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It is well known that overdamped and unforced dynamical systems do not oscillate. However, well-designed
coupling schemes, together with the appropriate choice of initial conditions, can induce oscillations when a
control parameter exceeds a threshold value. We demonstrate this effect in a specific system, a soft-potential
mean-field description of the dynamics inteystereti¢ single-domain ferromagnetic sample. Using a specific
(unidirectional, with cyclic boundary conditionsoupling scheme, together with nonidentical initial condi-
tions, one can cause the coupled systerlN@lements K odd) to oscillate when the coupling coefficient is
swept through a critical value. The ensuing oscillations could find utility in the detection of very weak “target”
signals, via their effect on the oscillation characteristics.
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Overdamped bistable dynamics, of the generic form erencescan be constrained by cumbersome electronics and
=—VU(X), underpin the behavior of numerous systems inlarge on-board power requirements. Recent innovat_[éms_
the physical world. The most-studied example is the overhave lead to a readout scheme based on the crossing times
damped Duffing system, the dynamics of a particle in aStatistics in the presence of a noise floor, and our studies
bistable potentiall(x)=—ax?+bx*. Without an external [4,5] indicate that lowering th_e_ _blas signal am_plltude and
forcing term, the state poin(t) will rapidly relax to one of frequgncy can enhance s_eqsmwty and resolution, altho_ugh
two stable attractors, for any choice of the initial condition. It Practical constraints may limit the extent of such a reduction.
has been showfi], however, that coupling similar elements N any case, this recent wofid] has suggested a new gen-
via a linear unidirectional coupling with cyclic boundary €ration of inexpensive, low-power, and more-noise-tolerant
conditions can lead to oscillatory behavior past a criticalS€Nsors, having dynamics qualitatively similar to the ferro-
value of the coupling coefficient. Typically, this behavior is Magnetic core based magnetic sensor modeled by(Hg.
dictated by symmetry condition], and is generated via The (;oupl|ng scheme and resulting oscnlatory bt_ahawor that
of overdamped bistable elements, none of which would os@reater power savings and ease of operation of a large class
cillate when isolated and undriven, subject to the appropriat€f devices/systems, underpinned by overdamped bistable dy-
through different bifurcation mechanismere, we focus the ability to operate these sensors with significantly lower
on a specific system in which the state poi(t) represents POWer.. _ _
the (suitably normalizefimagnetic induction in a ferromag- ~ For clarity and ease of calculation, we return to the basic
netic sample. The dynamical model is obtained via the condynamics(l) for three identical coupled elements:
tinuum limit of a discrete spin model of individual domain
dynamics[3], and has been recently usid to characterize X, = —xy+tanfc(x, + A+ €)1,
the response of a specific magnetic measurement system, the
fluxgate magnetometer: .

Xo=—Xy+tanH c(X,+AX3+ €)], 2
x=—x+tanfc(x+e)], 1)
where the overdot denotes the time derivative amténotes X3=—Xgttanfc(xg+Ax; + €)].
a temperature- and material-dependent system parameter
governing bistability(the system is bistable far>1). e is  Notice that the (unidirectional coupling term, having
an (typically much smaller than the energy barrier height,strength\, which is assumed to be equal for all three ele-
and taken to be dc throughout this wpbekternal target sig- ments, isinsidethe nonlinearity, a direct result of the mean-
nal that one wishes to detect; its effect is to render the pofield nature of the descriptiofin the fluxgate magnetometer,
tential U(x) asymmetric, and detection techniques are aimedhe coupling is through the induction in the primary or “pick
at quantifying this asymmetry. Traditional magnetic detec-up” coil).
tion using this devicésee Ref[4] for an overview and ref- A simple numerical integration of Ed2) (starting with
nonidenticalinitial conditiong reveals oscillatory behavior
for A<\, where\ is a critical threshold value of coupling

*Electronic address: visarath.in@navy.mil strength[it will become apparent, later, that.<0 in the
"Electronic address: adi.bulsara@navy.mil convention adopted in Eq2)]. The oscillations are non-
*Electronic address: palacios@euler.sdsu.edu sinusoidal, with a frequency that increases as the coupling
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FIG. 1. Bifurcation diagram for a system of three identical ele-
ments(2) coupled in a directed ring. Filled squares represent local
Hopf bifurcations of unstable periodic solutioiempty circles; FIG. 2. Stable limit cycle solutions with amplitud®(1) appear
empty square describes a steady-state pitchfork bifurcation point df system(2) for large negative values of. Fixed parameters are
two branches of nontrivial unstable equilibidotted lines. Filled ~ ¢=3, €=0. The arrows indicate the direction of the flow.

