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Karhunen-Loeve analysis of spatiotemporal flame patterns
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The ability of Karhunen-Loee (KL) decomposition to identify, extract, and separate the spatial features that
characterize a spatiotemporal system is demonstrated using video images from a combustion experiment and
nonstationary states from a phenomenological model. Cellular flames on a circular porous plug burner exhibit
a variety of stationary and nonstationary patterns. KL decomposition is used to analyze the spatiotemporal
dynamics of four experimental states: one- and two-cell rotating states, two counterrotating rings, a standing-
wave state, and two one-cell rotating states from numerical simulations of a phenomenological model designed
to study pattern formation in a circular domain. The KL technique optimally captures the dynamics of the
states by producing a linear subspace on which the reconstructed dynamics has a minimum truncation error. It
identifies the dominant spatial structures whose coupling produces the observed patterns and distinguishes
between uniform and nonuniform rotational motion. The implementation of this technique using video images
as input is explained and the implications of symmetry in interpreting the KL analysis of the dynamics are
described[S1063-651X98)07105-0

PACS numbgs): 82.40.Ra, 82.40.Py, 11.30.Qc, 82.20.Mj

I. INTRODUCTION In subsequent work, a boundary extraction procedure was
developed and implemented to study several nonstationary
Cellular flames form ordered patterns of concentric ringsstates with multiple ring§2]. Four representative cases were
of cells when stabilized on a circular porous plug burner astudied: an outer rotating ring of cells concentric with an
low pressure. As the control parameters are variedalmost fixed inner ring, a single rotating ring surrounding
symmetry-breaking bifurcations are observed to dynamimne central cell, a ratcheting motion described by a periodic
states in which the cells move, exhibiting both periodic andocking-unlocking mechanism of two rotating rings, and an
complex dynamics. This paper demonstrates the ability ofntermittent state characterized by recurrent appearances of
Karhunen-Loge (KL) decomposition to identify the domi- ordered patterns. The Karhunen-\eeanalysis using bound-
nant spatial structures of nonstationary flame patterns and tary extraction revealed the presence of two intrinsic types of
characterize the time dependence of the pattern of evolutionlynamics: one describing the large-scale motion of the rings
The spatial modes and their time evolution are extracted diand one representing the small-scale oscillatory motion of
rectly from two-dimensional video images produced in thethe cells. The rings appeared to be weakly coupled and the
experiment, in contrast to applications that use onetemporal evolution of the modes was used to describe the
dimensional spatial information or that rely on time series along-term evolution of the patterns.
isolated points. While the analysis of cell boundaries was useful for de-
In an attempt to quantify flame dynamics using KL de-scribing the overall motion of the patterns, some important
composition, a pulsating single-cell state found in methaneissues remain unresolved. There was little indication as to
air flames was considered by Stoeeal. [1]. A distinctive  how the patterns emerge and whether the nonstationary
feature of this state is the coexistence of time-periodic pulstates represent cases of uniform or nonuniform motion. An-
sations with spatial chaotic motion in the orientation of theother point of interest is the study of more complicated
cell. To unravel the complexity, Storet al. applied KL de-  states. Since the boundary extraction procedure is only ap-
composition to a data set consisting of the cell boundarieslicable to states where the number of cells remains constant,
They found that the motion of the boundaries could be dethe analysis cannot be used to describe states where cells
scribed by three KL eigenvectors. The reconstruction withmerge and split. Many of these limitations arise because cell
these three eigenvectors resembled the original twoboundary extraction is strictly a one-dimensional technique
dimensional motion, and the long-term evolution indicatedthat fails to recognize and identify the role played by the
the presence of a limit cycle in phase space. Insight intawo-dimensional character of the spatial dynamics. However,
multiple-ring formation was obtained using synthetic data tothe investigation of the boundary motion offers the advan-
mimic the spatial structure of the cells and their motion.  tage of requiring less computational time and memory than a
two-dimensional analysis based directly on the images.
In a recent papef3] we presented a phenomenological

*Electronic address: palacios@nomad44.laptop.uh.edu model that described general characteristics of pattern forma-
"Electronic address: gemunu@uh.edu tion in a circular domain. Certain dynamical states of the
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experimental states and the numerical results. In this pape
we focus on the implementation of KL decomposition for the

video image data, we relate the symmetry of the dynamica ‘ ’

states to the symmetries of the KL eigenfunctions, and we
amplify our analysis of each dynamical state by presenting
phase-space trajectories of the KL coefficients.

1
KL decomposition optimally captures the behavior of

two-dimensional flame patterns by producing a linear sub-

space on which the reconstructed dynamics has a minimur :

truncation error. Certain properties of this subspace can b

used to explain the symmetries of the cells in nonstationary

stateg 4]. The structure of the KL eigenfunctions is used to 2
explain the formation of the patterns and to differentiate be-
tween uniform and nonuniform motion.

The experimental system is described in Sec. Il. The
mathematical development of KL decomposition relevant to
this study is presented in Sec. Ill. Important aspects relates
to the implementation of the KL decomposition with video 3
images are discussed and the implications of symmetry ar
emphasized. Representative cases of experimental flame p¢
terns and simulations from a phenomenological model are
analyzed in Sec. IV. The results are discussed in Sec. V.

