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Abstract 

Video data from experiments on the dynamics of two-dimensional flames are analyzed. The Karhunen-Lo6ve (KL) analysis 
is used to identify the dominant spatial structures and their temporal evolution for several dynamical regimes of the flames. 
A data analysis procedure to extract and process the boundaries of flame cells is described. It is shown how certain spatial 
structures are associated with certain temporal events. The existence of small scale, high frequency, turbulent background 
motion in almost all regimes is revealed. 

1. Inroduct ion 

The Karhunen-Lo6ve analysis (or proper orthog- 

onal decompostition) has recently generated a lot of 

interest in its ability to analyze and model complex 

spatio-temporal data [5]. Most applications have con- 

centrated on modeling PDE simulations with opti- 

mal eigenfunctions, thus generating a smaller Galerkin 

system that behaves like the large scale simulation of 

the PDE ([3], see also the references in [5]). We want 

to report here on an ongoing project to extract phase 

space information out of  experimental data for which 

there is no generally agreed upon model. As a result 

there is no straightforward way of  reducing these data 

via a Galerkin projection to the evolution of a few 

ODEs. By "phase space information" we mean the 
identification of periodic, quasiperiodic and chaotic 

behavior and their generating spatial structures. We 

also seek to identify unstable steady states or unsta- 

ble periodic orbits and their stable and unstable man- 
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ifolds that generate bursting behavior through hetero- 

clinic cycles. In addition, we hope to determine linear 

spanning dimensions for any kind of  chaotic behavior 

and we expect to be able to identify the bifurcations 

that have occurred when one observes a change in the 

experiment upon changes in a parameter. 

We consider data from an experiment on the dynam- 

ics of two-dimensional flames [7]. The experiment 

consists of  a flat circular porous burner which burns 

premixed gases. The shape of  the flames, when viewed 

from the top, changes when the gas mixtures and the 

feeding pressures are altered. A video camera records 

the resulting flame dynamics. Typically one sees an 

unsteady motion of  one or more flame cells which 

show up as bright circles on a dark background. Com- 

mon regimes show two concentric rings of  flame cells 

that move: they rotate with and against each other, 

some of  the cells merge and split and show intermit- 

tent behavior with a long stationary configuration of  

cells that eventually changes quickly to another quasi- 

stationary configuration. From visual observations 
and from other tests that have been performed [6], 

0167-2789/96/$15.00 Copyright © 1996 Elsevier Science B.V. All rights reserved 
Pll S0 167-2789(96)000 17-6 



A. Palacios et al./Physica D 96 (1996) 132-161 133 

one expects a KL analysis to yield useful information 

about the type and origin of the unsteady flame dy- 

namics. We note also that there is considerable debate 
as to the correct PDE model for this experiment. There 
are oversimplified reaction diffusion type models for 

one-dimensional flames [4] but little agreement on 
simplistic two-dimensional models. Better models are 

extremely complicated because they involve chem- 

istry, hydrodynamics, and thermodynamics. There is 
also considerable speculation on the nature of the 

flame dynamics: Quasiperiodic, chaotic, heteroclinic 

and metastable are some of the attributes that have 
been used [6-8]. Therefore, we believe that a descrip- 

tion of these experiments in terms of structures in 

phase space would be extremely valuable. 
Since the Karhunen-Lo6ve analysis has been de- 

scribed in great detail in many recent publications 

[5,15] we will describe here the main idea only. 
Consider a data set u(x, t) defined over a finite spa- 

tial domain R and given for a finite interval 0 < t < 

T. Assume that the average (u(x, t)), which is usually 
a time average, is zero. The KL analysis finds a set 

of orthogonal functions ~p(x) which, on the average, 

are optimally aligned with the data set. These func- 

tions 7~ (x) are the eigenfunctions of a correlation ma- 
trix and are called the empirical eigenfunctions [11], 

coherent structures [15], etc. It can be shown that any 
projection of the data u(x, t) onto a finite set of the 

~i,  given by 

N 

UN = PNU = ~_~ ak(t)~(k)(x)  
k=l 

leads to uncorrelated (with respect to the averaging 

process) amplitudes ak such that (aj (t )ak (t ) ) = )~j 8jk, 
where )~j is the variance of the data in the direction 
of the j th eigenfunction. The error, which is given by 
e N  = []u - -  UN[] 2, i s  a minimum over all possible sets 

of orthonormal functions for any given N. The energy 
of the data is defined as the sum of the eigenvalues 

of the correlation function: E = Y~i=I ~-i. We can 
reconstruct any sample vector using the eigenfunctions 

N 

u(x, to) = Z ak( to)~k)(x) ,  (1) 
k = l  

where the coefficients are computed from the projec- 

tion of the sample vector onto an eigenfunction 

ak(to) =- (u(x, to), ~P(k~(x)). (2) 

An approximation to the data can be constructed with 

the first K most energetic eigenfuctions by 

K 

Z ail~(i). ( 3 )  u(x, t) 
i=1  

We are using a software package, called KLTOOL, 

to analyze spatio-temporal data using the Karhunen- 
Lo6ve (KL) decomposition. KLTOOL was written by 

Randy Heiland [1 ] as a user-friendly, flexible program 

that automates many of the steps in a KL analysis and 
permits graphical representation of the results. 

A large part of this paper is the description of a re- 
duction of the video images of the flames into a format 
that KLTOOL can handle efficiently. To begin with, 

we restrict our attention to the motion of the borders 

of the cells, since in the regimes we are studying there 
is very little apparent structure inside the cells; they 

appear to be uniformly white. This obviously ignores 

some parts of the dynamics and should be viewed as 

a first order approximation to the full flame dynamics, 

but one that yields much information none the less. 
Thus we require the translation of the two-dimensional 

image into information about the cells' outlines only. 
We devote a section to describing this process, which 

we believe is a novel combination of known techniques 
adapted for use on these data sets. 

