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Coupling-induced oscillations in overdamped bistable systems
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It is well known that overdamped and unforced dynamical systems do not oscillate. However, well-designed
coupling schemes, together with the appropriate choice of initial conditions, can induce oscillations when a
control parameter exceeds a threshold value. We demonstrate this effect in a specific system, a soft-potential
mean-field description of the dynamics in a~hysteretic! single-domain ferromagnetic sample. Using a specific
~unidirectional, with cyclic boundary conditions! coupling scheme, together with nonidentical initial condi-
tions, one can cause the coupled system ofN elements (N odd! to oscillate when the coupling coefficient is
swept through a critical value. The ensuing oscillations could find utility in the detection of very weak ‘‘target’’
signals, via their effect on the oscillation characteristics.
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Overdamped bistable dynamics, of the generic formẋ
52“U(x), underpin the behavior of numerous systems
the physical world. The most-studied example is the ov
damped Duffing system, the dynamics of a particle in
bistable potentialU(x)52ax21bx4. Without an external
forcing term, the state pointx(t) will rapidly relax to one of
two stable attractors, for any choice of the initial condition
has been shown@1#, however, that coupling similar elemen
via a linear unidirectional coupling with cyclic bounda
conditions can lead to oscillatory behavior past a criti
value of the coupling coefficient. Typically, this behavior
dictated by symmetry conditions@2#, and is generated via
Hopf bifurcations; it appears to occur in any coupled syst
of overdamped bistable elements, none of which would
cillate when isolated and undriven, subject to the appropr
choice of parameters and operating conditions~albeit
through different bifurcation mechanisms!. Here, we focus
on a specific system in which the state pointx(t) represents
the ~suitably normalized! magnetic induction in a ferromag
netic sample. The dynamical model is obtained via the c
tinuum limit of a discrete spin model of individual doma
dynamics@3#, and has been recently used@4# to characterize
the response of a specific magnetic measurement system
fluxgate magnetometer:

ẋ52x1tanh@c~x1e!#, ~1!

where the overdot denotes the time derivative andc denotes
a temperature- and material-dependent system param
governing bistability~the system is bistable forc.1). e is
an ~typically much smaller than the energy barrier heig
and taken to be dc throughout this work! external target sig-
nal that one wishes to detect; its effect is to render the
tentialU(x) asymmetric, and detection techniques are aim
at quantifying this asymmetry. Traditional magnetic dete
tion using this device~see Ref.@4# for an overview and ref-

*Electronic address: visarath.in@navy.mil
†Electronic address: adi.bulsara@navy.mil
‡Electronic address: palacios@euler.sdsu.edu
1063-651X/2003/68~4!/045102~4!/$20.00 68 0451
n
r-
a

t

l

s-
te

-

the

ter

,

-
d
-

erences! can be constrained by cumbersome electronics
large on-board power requirements. Recent innovations@4#
have lead to a readout scheme based on the crossing t
statistics in the presence of a noise floor, and our stud
@4,5# indicate that lowering the bias signal amplitude a
frequency can enhance sensitivity and resolution, altho
practical constraints may limit the extent of such a reducti
In any case, this recent work@4# has suggested a new ge
eration of inexpensive, low-power, and more-noise-toler
sensors, having dynamics qualitatively similar to the fer
magnetic core based magnetic sensor modeled by Eq.~1!.
The coupling scheme and resulting oscillatory behavior t
we discuss below, therefore, afford the possibility of ev
greater power savings and ease of operation of a large c
of devices/systems, underpinned by overdamped bistable
namics; in essence, the immediate practical benefit would
the ability to operate these sensors with significantly low
power.

For clarity and ease of calculation, we return to the ba
dynamics~1! for three identical coupled elements:

ẋ152x11tanh@c~x11lx21e!#,

ẋ252x21tanh@c~x21lx31e!#, ~2!

ẋ352x31tanh@c~x31lx11e!#.