Il. COMBUSTION EXPERIMENT

The experimental system consists of a circular porous (a) (®) © @
plug burner that burns premixed gases inside a low pressure
(0.3-0.5 atm combustion chamber. Mixtures of isobutane  FIG. 1. Four sequential frames of videotape of four different
and air were used for the experiments described in this pape?xperimental cellular flame statets) a single rotating cell(b) two
The pressure, flow rate, and fuel-to-oxidizer ratio are confotating cells,(c) counterrotating rings, and) a standing wave
trolled to within 0.1%. A steady uniform flame appears as a*¢tween two cells.
circular luminous disk, 5.62 cm in diameter and 0.5 mm
thick. The flame front forms roughly 5 mm above the surfacethe control parameters during a coarse survey of parameter
of the burner. space.
A Dage-MTI charge coupled device camera, mounted
vertically on top of the combustion chamber, is used to
record the evolution of the flame front. A distinctive feature
of premixed flames, as a system exhibiting spatiotemporal Karhunen-Loge decomposition is a well-known tech-
dynamics, is that an important dynamical variable is the locahique for determining an optimal basis for a data[get10].
temperature which can be measured using the emitted chemithis section reviews the definitions and properties of KL
luminescence from the flame front. The spatial and temporalecomposition relevant to this paper and discusses how the
resolution, the time interval, and the dynamic range aramethod can be applied to image data in order to separate
limited only by the recording device. Images of 64880  spatial and temporal behavior.
pixel resolution, taken at 1/30-sec intervals with a 7-bit dy- Consider a sequence of observations represented by the
namic range, are typical for dynamics recorded on S-VHSscalar functionsu(x,t;),i=1, ... M. The functionsu are
video tape. assumed to be? on a domairD that is a bounded subset of
Upon changes of parametetgpe of fuel, pressure, total R". The functions are parametrized by which represents
flow, and equivalence ratiche flame front forms ordered time in this application. Thétime) average of the sequence,

patterns of concentric rings of cells. Brighter cells corre-gefined asu(x)=(u(x.t;))=(1/M)SM,u(xt;), is assumed
spond to hotter regions on the burner. They are separated ky phe zero. The KL decomposition extracts time-independent
darker regions corresponding to cusps and folds that extengithonormal basis function®,(x) and time-dependent or-

an additional 5 mm away from the surface of the burner. Ashonormal amplitude coefficients(t;) such that the recon-
the parameters are varied, th€2Dsymmetric uniform state  grction

bifurcates to other stationary states or to dynamical states
with less spatiotemporal symmetf$]. In the former case, u(x,t)=Zay(t)d(x), i=1,... M, (3.1
new ring structures emerge with different spatial symmetries

and various numbers of cells. In this paper we consider foug ontima| in the sense that the average least-squares trunca-
nonstationary states: a single rotating cell, two rotating cells;; " arror

2

> (3.2

Ill. KARHUNEN-LOE VE DECOMPOSITION

two counterrotating rings, and a standing wave of two cells.
Figure 1 shows four sequential frames of videotape from <
ENT

u(x,t)— > a(t)@y(x)

k=1

these states. Each state was reached by an abrupt change in
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is always a minimum for any given numbirof basis func- Wherevkz(v'i, cen ,UKA) is the kth eigenvector of Eq(3.5
tions over all possible sets of orthogonal functions. and C is a symmetric MXM matrix defined by
The functions®(x), calledempirical eigenfunctionso-  [¢;;]=(1/M)(u;,u;), where (,) denotes the standard
herent structuresor KL modes are the eigenvectors of the vector inner product 1 ,u;)=u(xy,t;)u(xe,tj)+- -
two-point spatial correlatiorfunction +u(xy,t)u(xy,t;). In this way anNx N eigenvalue prob-
lem [the eigenvectors of Ed3.3)] is reduced to computing
1M the eigenvectors of all X M matrix, a preferable task N
rxy)=—2, u(xtHuT(y,t). (3.3  >M. Throughout the remaining of this work} will denote
Mi=1 the number of measurements of a laboratory or numerical
experiment andN will represent the maximum number of
KL eigenfunctions employed in a particular reconstruction of
an experiment. The results presented in Sec. IV were ob-
KL decomposition can be generally applied to find antained with an implementation of the method of snapshots.
optimal basis for a data set. To separate the spatial and the
time behavior for a physical system, each point in the data C. Properties of KL decomposition
set should represent an observation of the spatial state of the ) . . . )
system at a particular time. KL decomposition is applied to  Since the kernel is Hermitian(x,y) =r*(y,x), it admits,
the observations to find an optimal basis for the spatial ob@ccording to the Riesz theorefl], a diagonal decomposi-

servations. The data set is projected on the resulting KL basin of the form

A. Application to image data

functions to obtain the time behavior in much the same way N
as normal mode expansions are used for partial differential F(X,y)= 2 M@ () DS (y). (3.6
equations. The KL technique is based purely on the observa- k=1

tions and thus has the advantage of not requiring knowledge

of an underlying model equation or normal modes. This fact is particularly useful when finding the KL modes
In practice the state of a numerical model is only availableanalytically. They can be read off from the diagonal decom-

at discrete spatial grid points and so the observations thatosition (3.6).

form the data set are vectors rather than continuous func- The temporal coefficients,(t;) are calculated by project-

tions. In other wordsD = (x4,X5, ... Xy), wherex; is the  ing the data set on each of the eigenfunctions
jth - grid point and u(xt;) is the vector uy;
=(U(Xg,t),u(xp, ), . u(Xn ) a(t)=U(x.t), P (x), i=1,... M. 3.7