Section 2 contains a brief description of specific 

regimes of the flame experiment studied (denoted ro- 

tating, ratcheting and pinwheel). The results of a pre- 
liminary study [13] on the KL analysis of cell border 

data is summarized in Section 3. Section 4 details the 

techniques used in extracting the outlines, mentioned 
above. Finally in Section 5, we present the results of 
the KL analysis applied to the data set reductions from 
the three flame regimes. 

In summary, the purpose of this work is to develop 
an efficient and reliable measure that can quantify, 
from a sequence of video images, the motion of cel- 
lular flames as they change with time. The procedure 

must be tractable from the computational point of view 
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and make the best use of the existing laboratory data. 
Highly resolved spatio-temporal data sets are needed 
in order to capture some features of the dynamics. Ide- 
ally, we would like to have large two-dimensional time 
series with high spatial resolution encapsulating all 
aspects of.the dynamics. Realistically, this is impos- 
sible with current computer technology. However, we 
succeed for several flame regimes in separating large 
scale periodic and quasiperiodic motion from a tur- 
bulent background. We identify the spatial structures 
responsible for certain temporal events. We present 
evidence that the highly irregular background motion 
of the cells is better described in analogy to hydro- 
dynamic turbulence (i.e. a large number of degrees of 
freedom) than as low-dimensional chaos. Fig. 1. A snapshot of the rotating regime. 

2. Experimental observations 

As different dynamic regimes in isobutane-air 
flames compete for stability, different types of rotat- 
ing cellular flames become visible. In this section we 
describe the dynamics of three regimes: a rotating 
ring of outer cells around a seemingly stable inner 
ring, a ring of cells rotating fast around a center cell 
that itself changes its shape, and two rings of cells 
that each rotate and whose motion is interrelated in a 
complicated way. We call the three cases the rotating, 
the pinwheel and the ratcheting regime, respectively. 

2.1. Rotating regime 

The physical simplicity of a rigid rotating state 
makes it a good place to start a quantitative description 
of the flame dynamics. We have captured a sequence 

l,t VHS tape of of 249 video frames from a regular 
a rotating state consisting of an outer ring of twelve 
cells concentric with an inner ring of five cells. The 
original images suggest a regime where the overall 
dynamics are dominated by a clockwise rigid rota- 
tion of the outer ring when the inner ring stays fixed. 
However, a careful observation reveals the presence 
of more complicated dynamics. The outer ring ro- 
tates clockwise with two alternating speeds: it moves 
slowly for a long period of time and then significantly 

faster for a short time. This cycle repeats periodically 
during the 360 ° rotation performed by the outer ring. 
The inner ring starts the sequence (first l0 frames) 
with a small clockwise rotation of approximately ten 
degrees. It then remains stationary throughout most 
of the remaining sequence. During this time, a sig- 
nificant amount of activity on the inner ring, both in 
shape changes and in small scale motion of individual 
cells, is observed. Then, towards the end of the anima- 
tion (around frame 200) the inner ring executes a 90 ° 
clockwise rotation away from its previous position. It 
then remains on this new position until the end of the 
video sequence. Fig. 1 shows one typical video frame 
for this scenario. The video image has a resolution of 
320 x 240 pixel. There is noise surrounding the cells 
that is introduced during the recording process, but 
the outlines of the cells are still well defined. 

2.2. Pinwheel  regime 

A second interesting regime where rotating cellular 
flames are observed is illustrated in Fig. 2. It consists 
of a single ring of six cells surrounding one central 
cell. In this case, the ring rotates counterclockwise at 
a very fast speed of approximately 270°s - l ,  giving 
the appearance of a fast spinning wheel. The direction 
of rotation depends on the initial conditions of the 
experiment. A similar regime with a clockwise rotation 
is also observed. The ordered pattern is not steady. 
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Fig. 2. A fast rigid rotation in a single ring of cellular flames surrounding a central cell. 

The cells subtly change their size and shape, and they 

exhibit significant amplitude oscillations about their 

equilibrium position as the entire ring continues to 

rotate. Gorman et al. [6] speculate that "chaotic motion 

of  the outer ring" perturbs the inner cell, causing it to 

change size. 

A video sequence of  140 frames was captured from 

the tape, at a rate of  30 frames s-1 (compared to 15 
frames s-1 used in the rotating regime). In this way, 

the motion of  the cells appears as continuous as pos- 

sible, the ordering of  the cells is clear, and a more ac- 
curate description of  the dynamics is obtained. Fig. 2 

shows an edited sequence of  12 consecutive frames. 

A black dot labels one cell and tracks the rotating mo- 

tion. Computer memory limitations have forced us to 

reduce the resolution of  each image to 120 x 90 pixel 

(a trade-off between spatial and temporal resolution). 

2.3. Ratcheting regime 

This regime exhibits a ratcheting dynamics of  two 

concentric rings of thirteen and six cells surround- 
ing one central cell. Both rings slowly rotate at a rate 

of approximately l°s -1, when locked through an an- 

gle of  approximately 16 ° . The inner ring then un- 

locks and snaps back to its original position. The rapid 
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Fig. 3. A ratcheting cycle simulated by twelve sequential video images. A dot traces an individual cell motion in each ring. Both 
rings rotate clockwise while locked in frames 1-5. In frame 6, the inner ring unlocks and rotates back to its original position in 
frame 12. 

snap-back of  the inner ring is followed by a significant 

deceleration of  the outer ring. The process repeats it- 

self periodically as the outer ring continues to rotate 

clockwise. The ratcheting motion can be thought of  

in a mechanical way: the two rings behave as if they 
were rigid toothed gears. A ratcheting cycle is illus- 

trated by the twelve snapshots of  Fig. 3 in which only 

the upper right quadrant of  each image is shown to 

aid the visualization of  the ratcheting motion. A dot 

marks the trace of  an individual cell in each ring. The 

figure shows the relative angular rotation of  the two 
rings. At the beginning of the sequence both rings are 

locked and continue to rotate clockwise throughtout 

the first six frames. In frame 6, the inner ring unlocks 

and starts rotating counterclockwise until it returns to 

its original position in frame 12. In a recorded se- 

quence of 406 video images, the ratcheting cycle re- 
peats itself periodically, about 18 times, and the outer 

ring executes a rotation of  approximately 500 °. Each 

image has a constant resolution of  320 × 240 pixel. 

