation of this mode is sim
lar to that of the one-cell experimental state. The time av
age has O~2! symmetry.F1 andF2, which haveD1 symme-
try, form an irreducible space under the action ofG.
Similarly, F3 andF4 haveD2 symmetry and form an irre-
ducible space under the action ofG.

3. Modulated rotation: Phenomenological model

Figure 9~a! shows a solution of Eqs.~4.1! when R
51.37 rather than 1.35. The solution contains a single
that changes its shape periodically while rotating clockwi
The symmetries of the time average and the dominant
modes have not changed significantly from the uniform
rotating case. The four most energetic modesF1, F2, F3,
andF4 capture 98% of the total energy in the associated
spectrum. The second pair$F3 ,F4% contains more energy
than the corresponding pair for the uniformly rotating ca
but the general characteristics of the spectrum are sim
Figure 10~a! shows phase plane plots of the temporal coe
cientsa1(t) vs a2(t), a3(t) vs a4(t), anda1(t) vs a3(t). The
phase portraits of this modulated rotation are considera

FIG. 7. ~a! Four snapshots of a uniformly rotating one-cell sta
produced from simulations of Eqs.~4.1!, ~b! the time average and
~from left-to-right and top-to-bottom! the four most energetic KL
modes, and~c! reconstruction of the dynamics using the four mo
energetic KL modes.
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FIG. 8. Evolution of the temporal coefficients of the uniformly rotating one-cell state of Fig. 7~a!: ~a! from left to right phase plane plots
of a1(t) vs a2(t), a3(t) vs a4(t), anda1(t) vs a3(t) and ~b! a time plot off12(t) andf34(t).
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more intricate than those corresponding to the uniform ro
tion shown in Fig. 8~a!. Figure 10~b! shows the plot of the
relative phase of the two most energetic KL modes. T
modulations in the angular speed of the cell are clearly
ible.

4. Two-cell rotating state: Experiment

Another state observed in the combustion experim
consists of two rotating cells. Figure 11~a! shows four instan-
taneous snapshots of two cells rotating counterclockw
The reflectional asymmetry of the cells is again visible. F
ure 11~b! shows an O~2! symmetric time average followe
~from left to right and top to bottom! by the four most ener-
getic KL modesF1, F2, F3, andF4. The energy distribu-
tion in the associated KL spectrum is almost identical to
spectrum in the experimental one-cell state analyzed ab
with 83% of the total energy being captured by the first fo
modes. Notice that the time average of the two-cell rotat
state is still O~2!. The symmetry of the lowest KL modes
now D2 in contrast to the one-cell rotating case where it w
D1. In general, we observe that modes withn cells have
lowest KL modes with at leastDn symmetry.

The phase plane plots ofa1(t) vs a2(t), a3(t) vs a4(t),
and a1(t) vs a3(t) indicate approximately uniform rotatio
with the second pair at twice the frequency. This observa
is confirmed by a plot of the relative phase of the first p
shown in Fig. 12~b!.
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FIG. 9. ~a! Four snapshots of a nonuniformly rotating one-c
state produced from simulations of Eqs.~4.1!, ~b! the time-average
pattern and~from left-to-right and top-to-bottom! the four most en-
ergetic KL modes, and~c! reconstruction of the dynamics using th
four most energetic KL modes.
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FIG. 10. Evolution of the temporal coefficients of the nonuniformly rotating one-cell state of Fig. 9~a!: ~a! from left to right phase plane
plots of a1(t) vs a2(t), a3(t) vs a4(t), anda1(t) vs a3(t) and ~b! a time plot off12(t).
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Recent simulations of the Kuramoto-Sivashinsky equat
@23# have shown an analogous two-cell rotating state~Fig.
13!. The reflectional asymmetry of the cells is very distin
tive.

C. Counterrotating rings: Experiment

At a pressure of 1/2 atm most of the observed states h
two concentric rings of cells. They appear as either station
states or nonstationary states with various number of cells
this section a nonstationary state with two concentric rings
six and two cells@Fig. 14~a!# is analyzed. The outer ring
rotates counterclockwise at a speed of about 360°/sec, w
the inner ring rotates clockwise at almost twice the spee

The analysis of this state raises some important iss
determining whether the spatial structures of the rings
independent of each other, investigating the interaction of
rings and whether one can separate their dynamics, and
sifying the motion of each ring as uniform or nonunifor
rotation. Such analyses are difficult from direct visual obs
vations, in part, due to the rapid motion of both rings.