Experimental data also undergoes a discretization process
when it is acquired for processing. In the case of the comit can be shown that both temporal coefficients and eigen-
bustion experiment, images of the flame front were digitizecfunctions are uncorrelated in time and space, respectively
to obtain the observations at different times. Each image is g6,10].
wxh=N array of pixels. A pixel is a scalar value in the  Proposition 1 The KL modes{®,(x)} with correspond-
interval [0,255. An image can be converted to a vector bying temporal coefficient§a,(t;)} satisfy the following or-
ordering the pixel values in row major forfe.g., the pixel thogonality properties: (i) (I)}*(x)(bk(x)= Sk and (i)
(i.k) in the image is stored in the position=jXw-+k in  (a,(t,)a¥ (1)) =8\, where 5, represents the Kronecker

the vectof. delta function.
Property(ii) is obtained when the terms in the diagonal
B. Method of snapshots decomposition (3.6) are compared with the expression

A popular technique for finding the eigenvectors of Eq." (%.¥)=Z(aj(t)ag (t;))P;(x) i (y). The non-negative and
(3.3 is themethod of snapshotieveloped by Sirovich10].  self-adjoint properties of (x,y) imply that all eigenvalues
It was introduced as an efficient method when the resolutiofeé non-negative and can be ordered accordingly:
of the spatial domainN) is higher than the number of ob- A1=X,=---=0. Statistically speakingy represents the
servations ). The method of snapshots is based on the fac¥ariance of the data set in the direction of the corresponding
that the data vectors; and the eigenvector®, span the KL mode, ®(x). In physical terms, iu represents a com-
same linear spacesee[6,10] for details. This implies that ponent of a velocity field, then, measures the amount of

the eigenvectors can be written as a linear combination of thkinetic energy captured by the respective KL mdeigx). In
data vectors this sense, the energy measures the contribution of each

mode to the overall dynamics.
M " Definition 1 The total energy captured in a Karhunen-
q’k:izl vil. (3.9 Loeve decomposition of a numerical or experimental data set
is defined as the sum of all eigenvalues

After substitution in the eigenvalue problen{x,y)®(y) N
=\®(x), the coefficients ¥ are obtained from the solution EZKZl Ak (3.9
of -

The relative energy captured by tkéh mode,E, is defined
Cv=\v, (3.5 by
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Ay =1,... M, are Eovided. In practice, one must first com-
Ei= : (3.9 pute the averagg(x)=(1/M)Ei'\"zlg(x,ti) in order to pro-
J_Z,l A duce a new set of measurementéx,t;)=g(x,t;) —g(x)

with zero average. Lef denote the group of symmetries of
the system of interest. The symmetries of the attractor form a

The cumulative sum of relative energiBg&, approaches one
gi= =« 2P subgroup ofl” defined by

as the number of modes in the reconstruction increases.
Spatiotemporal systems are capable of producing different T .= ClvA=A 31
kinds of behavior including periodic, quasiperiodic, and non- (= {reT|yA=A}L (3.12

periodic motion in space and time. In some cases, the Klhe critical observation is that the symmetries of the attrac-
decompositions of qualitatively different states may produc%r A appear as symmetries of the time avergge) inde-

seemingly similar spectra. However, the decomposition cal . . )
still be used to differentiate between different solutions. On endently of the symmetries of the instantaneous scalar field

possibility is to apply the KL decomposition to the state ofg(x’ti) [14]. Unfortunately, the converse is not always true.

interest and then use the KL energy spectrum to calculate tr}The symmetries of the time average do not necessarily reflect

entropy of the data set. The entropy is a measure of order %e symmetries of the underlying attractor. Furthermore, the

disorder and provides an objective way of classifying theq{ L decomposition satisfies the following symmetry proper-

L . . ties.
complexity in experimental or numerical data. " . :

Defitr;itionlz ;I'hedefntropf of a KL decomposed da(l;cf'i set isfyl?r:(g)]pofr:ttlaon;gl_eer:v{;ll)lg)} ;?r?)tt)lheemlzt(il%e Sj?;%?g?ys)at
u can be calculated from its energy spectrum according to “XD(x). Then () (yu(x.t) yu*(y,t))yd)’(y)=>\,[y<b(x)]

1 N for all yeT, (i) (cu(x,t)ou*(y,t))=(u(x,t)u*(y,t)) for
Euw=—lim — > Ey InE,, (3.10 all ael'(y, and (i) (u(x,t)u*(y,1))o®@(y)=NoP(x)]
InN k=1 f0r a” O'EF(A) .

Property(i) establishes that the eigenfunctions in the KL
where IN i_s a normalization factor that allows Comparisonsdecomposition ofyu(x,t) are those ofi(x,t) under the ac-
between different data sets. tion of . This property explains the observation that the KL

The entropy, as defined by E(B.10, measures the en- gecomposition of a periodic data set is not uniqueb (k) is
ergy distribution among the modes in the KL spectra andy, eigenfunction, so igd(x) for all yeI'. Which one is
varies between 0 and 1, as the number of modes increasgfien chosen? In the case of experimental or computational
The entropy is low when the energy is concentrated in a fevyata, the answer depends on how the data are collected. Per-
modes. A zero entropy indicates that only one eigenfunctionoming the decomposition with different initial conditions
with maximal energyE, =1, is needed to reproduce the dy- may produce a rotated version df(x). Nevertheless, the
namics. The entropy approaches 1 when the energy spreagi§portant point is to realize that they are all symmetrically
across a large number of modes, indicating complex behavg|ated. Propertiei) and (iii) indicate that the KL kernel

lor. ) R . and its eigenvectors have at least the same symmetries as the
Equation(3.2) states that Karhunen-Lve decomposition  gttractor.

produces a basis that minimizes the least-squares truncation
error. This property can also be stated in terms of the energy
captured by the KL modes.