Gorman et al. [8] note that ratcheting (time depen- 

dent) and ordered (stationary) states co-exist in pa- 

rameter space: the asymptotic behavior of  the system 
depends on the inital conditions. They assert that this 
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regime is best described as independent, interacting 

concentric rings of  cells rather than individual cells 

interacting with their nearest neighbors. 

3. Cell boundary data analysis 

In order to apply the KL decomposition to the flame 

data it is necessary to digitize and represent the flames 

in the video as sample data vectors. As mentioned 

in Section 1, we are interested in analyzing the dy- 

namics of the cell boundaries. In [13] the boundary 

curve for a single cell is represented as a 1-d vector 

in polar coordinates: r(Oi) for a fixed angular resolu- 

tion 1 < i < N. This representation is well suited 

for the single cell regime but is more difficult to ap- 

ply to regimes with multiple cells. For such regimes 

with a fixed number of  cells, we have devised an ex- 

tension of  the polar coordinate method. To perform 

KL on the cells we take a piecewise linear approxi- 

mation to the boundary of  each cell. Each cell is rep- 

resented by the vertices of  an n-gon. Details of the 

algorithm are given in Section 4. Each vertex of  the 

n-gon has coordinates (xi ,  Yi) ,  and hence the whole 
cell is represented by an n-dimensional 2-vector. One 

snapshot of N-cell outlines then becomes an (n x N)- 

dimensional 2-vector, A. The ensemble of M snap- 

shots is {Ak}, k = 1 . . . . .  M. 

Applying KL means finding an optimal basis for 

the ensemble 

Ak:Za~J, 
j = l  

where we choose to view A k as an n • N-dimensional 

complex vector, so that both a)  and o J  are now com- 

plex. In the following results, KLTOOL was used to 

do all eigenfunction calculations. 

In an earlier paper [13] we describe work done on 

"mock data" made up of  outlines of  multiple cells, 
to test this data set representation. For more details 

see [13]. We reproduce the simplest results here, in 

order to introduce the reader to the interpretation of  
the results of  KL applied to the multiple cell boundary 

vectors. 

Fig. 4. Two sample constructed cells. 

Two cell outlines are constructed for each snapshot 

by distorting two circles of  the same radius, R, placed 

with their centers at (X1, Yt) and (X2, Y2). A sample 

of  this data is shown in Fig. 4. Each cell is represented 

by a regular n-gon. The distance of the ith vertex from 

the center of the n-gon is given by ri = R + E~i, 
where e is a scale parameter and ~i is determined by 

successive iterations of the logistic map: 

~i+1 = F~i (1  -- ~i), 

where F is a tuning parameter. In this way, the com- 

plexity in the variation on the boundary can be tuned, 

since as F varies from 2.0 to 4.0, the logistic map un- 

dergoes a sequence of  period-doubling bifurcations. 

A periodic variation of  the boundary can be achieved 

by setting F to values at which the logistic map has 

a periodic orbit. In the cases that follow, we choose 

F = 3.8, where the behavior of the logistic map pos- 

sesses the same statistics as a random walk (at this 

parameter value we are essentially using the map as a 

random number generator). For the purpose of draw- 

ing the cells, points on the boundary in between the n 

endpoints are calculated by linearly interpolating the 
radius between R + 8~i+1 and R + 8~i. Values of  e 
and F are chosen to best approximate the appearance 

of  the experimental cells. In order to mimic the fine 

scale fuzziness of the experimental data, a random 
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Fig. 5. (a) Zeroth eigenfunction (mean), real and imaginary parts, (b) first eigenfunction, (c) second eigenfunction. 

noise of small amplitude is added to the distorted ra- 

dius at each point. 
Each snapshot consists of 200 complex numbers 

representing two cells. The first 100 complex num- 

bers represent one cell, the next 100 numbers repre- 
sent the other. The KL spectrum calculated from two 

cells with fixed center points (meaning that (Xt, Y1) 

and (X2, Y2) did not vary from snapshot to snapshot) 

with F = 3.8 shows that 98% of the variance is cap- 

tured with the first 14 eigenfunctions, a compression 
ratio of approximately 1 to 4. The ensemble was com- 
prised of 50 snapshots, so 50 eigenfunctions can be 
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Fig. 6. Sample synthetic rotating data, eight overlaid snapshots. 

constructed. The first three eigenfunctions, real and 

imaginary parts, are plotted in Fig. 5. The zeroth eigen- 
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function is the mean. It consists of two cosine and sine 

waves, for the real and imaginary parts respectively, 
indicating that two circles have been distorted origi- 

nally. The division between the two cells is obvious by 

the vertical jump of the graphs of the eigenfuctions at 
n = 100. A reconstruction of the data with 14 eigen- 

functions shows all but the smallest scale variation in 

the boundaries is captured. 