Notice that the ~unidirectional! coupling term, having
strengthl, which is assumed to be equal for all three e
ments, isinside the nonlinearity, a direct result of the mea
field nature of the description~in the fluxgate magnetomete
the coupling is through the induction in the primary or ‘‘pic
up’’ coil !.

A simple numerical integration of Eq.~2! ~starting with
nonidentical initial conditions! reveals oscillatory behavio
for l,lc , wherelc is a critical threshold value of coupling
strength@it will become apparent, later, thatlc,0 in the
convention adopted in Eq.~2!#. The oscillations are non
sinusoidal, with a frequency that increases as the coup
©2003 The American Physical Society02-1
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strength decreases away fromlc . For l.lc , however, the
system quickly settles into a steady state that depends o
initial conditions.

A detailed bifurcation analysis of the oscillatory behav
in response to parameter changes must start with the fu
mental question about its origin. To aid the analysis, the s
ware packageAUTO @6# and the theory of Hopf bifurcation
with symmetry@2# are employed. We first write the couple
system in a more compact formẋi5 f (xi ,xi 11 ,l,e), i
51,2, . . . ,N.

Then under the unidirectional coupling scheme, theglobal
symmetries of this system withN53 are described by the
cyclic group Z3, generated by the permutatio
(x1 ,x2 ,x3)°(x3 ,x2 ,x1). By ‘‘global’’ symmetries we mean
the symmetries that are induced by the pattern of coup
@7#. In contrast,local symmetries refer to symmetries of ea
individual element; these symmetries are described by
groupZ2, generated byx°2x. We first fixe50, c53, and
vary l, so that (x1 ,x2 ,x3)5(0,0,0) is aZ3 symmetric trivial
equilibrium. Linearizing at the origin, yields the Jacobian

J5~d f !(l,c53,e50)5F 2 3l 0

0 2 3l

3l 0 2
G ,

whose eigenvaluesb15213l, b2,3522 3
2 l63A3/2l i

suggest two primary local bifurcation points off the origin:
Hopf bifurcation~HB! at l54/3 and a steady-state bifurca
tion ~B! at l522/3. In fact,AUTO reveals~see Fig. 1! that
one branch of unstable periodic solutions~open circles! bi-
furcates off the origin atl54/3, and two branches of un
stable nontrivial equilibrium points~dotted lines! emerge at
l522/3 via a pitchfork bifurcation. Both branches of no
trivial equilibria simultaneously become stable, atl5
20.5018, when two additional branches of unstable perio
solutions emerge via secondary Hopf bifurcations off ea
nontrivial equilibrium branch. Asl increases past these se
ondary HB points, the equilibrium branches asymptotica
approach61; and the typical behavior of the system is
settle into a steady state. Which steady state is actually

FIG. 1. Bifurcation diagram for a system of three identical e
ments~2! coupled in a directed ring. Filled squares represent lo
Hopf bifurcations of unstable periodic solutions~empty circles!;
empty square describes a steady-state pitchfork bifurcation poi
two branches of nontrivial unstable equilibria~dotted lines!. Filled
circles represent stable periodic solutions created via global b
cations.c53, e50.
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served depends on the initial condition of each element.
the other hand, whenl,lc , a branch of stable limit cycles
~filled circles! appears. Numerically, the critical point i
found to belc520.4345 for the case ofe50 andc53. For
l!lc , the limit cycle has amplitudeO(1), and asl→
2`, the oscillations approach a constant amplitude va
'0.5. The limit cycle is globally stable; its basin of attra
tion spans almost the entire phase space. Even a slight v
tion in the initial condition, away fromx15x25x3, will
push the system into the oscillatory solution. This is partic
larly significant for practical purposes, wherein operation
constraints~e.g., a noise floor! would make it near impos-
sible to have identicalxi(0). As l increases~starting from a
large negative value! towardslc , the amplitude of the limit
cycle remains around unity, decreasing abruptly to zero at
critical point; the frequency also decreases towards z
Thus the limit cycle oscillations are ‘‘full grown’’ every-
where they exist, which suggests that a global bifurcation
responsible for their creation and annihilation. Figure 2 p
vides a phase-space depiction of the growth of the limit cy
oscillations asl varies.