Proposition 2 Let {a,(t;),®(x)} be the KL basis pairs Consider a periodic traveling wave represented by a peri-
obtained from a scalar field(x,t;) satisfying Egs.(3.1),  odic function in the formu(x,t) = f(x—ct), wherec denotes
(3.6, and (3.7). Let {b,(t;),¥(x)} be any arbitrary ortho- the speed of the wave. As noted[i8], the KL decomposi-
normal basis pair satisfying E¢3.1). The KL basis is opti- tion coincides with the Fourier decomposition
mal in the sense that the total cumulative energy captured by
the sequencéay(t;),®(x)} is always greater than or equal
to the total cumulative energy captured fy,(t;), V' (x)}
provided the number of eigenfunctiofiespecting their or-
dering from most to least energetiemployed is the same. The alternative form
Formally

N—o®

E. Traveling waves and KL decomposition

o

f(X_Ct):k;w c e kmx—et (3.13

N N N N f(x—ct)= >, JaZ+bZ[cogkmct+ ay)sin(kmx)
k21 Ek:kZl <ak(ti)a:(ti)>:|(zl )\kaZl (by(t)bg (1))). k=0
B B B B (3.19) —sin(kmct+ ay)cogkax)] (3.14

shows the KL modes explicitly. Here,=(a,+b,i)/2 are
the Fourier coefficients off(x—ct) with phase «

One motivation for applying KL decomposition is to ob- =tan 1(—a,/b,). The KL modes can be written as ordered
tain information about the long-term behavior of the systempairs of the form{®,,_;,®,}={cosknx),sinkmx)}. The
Suppose that this behavior is captured by an attractor, deéraveling wave is produced by the coupling of pairs of modes
noted by A (see[12] for a precise definition Assume also that contain the same energy and maintain a constant relative
that scalar measurements of the systegfxt;), i phase.

D. Consequences of symmetry
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By analogy with pure periodic traveling waves, adjacent
KL modes with the same symmetry and equivalent energy
may be associated with traveling-wave solutions. Such adja-
cent modes are callecbupling modes

Definiion 3 Let u(x,t)=3_,a(t)P(x), i
=1,... M, represent the KL decomposition of a data set.
The relative phase of KL eigenfunctions andn, m#n, is
defined by

¢mn(ti):tan71 - (3-15) (a) (b)

an(ti))
am(ty) /)

The relative phasep,,, between KL mode®,, and®,, has
the following geometric interpretation. If the temporal coef-

ficients an(t;) and a,(t;) are represented by a point in a tjons of the underlying system. It has been demonstrated

phase plane plot, the#,(t;) are observations of the angu- [17,1g that in one-dimensional interfaces, traveling cells ap-

lar displacement of the plotted point as it moves in the phasgear as a result of a parity breaking in which the cells lose

plane. A relative phase between coupling modes that is linegheijr |eft-right symmetry. A manifestation of parity breaking

indicates an underlying traveling-wave solution that is mov-in g two-dimensional system is demonstrated by these rotat-

ing uniformly. Simila_lrly, a nonlinear relative phase indigatesing cellular flame statefL9]. Figure Za) shows an experi-

a modulated traveling wave or perhaps more complicateghental state in which a single cell executes clockwise rota-

behavior. _ ) ] tion, while Fig. 2b) shows a related state in which a single
In the traveling wave described by H§.14), we find that || rotates in the counterclockwise direction.

D (2k—1) (20 (t) =kmCt+ ay (mod 7) is the relative phase be-

tween coupling modes. Observe that this relative phase 1. One-cell rotating state: Experiment

®(2k—1)(2¢) 1S Not uniquely defined. An alternative expression

FIG. 2. Examples of one-cell states from the experiment rotating
(a) clockwise andb) counterclockwise.

The single rotating cell state shown in FigaPwas cho-

o sen for the KL analysis. Sixty frames, digitized at a rate of 30
f(x—ct)=>, Vag+ b cogkmct)sin(kmx+ ay) frames/sec, contain about seven complete revolutions of the

k=0 cell. Figure 3a) shows some instantaneous snapshots, Fig.

—sin(kmct)cog kmx+ ay ) | (3.16 3(b) shows the eigenfunctions extracted by the KL decom-

position, and Fig. &) shows the KL reconstructions based
shows thatez— 1)k (t) =kmct (mod ) is also possible. ON the corresponding eigenfunctions. The top snapshot in
From the viewpoint of symmetry, each pair of KL modes
{coskmx),sinkmx)} forms an irreducible subspace for the
representation of the traveling wave. Any left-right shift of &
these modes, with temporal coefficients shifted accordingly, i
can also be used as a KL basis.

IV. RESULTS
A. Computational details

For each of the flame patterns analyzed in this section, ¢
representative sequence of video images was digitized. De
pending on the speed of the motion, a capturing rate of 15 o
30 frames per second was employed. Sufficient frames
(~200) for each state were captured to obtain a well-definec
time-average pattern and several full multiples of the period.
Each image frame was then scaled to<@# pixels and con-
verted from an audio-video interlace movie format to a
stream of intensity values ranging from 0 to 255. The
KLTOOL software packagEl5] was used to perform an inter-
active KL decomposition. For each case analyzed, a com-
puter animation comparing reconstructions from different
KL modes can be found on the World Wide WELS].