We then considered synthetic data that mimic the 
gross features of the pinwheel regime. One cell is left 
with its center fixed, while the other cell exhibits rigid 

body rotation about the first. Eight overlaid snapshots 

of this regime are shown in Fig. 6. The variation of 

the outlines is constructed in exactly the same way as 

the previous example. The KL spectrum shows one 

mode with 99% of the energy in the first mode. This 
first mode, plotted in Fig. 7, represents the uniform 

shift of either cell center by a constant amount. Hence 

it is a step-like function, the left-half allowing for the 
shift of the center of the first cell, the right allowing 
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Fig. 7. (a) First eigenfunction, (b) Second eigenfunction, rotating data. 
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for the shift of the 2nd cell. The second mode is asso- 

ciated with reconstructing the shape of the two cells. 

The higher, less energetic eigenfunctions capture the 
variation in shape of each cell. 

There is clearly a separation of length scales in this 

problem: the large scale rotational motion dominates 
the spectrum. The KL decomposition allows us to re- 
move this motion from the data and decompose only 

the shapes of the cells. To do this, we simply sub- 

tracted the data reconstructed with the mean and first 
eigenfunction (i.e. the projection of the data onto the 

zeroth and first eigenfunction) from the original data, 

and performed the KL decomposition on the result. 

The KL spectrum of this data is broad (14 modes for 

98% of the energy), indicating that the variance is now 
spread more evenly over a range of length scales. Sub- 

tracting the approximation to the data reconstructed 
from the mean and the first eigenfunction removes the 

rotation of the centers in this case, and is equivalent 

to moving into a co-rotating frame. 
This result led us naturally to the idea that KL can 

be used to detect separation of length scales in such a 
pattern analysis problem, and also to isolate features of 

the motion that exist at widely separated length scales. 

In the same way that the mean can be subtracted out to 

give zero-mean data, large scale motion (like the rigid 
body rotation of the ratcheting regime) can be sub- 

tracted, leaving data that consists of the smaller-scale 
variation in the boundaries. In this way the resolution 
of the decomposition is limited only by the resolution 

of the data. Large scale motion need not dominate the 

analysis. 
We explore these ideas in the section of KL analysis 

of the real flame data. In the next section we describe 
our technique for extracting the cell boundaries from 

the digitized video frames. 

4. Processing video images of flames in motion 

The video images described in Section 2 seem to 
indicate that the behavior of the flames is captured 
by changes of shape and position of their boundaries. 
As discussed in Section 3 we expect a KL analysis to 
yield useful information about the dynamics. Hence, 

we are confronted with the task of extracting and 

measuring the cell boundaries in a format suitable 

for a KL decomposition. In doing so, the dynamics 

of the flame cells are replaced with the dynamics 
of their boundaries. An appropriate representation 

of the boundaries for a KL analysis requires the 
following: 

(1) Thin edges: Every cell boundary must be repre- 
sented by a complex one-dimensional vector. In 

terms of the original image, this means that we 

need an edge detector to identify cell boundaries 

at single pixel locations. Otherwise, it is very dif- 
ficult to correlate the evolution of a boundary as 

it evolves in time. 

(2) Unsegmented edges: Every boundary vector 
should define a one-dimensional closed and con- 

tinuous curve. Gaps between boundaries may 
result in edge linking problems and could even- 

tually alter the dynamics. 
(3) Noise free edges: The presence of noise in an im- 

age should not produce false edges. Similar shapes 
should be obtained within certain tolerances of the 

noise level. 

(4) Constant resolution: Since a KL analysis is based 
on the correlation of points as they evolve in time, 

every cell boundary should have the same size. 
Variable size boundary vectors would certainly 

produce erroneous interpretations of their motion. 
Furthermore, every time snapshot should have a 
constant number of such vectors, even if the num- 

ber of cells has changed. 

(5) Cell identity: It is extremely important to gen- 
erate a boundary-vector structure that maintains 
the identity of the cells as they move in time. 

Similarly, every point on a boundary vector must 
also be properly identified with points of the 

same boundary throughout a sequence of images. 
Hence, the ordering of the points within a vector 

is also important. 
(6) Continuity: All of the above requirements apply 

to every snapshot in a sequence of video images. 
The algorithm should work well with as many 
images as possible, and should be able to extract 
all boundaries for all images. This is particularly 
useful and important when studying fast motion. 
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Fig. 8. A gray-scale image 

A small time-resolution may significantly change 

the dynamics. 
Most conventional image processing algorithms for 

edge detection, such as convolution operators, first 

and second derivative operators, morphologic opera- 
tors, etc., do not satisfy the above requirements when 

applied to the flame images. Most of these algorithms 

only produce single pixel boundaries when applied to 
ideal images, i.e. images with perfect boundary con- 

strasts. Originally, we applied a convolution operator 
and a morphologic edge detector (see [9,10]). The re- 

sults were not satisfactory, because the fuzziness of the 
flame images makes it very difficult to obtain single 
pixel boundaries, and in most of the frames, there are 
always gaps in the boundaries. We successfully pro- 
cessed the data using a contouring method to detect a 

boundary and a marching algorithm to extract it as a 
complex one-dimensional vector. 

The first step in preparing the video images is 
boundary detection. We wish to transform the image 
shown in Fig. 1 into a binary image. This is done by 
first considering the gray-scale image as a surface of 
the form: z = I (j, k) where j ,  k are pixel coordinates 
w i t h 0 <  j <_319, 0 < k  <239 ,  0 < z < 2 5 5 .  This 

rendered as a surface. 

surface is shown in Fig. 8. Note that each peak on 
the surface represents a flame cell. The boundaries of 

the cells are then obtained by contouring the surface 

at appropriate values, producing the binary image 
shown in Fig. 9. Observe that now all boundaries are 

one pixel wide and form closed, continuous curves. 