We now investigate the global bifurcation that leads
stable periodic oscillations, and seek an analytic expres
for the critical point lc . It is well known that a generic
feature of symmetric nonlinear systems is the existence
heteroclinic cycles, defined as a collection of solution trajec
tories that connect sequences of equilibria and/or perio
solutions@8#. Heteroclinic cycles are highly degenerate. C
tain symmetries, however, can facilitate the existence of
clic trajectories that can ‘‘travel’’ through invariant subspac
while connecting, via saddle-sink connections, one solut
to another. In Eq.~2!, in particular, we find six near-invarian
planar regions~with l,0):

d i5$xi :lxi,1, x( i 12 mod 3)521%, i 51,2,3,

d i5$xi :lxi.21, x( i 12 mod 3)51%, i 54,5,6.

Then the solution trajectories on the cycle lie on flo
invariant lines~see Fig. 2! defined by the intersection of th
invariant planes. A typical trajectory on the cycle conne
six saddle points located near the points (1,21,21), (1,1,
21), (21,1,21), (21,1,1), (21,21,1), and (1,21,1).

-
l

of

r-

FIG. 2. Stable limit cycle solutions with amplitudeO(1) appear
in system~2! for large negative values ofl. Fixed parameters are
c53, e50. The arrows indicate the direction of the flow.
2-2
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The saddle points exist only forl.lc and are annihilated
when the periodic solutions appear. This suggests that
could determine the exact location of the heteroclinic cy
by finding the regions of parameter space where the sa
points exist, but leads to the complicated task of finding ro
of polynomials of high order. On the other hand, we can
the fact that, at the birth of the cycle, solutions are confin
to invariant lines. The flow on these lines cannot be o
structed by other equilibrium points, unless they are par
the cycles. This leads to the following conditions for ex
tence of a cyclic solution:

2x1tanh@c~x2l1e!#.0, ~3!

2x1tanh@c~x1l1e!#,0. ~4!

Whene50, the left-hand sides of Eqs.~3! and~4! each have
a local minimum and a local maximum forxP(21:1).
When e.0, both extrema are shifted vertically. Thus, E
~3! is satisfied fore50 as well ase.0. Hence, we only
have to worry about condition~4!. To find the critical point
lc , we then compute the local maximum of Eq.~4!, set it to
zero, and solve forl. We get

lc52e1
1

c
ln~Ac1Ac21!2tanh@ ln~Ac1Ac21!#.

~5!

To verify this result, we conducted, numerically, a tw
parameter continuation analysis usingAUTO with c53, see
Fig. 3. The dark diagonal line represents the loci of the h
eroclinic cycle obtained numerically byAUTO, which shows
very good agreement with the analytic loci determined
Eq. ~5! ~superimposed square points!. The other curves rep
resent the loci of HB points, which in all cases lead to u
stable periodic solutions. The oscillation frequencyv, as a
function of the system parameters, can be calculated from
periodT. Near the cycle,T is essentially the time required t
travel along the invariant lines. By symmetry, the time sp
on each branch is approximately the same. HenceT
'6*21

1 dt, wheredt'dx/„2x1tanh@c(x2l1e)#…, and the

FIG. 3. Two-parameter continuation of Hopf bifurcation poin
~dashed line, empty circles, and squares! and heteroclinic connec
tions ~black line obtained numerically viaAUTO, superimposed
squares obtained analytically!. Periodic solutions are globally stabl
only for parameter values (l,e) below the black line, and unstabl
everywhere else.c53.
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integral must be evaluated numerically. In Fig. 4, we exa
ine the relation between frequency and system parametel
ande with c53. The zero-frequency line in the (l, e) plane
is in very good agreement with our expression~5! for the
critical coupling strength. Then a numerical approximati
for the frequency dependence on the system parameters
be obtained:

v50.115A2l20.85e20.4345. ~6!