B. Single-ring rotating states FIG. 3: A KL decomposition of a rotating one-cell _state from
the experiment(a) four instantaneous snapshots showing a clock-
Ordered states of concentric rings of cells bifurcate toise rotating cell{b) the time average of the data set appears at the
states in which entire rings of cells rotate either clockwise otop, followed (from left-to-right and top-to-bottoinby the four
counterclockwise[5]. Rotating states, which are typically most energetic modeB,, ®,, ®5, andd,; and(c) the reconstruc-
found in isobutane-air flames, represent traveling-wave soluion of the dynamics using the four most energetic KL modes.
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FIG. 4. Energy spectrum for the KL decomposition of the rotat- 0 10 20 30 40 50 60
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ing one-cell state of Fig.(3). @

Fig. 3b) is the time average of the images. The four most
energetic KL mode® , ®,, ®;, andd, are depicted below
the time averagéfrom left to right and top to bottom, re-
spectively in Fig. 3(b). The KL reconstruction using the first
two modesd,; and®, captures the rotation of the cell. The
reconstruction with the first four KL modd&ig. 3(c)] fur-
ther improves the representation of the motion and shape o
the cell. The similarity to the original state is clearly visible. °
The KL energy spectrdFig. 4) shows that 75% of the
total energy is captured by the first four modes. The energyg
is almost equally distributed betwedn, and®,, indicating
that they form a coupling pair. Similarlyp; and ®, also
form a coupling pair. The remaining modes capture less en-
ergy (25%) and contain high-dimensional information. A
75% cutoff between low-dimensional and high-dimensional
dynamics has also been observed in the KL analysis of othe 1. . L

t

iclen

me Coeffi

KL

experimentg 20]. 0 10 2 time (13/20 s60) 0 %0 60
The long-term motion of a cell can be understood from (b)
the temporal coefficienta,(t), a,(t), as(t), anda,(t) asso-
ciated with the most energetic KL modéSg. 5). The sinu- FIG. 5. Temporal coefficients for the four most energetic modes

soidal nature of these projections is evidenced by their timén the KL decomposition of a single rotating cell shown in Fig. 3:
plots [Figs. 5a) and 5b)]. The {a;(t),a,(t)} pair forms a (a) time plots ofay(t) anda,(t) and (b) time plots ofas(t) and
traveling wave, which results in a uniform rotation of 3.3 ay(t).
rev/sec. The{as(t),a4(t)} pair oscillates at twice the fre-
guency of the first paifcompare Fig. &) with Fig. 5b)],
indicating their role as a higher spatial harmonic in defining
the cell shape. This phenomenon can be understood from th
spatial symmetries of the two pairs of modds, and @,
have (approximately D; symmetry, meaning that they will 40
return to their original pattern in one complete rotation. In
contrast®,; and®, haveD, symmetry. They return to their
original pattern in half a revolution. In general, the primary
spatial harmonic of a periodic pattern with, symmetry will
haveD ,, symmetry. The harmonic only has to rotate half as g 20
far as the original mode to reestablish the original pattern. &
Figure §a) shows the behavior ap,,, the relative phase
between the first pair of KL modes. The nearly linear behav-
ior of the relative phase indicates that the cell is rotating
uniformly. ST 20
The S@2) or O(2) symmetry of the time average in Fig.
3(b) [on the plane S@) and Q2) symmetries cannot be
distinguished reflects the symmetry of the burner, even FIG. 6. Behavior of the relative phasg,,(t) for the one-cell
though none of the instantaneous snapshots of Faj.las  rotating state from the experiment.

30

e (radians)

10 |-
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this symmetry. Each of the pairs of KL modgd,,d,} and
{®3,P,} forms an irreducible subspaf4] under the action
of the symmetries of the systeffi=0(2)x S! for the cir-
cular burner.St is the circle group that accounts for the ’
temporal phase-shift symmetries of periodic states. The in-
variance of these subspaces implies that if a cellular state ha
certain symmetries at one instant of time, then it must have
the same symmetries at all times. Consequently, any cellula
state with a reflectional symmetry must have the same sym
metry at all times and it therefore cannot rotate.

Also note that based on Propositiofi)3these irreducible ;
subspaces are not unique. The particular subspace represe
ing each symmetry is selected by initial conditions. Once a
particular subspace is chosen, the KL reconstructed dyna
ics on that subspace corresponds to a unique branch of per

odic solutions with group symmetiy CI". According to the
equivariant Hopf theorem with O(2S' symmetry[4], two
types of periodic states can appear withsymmetry: rotat-

(@

f

’

-
A
e

e

(b)

ing waves and standing waves. The one-cell rotating stat
and the other states in this section are examples of rotatin
waves.

(c)

FIG. 7. (a) Four snapshots of a uniformly rotating one-cell state
produced from simulations of Eq#4.1), (b) the time average and
Numerical simulations of a phenomenological mofdl  (from left-to-right and top-to-bottointhe four most energetic KL
that is closely related to flame dynamics have demonstrategiodes, andc) reconstruction of the dynamics using the four most
the formation of both stationary and nonstationary statesenergetic KL modes.
These states emerge as a result of symmetry-breaking bifur-

cations in which several spatial modes couple and compet@maining modes affect other aspects such as cell shape.
for existence. The model describes the evolution of tWoNearly 100% of the energy is captured by the first four
coupled, diffusive spatiotemporal fieldg(x,t) andv(x,t)  modes. The reconstruction with these four KL modes is
through shown in Fig. Tc).