circles represent stable periodic solutions created via global bifur- o N
cations.c=3, €=0. served depends on the initial condition of each element. On

the other hand, when<\., a branch of stable limit cycles
strength decreases away from. For A\>\., however, the (filled circles appears. Numerically, the critical point is
system quickly settles into a steady state that depends on tlieund to bex .= —0.4345 for the case af=0 andc=3. For
initial conditions. A<\, the limit cycle has amplitud€®(1), and as\—

A detailed bifurcation analysis of the oscillatory behavior —, the oscillations approach a constant amplitude value,
in response to parameter changes must start with the funda=0.5. The limit cycle is globally stable; its basin of attrac-
mental question about its origin. To aid the analysis, the softtion spans almost the entire phase space. Even a slight varia-
ware packagewuTo [6] and the theory of Hopf bifurcation tion in the initial condition, away fronx;=Xx,=xX3, will
with symmetry[2] are employed. We first write the coupled push the system into the oscillatory solution. This is particu-
system in a more compact form;=f(X; ,Xs1,\,€), i larly significant for practical purposes, wherein operational
=12,...N. constraints(e.g., a noise flogrwould make it near impos-

Then under the unidirectional coupling scheme,ghubal ~ Sible to have identicat;(0). As\ increasesstarting from a
symmetries of this system witN=3 are described by the large negative valygowards\, the amplitude of the limit
cyclic group Zz; generated by the permutation cygle remains around unity, decreasing abruptly to zero at the
(X1,X5,X3)—>(X3,X2,X1). By “global” symmetries we mean  cfitical p0|r'1t;'the frequerjcy'also decreases towards zero.
the symmetries that are induced by the pattern of couplind hus the limit cycle oscillations are “full grown” every-
[7]. In contrastjocal symmetries refer to symmetries of each Where they exist, which suggests that a global bifurcation is
individual element; these symmetries are described by théesponsible for their creation and annihilation. Figure 2 pro-
groupZ,, generated byx— —x. We first fixe=0, c=3, and wde; a phase—spage depiction of the growth of the limit cycle
vary \, so that §;,X,,X3) =(0,0,0) is aZ5 symmetric trivial ~ Oscillations as\ varies.

equilibrium. Linearizing at the origin, yields the Jacobian We now investigate the global bifurcation that leads to
stable periodic oscillations, and seek an analytic expression
2 3 0 for the critical pointh\.. It is well known that a generic

feature of symmetric nonlinear systems is the existence of

I=(dD) 0 c=3.6-0) 0 A heteroclinic cyclesdefined as a collection of solution trajec-

3ax 0 2 tories that connect sequences of equilibria and/or periodic
, s ) solutions[8]. Heteroclinic cycles are highly degenerate. Cer-
whose eigenvaluesBy=2+3\, B,3=2—3NE3\3/2\i i symmetries, however, can facilitate the existence of cy-

suggest two primary local bifurcation points off the origin: a gjic trajectories that can “travel” through invariant subspaces
Hopf bifurcation(HB) at A=4/3 and a steady-state bifurca- yhjle connecting, via saddle-sink connections, one solution

tion (B) at A= —2/3. In fact,AuTo reveals(see Fig. 1that {5 another. In Eq(2), in particular, we find six near-invariant

one branch of unstable periodic solutiofupen circles bi-  planar regiongwith A <0):

furcates off the origin ah =4/3, and two branches of un-

stable nontrivial equilibrium pointédotted line emerge at Gi={Xi AXi<1, Xi+2modz~=—1}, 1=1,2,3,
A= —2/3 via a pitchfork bifurcation. Both branches of non-

trivial equilibria simultaneously become stable, at Si={X :Ax;>—1, X(i+2 mod 3= 1}, i=45,6.