As mentioned earlier, the oscillations are not sinusoid
however, they tend to being sinusoidal for large coupli
strength magnitude (l!lc ; recall thatlc,0). It is instruc-
tive to note that there is a precise 2p/3 phase difference
between solutions, which suggests that the limit cycle os
lations form a traveling wave pattern created via a glo
bifurcation of a heteroclinic cycle. The amplitudes of th
individual oscillations are~for any l ande50) 61, corre-
sponding to the locations of the stable minima of the pot
tial U(x) for each individual uncoupled element withe
50; with increasinge, one observes a displacement in t
wave forms of Fig. 5. One may also compute the summ
outputX(t)5( ixi(t) which is also shown in Fig. 5.X(t) is
almost sinusoidal, and it has frequency 3v ~in general we
would expect the summed output to have a frequencyNv).
IncreasingN decreases the individual oscillation frequen
v; effectively, the onset of the oscillations is delayed,
already observed in a coupled system of two-dimensio
elements undergoing a saddle-node bifurcation@9#. Numeri-
cal simulations show thatv is very sensitive to smal

FIG. 4. Frequency response vs system parametersl ande, for
coupled system~2! with N53 andc53.

FIG. 5. Time series plot of individual wave formsx1 , x2 andx3

~light lines! and their sum~dark line! for c53, l520.650, e
50.
2-3
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changes in the target signal strengthe; in addition, the mean
value of the oscillation amplitude is nonzero for finitee.
Both these effects can be used to quantify a very weak ‘‘
get’’ signal e. A very small power source should suffice,
practice, to generate and sustain the oscillations once
sensor is activated. This is significant for practical appli
tions. For example, the recently proposed dynamical fluxg
magnetometer@4# follows dynamics of form~1!, and is typi-
cally read out by generating a suprathreshold periodic os
lation via an external signal generator. These oscillation
lead to identical residence times in the saturation states o
ferromagnetic core, with the target signal breaking this sy
metry, and thereby permitting its quantification via the d
ference in residence times. The summed responseX(t) has
been observed to be particularly sensitive to the presenc
target signal. Simulations show that the mean amplitude
X(t) can be an order of magnitude or more in excess of
corresponding response of a single uncoupled element, e
nally driven to generate oscillations similar to those shown
Fig. 5. Hence, generating the on-board oscillations via
procedure of this paper holds out the promise of significan
lower on-board power and, potentially, a significant sensi
ity enhancement.

In the presence of a noise floor in each element,
would expect not to observe a significant change~introduced
solely by the noise! in the frequencyv, as long as the noise
-

d
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strength is much smaller than the energy barrier height in
absence of coupling, noting that the generated oscillati
are suprathreshold. The noise floor also guarantees noni
tical initial conditions in the elements of the array; as me
tioned above, this is necessary for the oscillatory behavio
exist. The target signal may be quantified via the change
oscillation frequency as well as through a computation of
mean valueŝxi(t)& or ^X(t)&, or even through spectral o
level-crossing techniques.

In conclusion, we must reiterate that the oscillatory b
havior observed in the array doesnot occur in a single un-
forced element. Even when coupled, the number of eleme
initial conditions, and the type of coupling are critical co
ditions for the emergence of this behavior. Hence, the id
of this paper, while being interesting in their own right, al
reveal potential ways to enhance the utility and sensitivity
a large class of nonlinear dynamic sensors~e.g. the magne-
tometer discussed in Ref.@4#, ferroelectric detectors for elec
tric fields, or piezoelectric detectors for acoustics appli
tions! by careful coupling and configuration. A detaile
analysis of dynamics~2! in the presence of noise will be th
subject of a forthcoming paper.
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