The details of the temporal behavior of the cell are ex-
tracted from the KL projections. Figure(@ shows phase
plots of a;(t) vs a,(t), as(t) vs a,(t), anda;(t) vs as(t).
ve= KV —BU— A% — v’ = v,(Vo)?, 4D The first pair indicates t%e uniform rotation of the cgéll. The
second pair indicates a periodic oscillation at twice the fre-
quency of the dominant pair. The plots of the relative phases
for each pair of KL modes shown in Fig(l8 confirm this
?elationship.

2. One-cell rotating state: Phenomenological model

u=k,V2u+(B—1)u+A% — pud— v, (Vu)?,

where k; and «, are the diffusion coefficients of the two

linearly coupled fields. The cubic terms control the growth of
the linearly unstable modes. The nonlinear gradient term
render the model nonvariational and are similar to the non

i f the K Sivashinsk o 2 " The group-theoretical interpretation of this mode is simi-
Inear t'erm of the Kuramoto-Sivashinsky equatlkﬂi, 2, lar to that of the one-cell experimental state. The time aver-
which is often used to model flame dynamics. In order to

. . : age has @) symmetry.®; and®,, which haveD; symme-
srl]mL_JIate th? cwcfulélr gzolm_etry Of. tge expenmlental bL:jr.nertry, form an irreducible space under the action bf
the mtegratlon_o gt - ) is carrie out in polar coordl- Similarly, ®; and®, haveD, symmetry and form an irre-
nates over a circular grid of radil®. Small changes in the ducible s der th tion Bf

. o ; pace under the action
radiusR can produce qualitatively different flame patterns.

This observation leads us to consider the radius as a distin-
guished bifurcation parameter.

Figure 7a) shows four snapshots of a single-cell state Figure 9a) shows a solution of Eqgs(4.1) when R
simulated with Eqs(4.1) for parameter valuesz(=2.0, v, =1.37 rather than 1.35. The solution contains a single cell
=0.5, v,=1.0, k;=0.2, k,=2.0, A=5.0, B=6.8, andR  that changes its shape periodically while rotating clockwise.
=1.35). It consists of a single cell rotating clockwise thatThe symmetries of the time average and the dominant KL
does not change its shape. The KL decomposition of a commodes have not changed significantly from the uniformly
plete period produces an(g) invariant time-average pattern rotating case. The four most energetic modeg ®,, ®,,
[Fig. 7(b)] and four KL modesd,, ®,, ®;, and®, (de- andd, capture 98% of the total energy in the associated KL
picted from left to right and top to bottom, respectivelh  spectrum. The second pdit;,d,} contains more energy
similar KL spectrum indicates that the first two modés  than the corresponding pair for the uniformly rotating case,
and ®, capture about 94% of the energy as compared tdut the general characteristics of the spectrum are similar.
65% (considering only the first two modefor the experi- Figure 1@a) shows phase plane plots of the temporal coeffi-
mental one-cell rotating state shown in Figa)3 Only two  cientsa,(t) vsa,(t), as(t) vsau(t), anda,(t) vsas(t). The
modes are necessary to reconstruct the dynamics and tiphase portraits of this modulated rotation are considerably

3. Modulated rotation: Phenomenological model
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FIG. 8. Evolution of the temporal coefficients of the uniformly rotating one-cell state of Fag.(3) from left to right phase plane plots
of a;(t) vsay(t), as(t) vsay,(t), anda,(t) vs as(t) and(b) a time plot of p15(t) and ¢54(t).

more intricate than those corresponding to the uniform rota-

tion shown in Fig. &). Figure 1@b) shows the plot of the

relative phase of the two most energetic KL modes. The
modulations in the angular speed of the cell are clearly vis-|
ible.

4. Two-cell rotating state: Experiment

Another state observed in the combustion experiment
consists of two rotating cells. Figure (BL shows four instan-
taneous snapshots of two cells rotating counterclockwise
The reflectional asymmetry of the cells is again visible. Fig-

ure 1Xb) shows an @) symmetric time average followed
(from left to right and top to bottojnby the four most ener-
getic KL modes®,, ®,, &3, and®d,. The energy distribu-

-
A

tion in the associated KL spectrum is almost identical to the
spectrum in the experimental one-cell state analyzed abov
with 83% of the total energy being captured by the first four
modes. Notice that the time average of the two-cell rotating
state is still @2). The symmetry of the lowest KL modes is
now D, in contrast to the one-cell rotating case where it was
D;. In general, we observe that modes withcells have
lowest KL modes with at leadd, symmetry.

The phase plane plots af(t) vs ay(t), as(t) vs as(t), FIG. 9. (a) Four snapshots of a nonuniformly rotating one-cell
anda,(t) vs as(t) indicate approximately uniform rotation state produced from simulations of E¢4.1), (b) the time-average
with the second pair at twice the frequency. This observatiofpattern andfrom left-to-right and top-to-bottointhe four most en-
is confirmed by a plot of the relative phase of the first pairergetic KL modes, an¢t) reconstruction of the dynamics using the
shown in Fig. 12b). four most energetic KL modes.

&
B
.

(a) (c)



5966 PALACIOS, GUNARATNE, GORMAN, AND ROBBINS 57

ERUN S 1 a®p

20 T T T T T T T T T

Phase (radians)

0 10 20 30 40 50 60 70 80 90 100
time (1/30 sec)

{b)

FIG. 10. Evolution of the temporal coefficients of the nonuniformly rotating one-cell state of @g.(8 from left to right phase plane
plots of a;(t) vs a,(t), as(t) vsa,(t), anda;(t) vs as(t) and(b) a time plot of ¢, (t).

Recent simulations of the Kuramoto-Sivashinsky equation
[23] have shown an analogous two-cell rotating stdig.
13). The reflectional asymmetry of the cells is very distinc-
tive.