There are no gaps or phantom boundaries. An Image 

boundary is then defined as a set of level curves of the 
form 01 = {(j, k) l l ( j ,  k) = c, where c = constant}. 

Ideally, we should be able to use the same value of 
c for every snapshot. Unfortunately the image inten- 
sity varies among the frames, and further study of 

the intensity distribution in the images is needed in 
order to adjust c to obtain good boundaries. Some 
regimes, like the rotating and ratcheting states, in- 

volve multiple rings of cells. We have found that the 
outer cells maintain an intensity distribution that is 

different from that of the inner cells; fortunately, they 

both are constant. This makes the contouring process 
easier. We inspected the intensity profiles of each ring 

and found two constants cl and c2 that could produce 
optimal contour curves. Each ring is then contoured 
separately and the binary images are overlapped on 
top of each other, producing Fig. 9. 
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Fig. 9. Binary image after contouring. 

The above process has to be repeated for every snap- 
shot in a time sequence of video images. We have 
automated and implemented this routine in a Silicon 
Graphics workstation using the IDL (Interactive Data 
Language) software package. 

The second step of the video processing involves 
the extraction of pixel coordinates from binary images 
in such a way that every cell boundary is identified 
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and stored as a complex valued one-dimensional vec- 
tor. A data structure is created to organize and store 
each complex vector. This is particularly useful when 
animating the motion of the boundaries. Pixel extrac- 
tion is achieved using a "marching bug algorithm" de- 
scribed by Pratt [12]. 

The basic idea is illustrated in Fig. 10 which shows 
the boundary trace for a binary image consisting of 
three cells. The little numbers in the figure illustrate 
the path followed by the marching algorithm when 
extracting a cell. Each image is scanned from left- 
to-right and top-to-bottom to locate the first transi- 
tion from a white background to a black pixel. The 
marching algorithm starts whenever such a transition 
is found. The basic principle is to let the bug move 
around in pixel space according to the following rules: 
if the bug makes a white-to-black pixel transition, it 
returns to its previous starting point, and makes a 
fight turn. The bug makes a fight turn whenever it 
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Fig. 10. Graphic example of the marching algorithm. Each square on the grid represents a pixel location. 
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makes a white-to-white transition. Every time a new 

pixel is found along the trace of the boundary, the 
algorithm records its position in a vector. Every cell 

boundary is described by a different vector. The pro- 
cedure continues until the bug returns to the starting 

point. Upon completion of the boundary trace, the cell 

boundary is removed from the binary image by setting 

the intensity values of those pixel on the boundary to 

zero. We then continue scanning the binary image un- 
til another cell is found. This procedure is repeated 

until the last cell boundary is extracted. At the end, 
the marching algorithm produces a data structure in 

which the cell boundaries are organized in a series 
of lists according to their time evolution. Each list 

contains the cell boundaries found in some particular 

image. 
We assume that a high temporal resolution of the 

images (i.e., a fast capturing rate) results in a smooth 

and continuous transition of the flame cells and their 
centers of mass. Visual observation of the images 

seems to confirm this hypothesis. Consequently, the 
identity of the cells can be preserved if they are 
sorted and stored according to the displacement of 

their centers of mass. However, one should be care- 
ful to ensure that a fast capturing rate is employed 

when examining regimes with fast motion scales. 
Otherwise, the centers of the cells can be erroneously 

correlated and can produce false results. The ordering 

of individual points on the boundaries, is determined 
automatically by the rules of the marching algorithm: 
a cell boundary is always traced clockwise starting 

with the leftmost higher point with respect to the 
image array. 

Cell boundaries extracted by the marching algo- 
rithm are represented in the form of discrete one- 

dimensional vectors of variable size. Every entry in 
the vectors contains the (x, y)-coordinate of a point 
on the boundary. The size of each vector depends 

on the number of pixel that identifies a boundary. 
Small cells produce small vectors, while big cells 

result in long boundary vectors. Since the time evo- 
lution analysis of the flame boundaries is based on 
their space correlation, we must ensure that all vec- 
tors have equal size. We accomplish this by first 
interpolating a cubic B-spline through the bound- 
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ary points, then tracing the interpolated curve with 

an equal number of points. Once the cell bound- 

ary is interpolated by a cubic B-spline s(ui) ,  we 
can obtain a fixed number of points on it by trac- 

ing s(ui)  with an equal number of parameter val- 

ues. In this way, all boundaries are represented by 

equal size vectors and can be correlated without 

problems. 

4.1. Computational details 

The number of boundary points is limited by the 

spatial resolution of the video camera. Zooming into 
one cell and representing the data with too many 

boundary points implies having more than one bound- 

ary point for an original data pixel. Hence any subse- 
quent KL procedure analyzes in parts the correlation 

due to the pixel structure of the video recording. 
Typically we used 30-50 boundary points per cell. 

Within that range our results did not depend on the 

exact number of points chosen. 
The KL results reported below did not depend much 

on the number of snapshots taken. However, in cases 
where a slow rotation is present we have taken care to 

analyze a set of snapshots that represent full multiples 

of the slow period. Again, it did not matter how many 

periods are captured and analyzed. 
Manual intervention in the boundary extraction pro- 

cess was needed in a few times to discard frames for 
which no contour value could be found that would 

successfully and automatically detect all edges. In the 

most noisy dynamical regime this happened in less 
than 5% of the snapshots. Once the cell boundaries 

were detected, the marching algorithm was always 
able to extract them and no further manual interven- 
tion was needed. 