The KL analysis indicates@Fig. 14~b!# the appearance o
an apparently O~2!-symmetric time average. Again, on
should consider that in the plane O~2! symmetry cannot be
distinguished from SO~2! symmetry. The time average i
similar to those of previous cases, except that now it
formed by two concentric rings. Figure 14~b! also shows
n
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FIG. 11. ~a! A two-cell rotating state found in the combustio
experiment~the distinctive reflectional asymmetry of the cells
very similar to the one observed in Fig. 13,~b! the time average of
the data set and~from left to right and top to bottom! the four most
energetic KL modes, and~c! reconstruction of the dynamics with
the four most energetic KL modes.
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FIG. 12. Evolution of the temporal coefficients of the rotating two-cell state of Fig. 11~a!: ~a! from left to right phase plane plots ofa1(t)
vs a2(t), a3(t) vs a4(t), anda1(t) vs a3(t) and ~b! a time plot off12(t).
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~from left to right and top to bottom! the 12 most energetic
KL modes. The separation in the spatial structures betw
the outer and the inner ring is clearly demonstrated. Mo
F1, F2, F5, F6, F11, andF12 define the structure of the
outer ring, while modesF3, F4, F7, F8, F9, andF10 rep-
resent the inner ring. In consecutive pairs~counting in in-
creasing order from one!, the modes are~approximately! D6,
D2, D12, D4, D8, andD18 symmetric, respectively. The re-
sults indicate the presence of two attractors capturing
long-term evolution~rotations! of each ring in the original
state. Figure 14~c! shows the reconstructed dynamics w
the eight most energetic modes. The remaining modes
tain high-dimensional information that contributes to defi
ing the shapes of the cells.

The energy spectrum~Fig. 15! further illustrates the en
ergy distribution among different modes: 78% contained
the first four modes, 88% in the first eight, and 90% in t
first twelve. Figure 15 also shows that the modes of the o
ring F1, F2, F5, andF6 capture about 68% of the energ
compared to only 20% by the modes of the inner ringF3,
F4, F7, and F8. This difference can be attributed to th
position of the rings relative to the center of the burner a
to the number of flame cells contained in each ring.

Observe that the energy is again almost equally dist
uted within each consecutive pair of modes. They each fo
an irreducible space under the action ofG. The reconstructed
dynamics ~on each of these subspaces! corresponds to a
unique branch of many symmetrically related periodic so
en
s

e

n-
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tions that appear as a consequence of the nonuniquene
the subspaces@Proposition 3~i!#. The first eight modes are
clearly the most important for the approximation. A reco
struction using onlyF1 andF2 reproduces the rotations o
the outer ring with the inner ring remaining fixed. Both ring
rotate whenF3 and F4 are added to the expansion. Th
approximation with the next four most dominant modes i
proves the separation of the cells in both rings.

More details of the motion of each ring can be obtain
from the phase space plotsa1(t) vs a2(t), a3(t) vs a4(t),
and a1(t) vs a3(t) shown in Fig. 16~a!. Connecting lines
have been omitted because they obscure the structure o
points. The periodic nature of each pair of KL modes
indicated by the first two plots. The plot ofa1(t) vs a3(t)
clearly shows that the periods of the outer and inner ring
incommensurate and indicates that the underlying attracto
the system is a two-dimensional torus. The relative phase
the first two pairs of KL modes are shown in Fig. 16. T
direction of rotation of each ring can be inferred from t
sign of the slope of the relative phases. The figure also sh
that the motion of the inner ring is strongly modulated co
pared to uniform motion in the outer ring.

D. Two-cell standing wave: Experiment

Two types of periodic solutions can bifurcate from a
O(2)3S1 symmetric state: rotating waves and standi
waves. The examples studied above were rotating waves
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example of a standing wave is presented and analyzed n
Figure 17~a! shows a two-cell standing wave oscillating p
riodically between two patterns of two cells oriented at 9
from each other. The transitions between the two orientati
occur at a rate of 1/6 sec. In Fig. 17~a!, consecutive frames
depicting an individual transition are shown. Figure 17~b!
shows the results of the KL decomposition and Fig. 17~c! the
reconstruction with the four most energetic modes. The t
average is now~approximately! D4 symmetric and the firs
four KL modes~shown from left to right and top to bottom!
are~approximately! D4, D2, D4, andD2 symmetric, respec-
tively. They capture about 73% of the total energy~Fig. 18!.

The energy is now spread across more modes and i
longer equally distributed among consecutive pairs of mo
as in previous cases. One possible explanation of the di
bution is that rotating cells need two structures with equi
lent energy~similar to the sine and cosine modes of the

FIG. 13. Four snapshots~time varying from top to bottom! of a
state with two rotating cells obtained by integrating numerically
Kuramoto-Sivashinsky equation. Note the reflectional asymm
of the cells.
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FIG. 14. ~a! Four snapshots from a counterrotating ring state
the combustion experiment~the outer ring rotates counterclockwis
while the inner ring rotates clockwise!, ~b! time-average pattern an
~from left to right and top to bottom! the twelve most energetic KL
modes, and~c! reconstruction of the dynamics using the eight mo
energetic KL modes.