—0.5018, when two additional branches of unstable periodic

solutions emerge via secondary Hopf bifurcations off eachThen the solution trajectories on the cycle lie on flow-
nontrivial equilibrium branch. A& increases past these sec- invariant lines(see Fig. 2 defined by the intersection of the
ondary HB points, the equilibrium branches asymptoticallyinvariant planes. A typical trajectory on the cycle connects
approach*1; and the typical behavior of the system is to six saddle points located near the points<1,—1), (1,1,
settle into a steady state. Which steady state is actually ob-1), (-1,1-1), (-1,1,1), (-1,—-1,1), and (1;-1,1).
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FIG. 3. Two-parameter continuation of Hopf bifurcation points 0.5 Pl
(dashed line, empty circles, and squarasd heteroclinic connec-
tions (black line obtained numerically viauto, superimposed FIG. 4. Frequency response vs system paramatersd e, for

squares obtained analyticgllyPeriodic solutions are globally stable coupled systen(2) with N=3 andc=3.
only for parameter values\(e) below the black line, and unstable
everywhere elsec=3. integral must be evaluated numerically. In Fig. 4, we exam-

) ) . ine the relation between frequency and system parameters
The saddle points exist only for>\. and are annihilated ange with c=3. The zero-frequency line in tha ( €) plane

when the periodic solutions appear. This suggests that Wg in very good agreement with our expressi@ for the

by finding the regions of parameter space where the saddig; the frequency dependence on the system parameters can
points exist, but leads to the complicated task of finding root$)e gptained:

of polynomials of high order. On the other hand, we can use

the fact that, at the birth of the cycle, solutions are confined w=0.115/—\ —0.85— 0.4345, (6)

to invariant lines. The flow on these lines cannot be ob-

structed by other equilibrium points, unless they are part ofxs mentioned earlier, the oscillations are not sinusoidal,

the cycles. Thi; Ieads_ to the following conditions for exis- however, they tend to being sinusoidal for large coupling

tence of a cyclic solution: strength magnitudeN(<\; recall that\,<0). It is instruc-
tive to note that there is a preciserB phase difference

—X+tanjc(x—\+¢€)]>0, (3)  between solutions, which suggests that the limit cycle oscil-
lations form a traveling wave pattern created via a global
—x+tanf c(x+\ + €)]<O0. (4) bifurcation of a heteroclinic cycle. The amplitudes of the

individual oscillations ardfor any A ande=0) =1, corre-
Whene=0, the left-hand sides of Eq3) and(4) each have sponding to the locations of the stable minima of the poten-
a local minimum and a local maximum fO(E(_ll) tial U(X) for each individual UnCOUpled element with
When e>0, both extrema are shifted vertically. Thus, Eq. =0; With increasinge, one observes a displacement in the
(3) is satisfied fore=0 as well ase>0. Hence, we only Wave forms of Fig. 5. One may also compute the summed
have to worry about conditiofd). To find the critical point  OutputX(t) =Z;x;(t) which is also shown in Fig. 3X(t) is
\c, we then compute the local maximum of Ed), setitto almost sinusoidal, and it has frequency 3in general we
zero, and solve fok. We get would expect the summed output to have a frequeNey.
IncreasingN decreases the individual oscillation frequency
1 w; effectively, the onset of the oscillations is delayed, as
Ae=—e+ cIn( Ve+e—1)—tanfIn(Ve+ Ve—1)]. already observed in a coupled system of two-dimensional
(5) elements undergoing a saddle-node bifurcaf@jn Numeri-

cal simulations show that» is very sensitive to small
To verify this result, we conducted, numerically, a two-

parameter continuation analysis usingto with c=3, see 1.0
Fig. 3. The dark diagonal line represents the loci of the het-
eroclinic cycle obtained numerically byuto, which shows
very good agreement with the analytic loci determined by
Eq. (5) (superimposed square pointghe other curves rep- < 054
resent the loci of HB points, which in all cases lead to un- BENE |
stable periodic solutions. The oscillation frequeney as a 1.0 | | |
function of the system parameters, can be calculated from its 15 20x10’
periodT. Near the cycleT is essentially the time required to
travel along the invariant lines. By symmetry, the time spent  F|G. 5. Time series plot of individual wave forms, x, andxs
on each branch is approximately the same. Herite, (light lines and their sum(dark ling for c=3, A\=—0.650, €
~6[1,dt, wheredt~dx/(—x+tanfc(x—\+¢€)]), and the =0.