For a typical regime with 250 images and a spatial 

resolution of 320 × 240 pixels, the boundary extraction 
process usually took about 3 h. The KL decomposition 

of the same number of images was usually performed 

in about 10 min. 
The frame rate employed to transfer the flame im- 

ages from video tape into the computer is technology 
dependent. Currently we can use a maximum of 30 
frames s -1 with limitations in the spatial resolution 
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Fig. 11. Eigenvalue spectrum of a rotating state. 

and the amount of  frames that can be captured over- 
all. An unproblematic rate is 15 frames s -1 which has 

been used in all computations except the fast rotating 

pinwheel regime. The frame rate is clearly dependent 
on the maximal velocities of  the flame cells. We need 
to be able to correlate the position of a cell from one 
snapshot to the other. With 15 frames s-1 the coun- 

terclockwise rotating pinwheel regime showed spu- 

rious clockwise motion which went away when we 
increased the frame rate to 30 frames s -1 . 

5. KL analysis of the flame data 

5.1. Rotation 

Using the technique described in Section 4 we pro- 
cessed 249 frames of the rotating regime and per- 

formed the KL decomposition on this data set. The 
eigenvalue spectrum showed that 99% of the vari- 

ance is captured by the first three eigenfunctions, (see 
Fig. 11) and in fact, 95.4% of the variance is con- 

tained in the first mode alone. In Fig. 12 we plot the 
first three eigenfunctions, real and imaginary parts. 

Since the cells in the outer ring are ordered and stored 

first, the first 390 points (in every vector) represent the 
twelve cells in the outer ring (30 points per cell). The 

last 210 points represent the cells in the inner ring. The 

step-like shape of tp], shown in Fig. 12(a), represents a 
uniform shift of  each cell center by a constant amount. 
There are seventeen steps; the first twelve account for 
each of the cells on the outer ring, and the remaining 

five for the inner ring. Since the inner ring remains 
steady throughout most of  the sequence, the jumps on 

the last five steps are significantly smaller compared 
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Fig. 12. The first three eigenfunctions, real and imaginary pans, obtained by the KL decomposition of a rotating state with alternating 
speeds: (a) first eigenfunction ~01; (b) second eigenfunction, ~o2; (c) third eigenfunction, ~o3. 
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to the first twelve. In order to understand the contri- 

bution of  the next two modes, we reconstructed the 
dynamics with one, two and three eigenfunctions. The 
reconstruction with one eigenfunction, ~01, is a poor 

approximation. Indeed, it only captures a constant ro- 

tation of the centers of  mass of  each cell on the outer 

ring. When ~01 and ~2 are used in the reconstruction, 
the outer ring moves with alternating speeds and the 
shapes of the cells improve slightly. However, the in- 
ner ring remains fixed. The distorted sine and cosine 
waves observed in the jumps of~02 (see Fig. 12(b)) con- 
tain information about the speed of the outer ring and 
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Fig. 13. Reconstruction of a rotating state. In red, the original data; in black, the reconstruction with two eigenfunctions. The inner 
ring fails to move. 

some information about the shape and size of the cells. 
Fig. 13 shows in red the original boundary data and in 

black the reconstructed data with two eigenfuctions. 
When the thrid eigenfunction, ~03 is added to the re- 

construction, the inner ring rotates (Fig. 14). It rotates 
at the beginning and near the end of the sequence as 

observed in the original data. Fig. 12(c) shows that the 

third eigenfunction is very small for the outer ring and 
is therefore, responsible for the motion of the inner 
ring. 

Although we get the temporal dynamics right and 
the shape and size of the cells improve with a three 
mode reconstruction, there are still significant differ- 
ences visible between the data and the reconstructed 
cells. To obtain further information, we decided to de- 
compose (using the KL decomposition) the error in 

the approximation with three eigenfunctions. A very 
broad KL spectrum was obtained: 55 eigenfunctions 
capturing 95% of the energy with no dominant eigen- 
functions. The consequences of this observation, and 

similar ones that occur in other regimes, are discussed 

in more detail in Section 5.4. 
The precise times when the angular velocity of the 

outer ring alternates between a low and high value 
are difficult to obtain from visual inspection. How- 
ever, the amplitude coefficients of the approximation 
can be very useful for this purpose because they are 
time dependent variables. In Fig. 15, we have plot- 
ted the real and imaginary part of the first two co- 
efficients. The observed sine and cosine shapes rep- 
resent the 360 ° rotating cycle of the outer ring. The 
little steps that perturb the otherwise perfect sine or 
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Fig. 14. Reconstruction of a rotating state. In red, the original data; in black, the reconstruction with three eigenfunctions. 
The reconstructed inner ring now follows the rotation in the data set. 

cosine function indicate the times when the outer ring 

slows down. These steps appear periodically. The flat- 

ness of  these steps shows that the outer ring stops 

momentarily. In fact, a closer look at the reconstruc- 

tion and the original data indicates that the outer ring 

stops periodically, corresponding to a ratcheting type 

motion. Hence there are at least two frequencies of  

rotation present, as in a dynamical system on a torus. 

However, this analysis does not take the fast inner ro- 

tation into account that happens towards the end of  

the data set. Evidently the torus has an unstable man- 
ifold in the full space of  the motion. Unfortunately 

our data set is much too small to analyze the insta- 

bility and the subsequent return of  the motion to the 
torus. 