FIG. 15. Energy spectrum for the KL decomposition of t
counterrotating ring state of Fig. 14~a!.
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FIG. 16. Evolution of the temporal coefficients of the counterrotating ring state of Fig. 14~a!: ~a! from left to right phase plane plots o
a1(t) vs a2(t), a3(t) vs a4(t), anda1(t) vs a3(t) and ~b! a time plot off12(t) andf34(t).
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examples of Sec. III! to define the position and velocity o
the cells. In contrast, the standing wave of Fig. 17~a! only
needs one mode~the most energetic! to define the position
and orientation of the two ordered states. The second mo
then responsible for executing the transitions between
two ordered states. These statements can be verified u
Fig. 19~a!, in which we have plotted the time evolution of th
first two KL modesa1(t) and a2(t), respectively. Observe
that a1(t) is always positive and its variations represent
fluctuations of the reconstructed pattern about the mean.
second coefficienta2(t) oscillates between positive an
negative values as the two cells in the standing wave cha
between the two observed orientations. Figure 19~b! further
shows the phase differences between the first two KL mo
The remaining modes contain information that is used
improve the shape of the cells. The distinctive~approxi-
mately! D4 symmetry of the time average indicates that t
attractor is ~approximately! D4 symmetric in phase spac
@14#.

E. Entropy classification

The level of complexity among the flame patterns stud
in this paper was calculated by applying Eq.~3.10! to the
energy spectrum generated by the KL decomposition of e
is
e

ing

e
he

ge

s.
o

d

ch

individual state. The results are presented in the follow
table.

Description of state Entropy

experimental one-cell state rotating 0.5400
modeled one-cell state rotating uniformly 0.2509
modeled one-cell state rotating nonuniformly 0.3115
experimental two-cell state rotating 0.42163
experimental counterrotating rings 0.51385
experimental standing wave 0.58713

The results indicate that the uniform and nonuniform
tating states of the phenomenological model have the low
entropy followed by the uniform rotating two-cell state in th
experiment. High-entropy values can be attributed to sh
behavior in the cells. When a state exhibits strong sh
changes, as in the case of the experimental single-cell s
its energy spectrum is broad and thus produces a high
tropy. In contrast, when the cells show very little change
shape, as in the counterrotating rings from the experim
the energy is distributed among fewer modes, resulting i
lower-entropy measure. Observe that the highest entropy
exhibited by the standing wave, as one would expect from
broad energy profile.
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V. DISCUSSION

The review by Cross and Hohenberg@24# describes a
number of systems that exhibit pattern formation. Almost
of the experimental studies of these systems used la
aspect-ratio geometries that contain large numbers of cel

FIG. 17. ~a! A standing wave between patterns of two ce
oriented at 90° angles from each other,~b! the time-average patter
has a well-definedD4 symmetry and the first four most energet
modes~from left to right and top to bottom! capture about 73% o
the total energy, and~c! the reconstruction using the four mo
energetic KL modes is very close to the original cycle.

FIG. 18. Energy spectrum for the KL decomposition of the tw
cell standing wave shown in Fig. 17~a!.
ll
e-
or

stripes. KL analysis has been used on other systems exh
ing two-dimensional spatiotemporal dynamics. Graha
Lane, and Luss@25# used KL analysis to study temperatu
patterns in a chemically reacting system. More recen
Sirovich et al. @26# used these techniques in the analysis
video images of the mammalian visual cortex system. T
results indicated a relationship between the KL eigenfu
tions and the orientational and directional information of t
visual system.

Premixed flames are not typical of systems exhibiting s
tiotemporal dynamics. Pulsating@27# and cellular flames ex-
hibit a substantial (.50) number of periodic and chaoti
dynamic states that execute complex spatiotemporal dyn
ics. The stability boundary diagrams of these states are c
plicated and many different types of bifurcations betwe
states are observed.

At least five different types of dynamic states of cellul
flames ~rotating, modulated rotating, standing wave, ho
ping, and ratcheting! have relatively low-dimensional dy
namics that can be captured by a few (,10) KL modes. The
precise characterization of their dynamics cannot be de
mined either from direct visual observation or from a fram
by-frame analysis of videotape. In these cases a KL anal

-

FIG. 19. Evolution of the temporal coefficients of the standin
wave state of Fig. 17~a!: ~a! time plots ofa1(t) anda2(t) and ~b!
f12(t) depicts the phase transitions between two ordered states
ented at 90° angles with respect to each other.
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is used to provide a description of the modes that comp
the dynamics. In this paper we have concentrated on
representative examples of three types of states with s
numbers of cells: rotating states, modulated rotating sta
and standing-wave states. We have demonstrated tha
analysis is particularly useful in distinguishing between u
form and nonuniform rotation. The periodic two-ce
standing-wave state presents an interesting, contrasting
ample to the periodic two-cell rotating state. A KL analys
of counterrotating double rings demonstrates the phys
separation of the dynamics into the two rings. We have a
included a KL analysis of rotating and modulated rotati
states from a phenomenological model to compare and
trast these results with those from similar states in the
m
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periment. Throughout the paper we have emphasized the
plications of the symmetries of the KL modes.
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