10
Time (iterates)
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changes in the target signal strengthin addition, the mean strength is much smaller than the energy barrier height in the
value of the oscillation amplitude is nonzero for finike  absence of coupling, noting that the generated oscillations
Both these effects can be used to quantify a very weak “tarare suprathreshold. The noise floor also guarantees noniden-
get” signal e. A very small power source should suffice, in tical initial conditions in the elements of the array; as men-
practice, to generate and sustain the oscillations once thtoned above, this is necessary for the oscillatory behavior to
sensor is activated. This is significant for practical applicaexist. The target signal may be quantified via the change in
tions. For example, the recently proposed dynamical fluxgatgscillation frequency as well as through a computation of the
magnetometef4] follows dynamics of form(1), and is typi-  mean value<x;(t)) or (X(t)), or even through spectral or
cally read out by generating a suprathreshold periodic OSCI||-eve|_Crossing techniques.

lation via anexternal signal generator. These oscillations |, conclusion, we must reiterate that the oscillatory be-
lead to identical residence times in the saturation states of thesvior observed in the array doest occur in a single un-
ferromagnetic core, with the target signal breaking this symyqceq element. Even when coupled, the number of elements,
metry, and thereby permitting its quantification via the dif-injtia| conditions, and the type of coupling are critical con-
ference in residence times. The summed respot($p has gitions for the emergence of this behavior. Hence, the ideas
been observed to be particularly sensitive to the presence @ this paper, while being interesting in their own right, also
target signal. Simulations show that the mean amplitude Ofeyea| potential ways to enhance the utility and sensitivity of
X(t) can be an order of magnitude or more in excess of the, |arge class of nonlinear dynamic sens@s. the magne-
corresponding response of a single uncoupled element, ext&meter discussed in Re#], ferroelectric detectors for elec-
nally driven to generate oscillations similar to those shown inyic fields, or piezoelectric detectors for acoustics applica-
Fig. 5. Hence, generating the on-board oscillations via thgjong by careful coupling and configuration. A detailed

procedure of this paper holds out the promise of significantlyynajysis of dynamic€2) in the presence of noise will be the
lower on-board power and, potentially, a significant sensitiv-gpject of a forthcoming paper.

ity enhancement.

In the presence of a noise floor in each element, one The authors wish to acknowledge the support from the
would expect not to observe a significant chafiggoduced SPAWAR internal fundingILIR) program and the Office of
solely by the noisgin the frequencyw, as long as the noise Naval ResearciiCode 331

[1] V. In et al. (unpublisheg [5] L. Gammaitoni and A.R. Bulsara, Phys. Rev. L&8, 230601
[2] M. Golubitsky, I.N. Stewart, and D.G. Schaeff&ingularities (2002; A. Nikhitin, N. Stocks, and A.R. Bulsara, Phys. Rev. E
and Groups in Bifurcation Theorpplied Mathematical Sci- 68, 016103(2003.
ence, Vol. Il (Springer-Verlag, New York, 1988D.G. Aron- [6] E. Doedel and X. Wang, Applied Mathematics Report, Califor-
son, M. Golubitsky, and M. Krupa, Nonlinearity 861(1992); nia Institute of Technology, 199dinpublishejl
M. Golubitsky and I. StewartSymmetry and Pattern Forma-  [7] B. Dionne, M. Golubitsky, and I. Stewart, Nonlinear@y 559
tion in Coupled Cell NetworkgSpringer-Verlag, New York (1996.
1999. _ N [8] M. Krupa, J. Nonlinear Sci7, 129 (1997); P.-L. Buono, M.
[3] See, e.g., H. Stanleyntroduction to Phase Transitions and Golubitsky, and A. Palacios, PhysicaI23 74 (2000.

Critical PhenomendOxford University Press, Oxford, 1971 [9] J. Acebron, W-J. Rappel, and A.R. Bulsara, Phys. Re67E
[4] AR. Bulsaraet al, Phys. Rev. 67, 016120(2003; B. Ando, 0'16210(20(’)3 ' ’ o ’ ' ’

S. Baglio, A.R. Bulsara, and L. Gammaitofinpublishegl

045102-4