C. Counterrotating rings: Experiment

At a pressure of 1/2 atm most of the observed states hav
two concentric rings of cells. They appear as either stationary
states or nonstationary states with various number of cells. Ir
this section a nonstationary state with two concentric rings of
six and two cells[Fig. 14a)] is analyzed. The outer ring
rotates counterclockwise at a speed of about 360°/sec, whill
the inner ring rotates clockwise at almost twice the speed.

The analysis of this state raises some important issues
determining whether the spatial structures of the rings aref
independent of each other, investigating the interaction of thef
rings and whether one can separate their dynamics, and cla;
sifying the motion of each ring as uniform or nonuniform
rotation. Such analyses are difficult from direct visual obser-
vations, in part, due to the rapid motion of both rings.

The KL analysis Indlcateﬁlzlg.' 14b)] the appearance of FIG. 11. (a) A two-cell rotating state found in the combustion
an apparently (@)-symmetric time average. Again, one experiment(the distinctive reflectional asymmetry of the cells is
should consider that in the plang(Z) symmetry cannot be very similar to the one observed in Fig. 18) the time average of
distinguished from S@) symmetry. The time average is the data set antfrom left to right and top to bottoirthe four most
similar to those of previous cases, except that now it isnergetic KL modes, antt) reconstruction of the dynamics with
formed by two concentric rings. Figure (B} also shows the four most energetic KL modes.
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FIG. 12. Evolution of the temporal coefficients of the rotating two-cell state of Fi@)1@) from left to right phase plane plots afi(t)
VS a,(t), as(t) vsay(t), anda,(t) vs as(t) and(b) a time plot ofp,,(t).

(from left to right and top to bottointhe 12 most energetic tions that appear as a consequence of the nonunigueness of
KL modes. The separation in the spatial structures betweethe subspacefProposition 8)]. The first eight modes are
the outer and the inner ring is clearly demonstrated. Modeslearly the most important for the approximation. A recon-
Dy, &y, P, g, Py;, and P, define the structure of the struction using only®, and ®, reproduces the rotations of
outer ring, while modes s, ®,, 7, g, g, anddgrep-  the outer ring with the inner ring remaining fixed. Both rings
resent the inner ring. In consecutive pajteunting in in-  rotate whend; and &, are added to the expansion. The
creasing order from onethe modes aréapproximately De,  approximation with the next four most dominant modes im-
D2, D12, D4, Dg, andD,g symmetric respectively. The re- nroyes the separation of the cells in both rings.
lsultstindicate Itht'e rzretset_nces) Off two hatt_ractprihcaptgringl the More details of the motion of each ring can be obtained
ong-term evolution(rotationg of each ring in the original o the phase space plots(t) Vs a.(t), as(t) Vs ay(t),
state. Figure 14) shows the reconstructed dynamics with and a,(t) pvs ag(t)psholecl)noﬁ(li)ig. 162\().)Co?1(n230ting4l(in)es

:h_e er:ghr;t (rjr)ost energleycf mod(ta_s. 'FtEetremc’:tllpt)lntg m?d((ajs fgo ave been omitted because they obscure the structure of the
an high-dimensional intormation that contributes 1o de In'points. The periodic nature of each pair of KL modes is

ing the shapes of the cells. - .
) : indicated by the first two plots. The plot @f(t) vs as(t)
erg-l;/hgiset?if)lrj%i)(/)r?pae;t(;ﬂg%%felrgnzuggg:eél-lu?ézztiso;?:inzrg ir]'c:learly shows that the' pe_riods of the outer and'inner ring are
. incommensurate and indicates that the underlying attractor of

the first four modes, 88% in the first eight, and 90% in the : o : :
first twelve. Figure 15 also shows that the modes of the outethe system is a two-dimensional torus, The relative phases of

fing ®,, ®,, dg, andd, capture about 68% of the energy, the first two pairs of KL modes are shown in Fig. 16. The

) direction of rotation of each ring can be inferred from the
compared to only 20% by the modes of the inner ribg sign of the slope of the relative phases. The figure also shows

®y, O, e}n?]@g_. This ldlf_ferenci can be atftnrt])utgd t0 the 47t the motion of the inner ring is strongly modulated com-
position of the rings relative to the center of the burner and,, .« 1o uniform motion in the outer fing.

to the number of flame cells contained in each ring.
Observe that the energy is again almost equally distrib-
uted within each consecutive pair of modes. They each form
an irreducible space under the actionofThe reconstructed Two types of periodic solutions can bifurcate from an
dynamics (on each of these subsparesrresponds to a O(2)XS' symmetric state: rotating waves and standing
unique branch of many symmetrically related periodic solu-waves. The examples studied above were rotating waves. An

D. Two-cell standing wave: Experiment
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FIG. 14. (a) Four snapshots from a counterrotating ring state in
the combustion experimefthe outer ring rotates counterclockwise
while the inner ring rotates clockwiseb) time-average pattern and
(from left to right and top to bottointhe twelve most energetic KL
modes, andc) reconstruction of the dynamics using the eight most
energetic KL modes.

FIG. 13. Four snapshotsime varying from top to bottomof a
state with two rotating cells obtained by integrating numerically the
Kuramoto-Sivashinsky equation. Note the reflectional asymmetry
of the cells.

example of a standing wave is presented and analyzed next. 100+
Figure 17a) shows a two-cell standing wave oscillating pe- 90
riodically between two patterns of two cells oriented at 90°
from each other. The transitions between the two orientations
occur at a rate of 1/6 sec. In Fig. &), consecutive frames
depicting an individual transition are shown. Figure(l)7
shows the results of the KL decomposition and Figclthe
reconstruction with the four most energetic modes. The time
average is nowapproximately D, symmetric and the first
four KL modes(shown from left to right and top to bottom

are (approximately D4, D5, D4, andD, symmetric, respec-
tively. They capture about 73% of the total enef§ig. 18.