5.2. Pinwheel 

Our boundary extraction algorithm has been applied 

to the pinwheel regime. The extracted cell boundaries 

are ordered based on the angular position of  their 

centers of  mass while preserving their identity during 

the rotation of the ring. Every cell boundary is in- 

terpolated to produce one-dimensional complex vec- 

tors with 50 points per vector, i.e. every boundary 

is represented by 50(x, y) points. We then apply the 

KL decomposition to these boundaries and obtain the 
eigenvalue spectrum of Fig. 16. It shows one domi- 

nant mode, ~01, capturing most of  the dynamics with 

98.1% of the energy. The second mode, ¢P2, still cap- 

tures a significant amount of  energy, 0.9%. The rest 
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Fig. 15. The real and imaginary parts of the first two amplitude coefficients in a rotating state: (a) first coefficient, a l  ( t ) ;  ( b )  second 
coefficient, a 2 ( t ) .  

of the modes are much less energetic with a uniform 

distribution of energy. 
We have plotted the real and imaginary parts of  the 

first three modes in Fig. 17. The first six vectors (0 < 

x _< 300) represent the cells in the ring, and the last 

vector (301 < x < 350) is associated with the central 
cell. The almost step-like shape of Fig. 17(a) suggests 
that ~ol is associated with the rotation of the centers of 
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of cellular flames. The first and most energetic mode, ~0 I, captures most of  

mass of the outer cells. Observe that ~ol (x) is close to 
zero for 301 < x < 350. This indicates that the first 

mode has no contribution to the dynamics of the cen- 
tral cell; it only reconstructs the motion of the ring. 

While small deviations from a step size function in ~Pl 

indicate the presence of almost circular outer cells, the 
major shape variations for the boundaries of the cells 

in the ring begins to appear in the second mode, ~P2, 
shown in Fig. 17(b). The contribution of ~02 towards 
the dynamics of the central cell is also low. Fig. 17(c) 
shows the third and least energetic mode, ~o3. The mo- 
tion of the central cell is now visible, although still 

small compared to the magnitude of the other cells. 
This mode contains more shape information for the 

cells in the ring. All other eigenfunctions have no dis- 

tinguishable scale separations between the cells in the 

ring and the central cell. The broad spectrum with 
uniform energy distribution of the remaining eigen- 
functions suggests that the remaining boundary mo- 

tion may be turbulent (see below). 
We reconstruct the dynamics by projecting the 

boundary vectors onto a finite number of eigenmodes, 

and obtain the following results. With one mode, only 
the cells in the ring move, the inner cell is always 
fixed (as expected) and the centers of mass in the 

approximation are slightly off. With two modes, the 
cells in the ring rectify their phase, and the recon- 

structed ring is able to follow closely the fast rotation 
of the original data. A small variation in the shape of 
the cells in the ring is added, the middle cell starts os- 
cillating and the shape and size of all cells improves 
slightly. The periodicity of the first two amplitude 
coefficients, plotted in Fig. 18, suggests that the long- 

term behavior is captured by a limit cycle. Indeed, a 

limit cycle is visualized when the two first coefficients 
al( t)  and a2(t) are plotted against each other. The 

motion of the center cell (Fig. 18(c)) is represented 

by what seems to be a weakly chaotic time series that 

should be studied further on a much longer data set. 

5.3. Ratcheting 

We analyze a recorded sequence of 406 video im- 

ages in which the ratcheting cycle repeats itself peri- 
odically, about 18 times, and the outer ring executes a 

rotation of approximately 500 ° . Using the procedure 
outlined in Section 4, the boundaries of the cells are 

obtained by contouring the outer and inner rings sep- 
arately with two intensity values of 68 and 110, re- 

spectively. Each boundary cell is represented by 30 
points. The thirteen cells in the outer ring are sorted se- 
quentially based on the angular displacement of their 

centers of mass. They are also stored before the cells in 
the inner ring. In this way, each snapshot is represented 

by a one-dimensional vector with 600 points. The first 
390 points define the outer ring (13 cell boundaries of 

30 points each) and the remaining 210 points repre- 
sent the inner ring and the central cell. 

The KL decomposition is applied to the bound- 

ary vectors and produces the eigenvalue spectrum of 
Fig. 19. Remarkably, 99.7% of the energy is captured 

with only three eigenmodes. The first one, ~Pl, dom- 
inates the dynamics with 96.3% of the energy. The 
second eigenmode, ~Pl, contains 13.3%, and the third 

one, ~P3, only absorbs 0.1% of the energy. The real 
and imaginary parts of the first three eigenfunctions 
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Fig. 17. (continued) 

are depicted in Fig. 20. The first mode, ~ol (x), repre- 
sents a uniform shift of each cell center by a constant 
amount. It is zero for 391 < x < 600, which corre- 

sponds to the boundaries of the cells in the inner ring. 

This indicates that only the centers of those cells in the 

outer ring are shifted. The sine and cosine waves found 
in the second mode, tp2(x), correct the phase of the 

centers and add shape information to the first eigen- 

mode. Surprisingly, ~01 (X) and ~02(X) are responsible 
only for the motion of the outer ring. The dynamics 
of the locking and unlocking of the two rings has no 
effect on the first two eigenfunctions. The third mode 
constains information on both the outer and inner ring. 

A small scale variation, observed for 0 < x < 390, is 
associated with the spatial complexity of the bound- 
aries of the cells in the outer ring. The larger scale 

variation, for 391 < x < 600, captures the ratcheting 

motion (locking and unlocking) of the inner ring. In 
summary, the dominant dynamics of the two rings is 
uncoupled by the KL decomposition. 

As expected the reconstruction with two modes 
gives a reasonably good agreement for the motion of 
the outer cells but fails to capture the ratcheting of 
the inner cells. Including the third mode we find an 

almost perfect agreement for the motion of the inner 
cells. The shape of the outer cells improves slightly 
but, in general, it changes very little. We have ap- 

plied the KL decomposition onto the error generated 

in the approximation with the first three modes to 

obtain more shape information for the cells. A broad 

eigenvalue spectrum appears with 60 modes capturing 
only 95% of the remaining energy, with no dominant 

mode. We thus deduce that the spatial pattern of the 
shape of the cells is highly complex. 