The energy is now spread across more modes and is no
longer equally distributed among consecutive pairs of modes
as in previous cases. One possible explanation of the distri-
bution is that rotating cells need two structures with equiva- FIG. 15. Energy spectrum for the KL decomposition of the
lent energy(similar to the sine and cosine modes of the counterrotating ring state of Fig. (a}.

Relative Energy (%)
(9]
<

8.2

3.3 125 124

1 2 3 4 5 6 7 8
KL mode
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FIG. 16. Evolution of the temporal coefficients of the counterrotating ring state of Fig): 1d) from left to right phase plane plots of
a;(t) vsay(t), as(t) vs a(t), anda,(t) vsas(t) and(b) a time plot of p15(t) and ¢z4(t).

examples of Sec. lJIto define the position and velocity of individual state. The results are presented in the following
the cells. In contrast, the standing wave of Fig(aldonly  table.

needs one modé&he most energeticto define the position

and orientation of the two ordered states. The second mode iescription of state Entropy
then responsible for executing the transitions between the

two ordered states. These statements can be verified usiﬁﬁ(pe”memal one-cell state V_Ota“”g 0.540010
Fig. 19a), in which we have plotted the time evolution of the Modeled one-cell state rotating uniformly 0.250941
first two KL modesa;(t) anda,(t), respectively. Observe Modeled one-cell state rotating nonuniformly 0.311503
thata,(t) is always positive and its variations represent theexperimental two-cell state rotating 0.421630
fluctuations of the reconstructed pattern about the mean. Thexperimental counterrotating rings 0.513859
second coefficientay(t) oscillates between positive and experimental standing wave 0.587134
negative values as the two cells in the standing wave change

between the two observed orientations. Figurélurther The results indicate that the uniform and nonuniform ro-

shows the phase differences between the first two KL mode$ating states of the phenomenological model have the lowest
The remaining modes contain information that is used tgentropy followed by the uniform rotating two-cell state in the

improve the shape of the cells. The distinctit@pproxi- ~ €xperiment. High-entropy values can be attributed to shape
mately D, symmetry of the time average indicates that thebehavior in the cells. When a state exhibits strong shape

attractor is (approximately D, symmetric in phase space phanges, as in the case of the experimental single-ce_ll state,
[14] its energy spectrum is broad and thus produces a high en-

tropy. In contrast, when the cells show very little change in
shape, as in the counterrotating rings from the experiment,
the energy is distributed among fewer modes, resulting in a

The level of complexity among the flame patterns studiedower-entropy measure. Observe that the highest entropy was
in this paper was calculated by applying E.10 to the exhibited by the standing wave, as one would expect from its
energy spectrum generated by the KL decomposition of eachroad energy profile.

E. Entropy classification
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(a)

FIG. 17. (a) A standing wave between patterns of two cells
oriented at 90° angles from each oth@), the time-average pattern
has a well-defined, symmetry and the first four most energetic
modes(from left to right and top to bottoincapture about 73% of
the total energy, andc) the reconstruction using the four most
energetic KL modes is very close to the original cycle.

V. DISCUSSION

The review by Cross and Hohenbefg4] describes a
number of systems that exhibit pattern formation. Almost al
of the experimental studies of these systems used larg
aspect-ratio geometries that contain large numbers of cells

100+

Relative Energy (%)

KL mode

FIG. 18. Energy spectrum for the KL decomposition of the two-

cell standing wave shown in Fig. .
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FIG. 19. Evolution of the temporal coefficients of the standing-
wave state of Fig. 13): (a) time plots ofa;(t) anday(t) and(b)
$1,(t) depicts the phase transitions between two ordered states ori-
ented at 90° angles with respect to each other.

stripes. KL analysis has been used on other systems exhibit-
Iing two-dimensional spatiotemporal dynamics. Graham,
é__ane, and Lus$25] used KL analysis to study temperature
atterns in a chemically reacting system. More recently
irovich et al. [26] used these techniques in the analysis of
video images of the mammalian visual cortex system. The
results indicated a relationship between the KL eigenfunc-
tions and the orientational and directional information of the
visual system.

Premixed flames are not typical of systems exhibiting spa-
tiotemporal dynamics. Pulsating7] and cellular flames ex-
hibit a substantial ¥50) number of periodic and chaotic
dynamic states that execute complex spatiotemporal dynam-
ics. The stability boundary diagrams of these states are com-
plicated and many different types of bifurcations between
states are observed.

At least five different types of dynamic states of cellular
flames (rotating, modulated rotating, standing wave, hop-
ping, and ratchetinghave relatively low-dimensional dy-
namics that can be captured by a few10) KL modes. The
precise characterization of their dynamics cannot be deter-
mined either from direct visual observation or from a frame-
by-frame analysis of videotape. In these cases a KL analysis
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is used to provide a description of the modes that comprisperiment. Throughout the paper we have emphasized the im-
the dynamics. In this paper we have concentrated on fouplications of the symmetries of the KL modes.
representative examples of three types of states with small

numbers of cells: rotating states, modulated rotating states,

and standing-wave states. We have demonstrated that KL ACKNOWLEDGMENTS
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