The almost periodic time series of the first two am- 
plitude coefficients, al (t) and a2(t), shown in Fig. 21, 
respectively, suggests a limit cycle. The small compo- 

nents of the first two eigenfunctions in the inner cells 

(see Fig. 20) indicate there is a small but non-zero 
effect of the ratcheting inner cells on the outer ring. 
This appears as small periodic steps along the slope 

of al (t) and a2(t). The third coefficient a3(t), shown 
in Fig. 22, shows the 18 periodic ratcheting cycles 

observed in the data set much more clearly. The in- 
dividual high peak found in the amplitude coefficient 
a3(t) at t = 240 corresponds to an external event in 
the recording of the data. The periodicity of the first 
three amplitude coefficients suggest that the long-term 
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Fig. 19. Eigenvalue spectrum of a ratcheting state. Remarkably, 
99.6% of the energy is captured by the first two corresponding 
eigenfunctions. 

behavior of  the ratcheting motion is described by a 

two-dimensional torus. 

5.4. In t e rmi t t en t  s ta tes  

Gorman et al. [14] report ordered patterns of states 
that initially seem to be stable. However, after a rel- 
atively long time they lose stability, and the pattern 

disintegrates or moves around irregularly until a new 

ordered pattern, or the old one, re-establishes itself. 

There is evidence that this intermittent behavior is 

related to homoclinic or heteroclinic cycles in the 

underlying phase space description of the system [ 14]. 

Since our data analysis requires a data vector of a fixed 

length, we cannot analyze the merging and disintegrat- 

ing cells. However, we can try to analyze the patterns 

that appear as metastable states in such a regime. If 

these transitions are to be described by a homoclinic or 

heteroclinic cycle, we need first to establish the iden- 

tity of the hyperbolic sets that are involved in those 

cycles. Fig. 23 shows a few snapshots of such an inter- 

mittent data set. In order to relate the states before and 

after the unstable phase, we apply the KL analysis to 

them separately and compare them. Both metastable 

states, before and after the unstable phase, have a sub- 

stantial jittering dynamics and it is therefore, unclear 

whether any heteroclinic cycle should connect saddle 

fixed points or hyperbolic chaotic attractors. We find 

an unexpected and very interesting result: While the 

means of both data sets are almost identical (Fig. 24), 
the spectra of  the jittering dynamics in both cases are 

very broad (see Fig. 25) and even the most energetic 

KL eigenfunctions are completely different from each 

other. This suggests that if there is a cycle governing 
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600 

the intermittent behavior, it is homoclinic and con- 
nects a fixed point to itself. The remaining substantial 
jittering dynamics near that fixed point is better de- 
scribed as small scale, high frequency turbulence than 
as chaotic dynamics. As a typical example, we present 
eigenfunction # 5 of the first data set and the associ- 
ated time series for the amplitude of the data projected 
onto this mode (Fig. 26). 

6. Conclusion 

This study is one of the few attempts to analyze 
spatio-temporally complex behavior of experimental 

data in terms of phase space structures. We have 
shown how to generate meaningful structures from 
rather noisy data on a videotape with limited resolu- 
tion. The approach to extract the boundaries of the 
cellular flames by contouring a function of the pixel 
intensity, and the subsequent process that leads to 
well defined data vectors for each snapshot, can easily 
be applied to other similar experimental data. 

The subsequent Karhunen-Lo6ve analysis of the 
boundary dynamics shows several interesting features: 

• There is a very clear scale separation between the 
coherent structures that generate the low frequency, 
large wavelength dynamics and the broad spec- 
trum of high frequency, small wavelength dy- 
namics of the complicated background motion of 
the cells. 

• In all of the regimes that were analyzed (the rigid 
rotating, the pinwheel and the ratcheting regime), 
we could reconstruct the large scale dynamics 
with three complex eigenfunctions with very good 
accuracy. 

• In the rigid rotation and the ratcheting regime we 
find a doubly periodic phase space dynamics: a 
dominant limit cycle on top of which there is a 
faster, low amplitude modulation that generates 
ratcheting behavior. This suggests that these two 
regimes could be part of the same solution branch 
and may continuously deform into each other as 
the appropriate parameter is varied. 

• The eigenfunction generating the ratcheting behav- 
ior has its dominant structure in the inner ring and 
is almost flat in the other ring. Hence the cou- 
pling between the rotating behavior of the outer 
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Fig. 23. Two ordered states in an intermittent regime: (a) The first pattern appears for 15 s; (b) a disorganized spatio-temporal 
sequence follows; (c) another pattern appears for 6 s. 

ring and the periodic ratcheting inner ring is very 

weak. 

• The pinwheel dynamics is characterized by a limit 

cycle describing the fast rotating structure and a 

possibly chaotic time series for the motion of the 

central cell. 
These results put the dynamics of the cellular flames 

into the category of turbulent flows very much like 
the two-dimensional Navier-Stokes equation [2]. Typ- 

ically, in those kinds of flows there are large scale 

coherent structures dominating the low frequency mo- 

tion and a large number of high frequency, short wave- 
length modes that make up the stochastic, background 

dynamics. As a result, one might think about a pat- 

tern forming model of a reaction-diffusion type with 

diffusive length scale on the order of the large scale 

motion. This would not take into account the turbu- 

lent background which could then be modeled by a 

stochastic noise term. 
To understand more about the background turbu- 

lence we are planning to take a much longer time series 

of one of these rotating regimes and, after elimination 

of the large scale motion, statistically analyze the re- 

maining turbulent data set. In this way, we hope to ex- 
tend the analogy between fluid turbulence and flame 
turbulence further with quantitative results. 
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Fig. 24. The means of the two ordered patterns of  Fig. 23. 
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Fig. 25. Energy spectrum for the KL decomposition of an intermittent state. 
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Fig. 26. Real part of eigenfuction # 5 and its time dependent amplitude. 
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