Cycling Behavior in Near-Identical Cell Systems.

Antonio Palacios, Patrick Longhini
Department of Mathematics
San Diego State University
San Diego, CA 92182-7720
USA

June 12, 2002

Abstract

A generic pattern of collective behavior of symmetric networks of coupled identi-
cal cells is cycling behavior. In networks modeled by symmetric systems of differential
(difference) equations, cycling behavior appears in the form of solution trajectories (or-
bits) that linger around symmetrically related steady-states (fixed points) or periodic
solutions (orbits) or even chaotic attractors. In this last case, leading to what is called
“cycling chaos”. In particular, Dellnitz et al. [5] demonstrated the existence of cycling
chaos in continuous-time three-cell systems modeled by Chua’s circuit equations and
Lorenz equations, while Palacios [24, 25] later demonstrated the existence of cycling
chaos in discrete-time cell systems. In this work, we consider two issues that follow-up
from these previous works. First of all, we address the generalization of existence of cy-
cling behavior in continuous-time systems with more than three cells. We demonstrate
that increasing the number of cells, while maintaining the same network connectivity
used by Dellnitz et al. [5], is not enough to sustain the nature of a cycle, in which only
one cell is active at any given time. Secondly, we address the existence of cycling be-
havior in networks with near-identical cells, where the internal dynamics of each cell is
governed by an identical model equation but with possibly different parameter values.
We show that, under a new connectivity scheme, cycling behavior can also occur in
networks with near-identical cells.

1 Introduction

A wide variety of complex spatio-temporal phenomena are commonly modeled by coupled
cell systems through either continuous-time systems of differential equations or discrete-time
systems of difference equations. Some examples include: the dynamics of arrays of Joseph-
son junctions [2, 8, 14], central pattern generators in biological systems [15, 16, 28], laser



dynamics [27, 31], synchronization of chaotic oscillators [26, 32], the dynamics of compet-
ing species [20, 21, 22], collective behavior of bubbles in fluidization [13], and the flocking
of birds [30]. In these examples, three factors are normally considered when studying the
collective behavior that a particular network can produce. Mainly, the internal dynamics
of each individual cell, the topology of cell connections (i.e., which cells communicate with
each other), and the type of coupling. In recent years, however, symmetry considerations
have also gained attention. More details can be found in the work by Dionne et al. [6, 7],
Golubitsky and Stewart [12]. For instance, one particular pattern of behavior that is com-
monly found in symmetric systems of coupled identical cells is cycling behavior, in which
solution trajectories can linger around steady states and periodic solutions for increasingly
longer periods of time. These type of cycles are formally called heteroclinic if the solutions
that are part of the cycle are all different. Otherwise the cycles are called homoclinic.

Dellnitz et al. [5] have shown that symmetric identical cell systems can also produce
cycling behavior that is independent of the internal dynamics of each individual cell. Using
Chua’s circuit equations and Lorenz equations, Dellnitz and collaborators further illustrate
this conclusion with simulations of a network of three identical cells connected in a directed
ring fashion. In these simulations, solution trajectories can cycle around symmetrically
related chaotic sets. Thus producing “cycling chaos”. In more recent work, we showed,
first numerically [24] and then analytically [25], that cycling chaos also occurs in symmetric
systems of coupled identical cells described by discrete-time maps. Two issues that arise from
these works include: the generalization of cycling behavior in systems of coupled identical
cells with more than three cells; and the existence of cycling behavior in near-identical cells.
By “near-identical” we mean cells whose internal dynamics is governed by identical equations
but with possibly different parameter values.

In this work, we address these two issues over cell systems modeled by continuous-time
differential equations and discrete-time maps as well. In particular, we show that increasing
the number of cells in the type of network employed by Dellnitz et al., i.e., a directed ring with
Z,, symmetry, will destroy (even after adjusting other parameters such as coupling strength)
the type of cycling behavior in which only one cell is active at any given time, while the others
are quiescent. Adding an an all-to-all coupling to non-nearest neighboring cells, however, can
restore the desired cycle. We then use this type of network connectivity to show the existence
of cycles in near-identical cells. This latter type of cycles allows for trajectories that connect
a wider range of solutions, including steady-states (fixed points), periodic solutions (periodic
orbits), and chaotic attractors—all in the same trajectory. Various computer simulations are
used to illustrate the main results.

2 Background

2.1 Heteroclinic Cycles

A heteroclinic cycle is a collection of solution trajectories that connects sequences of equi-
libria and /or periodic solutions of continuous or discrete systems. As time evolves, a typical



nearby trajectory stays for increasingly longer periods near each solution before it makes a
rapid excursion to the next solution. For a more precise description of heteroclinic cycles
and their stability, see Melbourne et al. [23], Krupa and Melbourne [18|, the monograph
by Field [10], and the survey article by Krupa [17]. The existence of structurally stable
heteroclinic cycles is considered a highly degenerate feature of both types of systems, con-
tinuous and discrete. In other words, typically they do not exist. In continuous systems,
where the governing equations normally consist of systems of differential equations, it is
well-known that the presence of symmetry can lead, however, to structurally stable, asymp-
totically stable, cycles [9, 11]. First, symmetry forces certain subspaces of the phase-space
to be invariant under the governing equations. Then, cycles are formed through saddle-sink
connections between equilibria and/or periodic solutions that lye on the invariant subspaces.
Since saddle-sink connections are structurally stable so are the cycles. Figure 1 shows an
example of a cycle involving three steady-states of a system of ODE’s proposed by Gucken-
heimer and Holmes [11]. Observe that, as time evolves, a nearby trajectory stays longer on
each equilibrium.
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Figure 1: Heteroclinic cycle connecting three equilibrium points of the Guckenheimer and
Holmes system. (a) Saddle-sink connections in phase-space, (b) Time series evolution of a
typical nearby trajectory.

For systems whose symmetries are described by the continuous group O(2), i.e. the group
of rotations and reflections on the plane, Armbruster et al. [1] show that heteroclinic cycles
between steady-states can occur stably, and Melbourne et al. [23] provide a method for finding
cycles that involve steady-states as well as periodic solutions. For systems with discrete
symmetries, in particular Dihedral D,, symmetry, Buono et al. [3] show that cycles connecting
steady-states and periodic solutions are also found stably in systems of coupled identical cells.



Regardless of the type of symmetry, when a heteroclinic cycle is also asymptotically stable,
it can serve as a model for a certain kind of intermittency, since nearby trajectories move
quickly between solutions and stay for a relatively long time near each solution.

2.2 Coupled Cell Systems of Differential Equations

In this section, we revisit symmetric systems of coupled identical cells similar to those em-
ployed by Dellnitz et al. [5] in the study of cycling chaos. In particular, we consider systems
with N identical cells, where the internal dynamics of each cell is governed by a k-dimensional
continuous-time system of differential equations of the form

dX;
dt

where X; = (z;1,...,24) € R" denotes the state variables of cell i and A = (\1,..., ) is a
vector of parameters. Observe that f is independent of ¢ because the cells are assumed to
be identical. A network of N cells is a collection of identical interconnected cells, which we
model by the following system of coupled differential equations

dX;
dt

FX3) + ) eh(Xi, X), (2)

Jj—

where h is the coupling function between two cells, the summation is taken over those cells j
that are coupled to cell 7, and ¢;; is a matrix of coupling strengths.

2.3 Local and Global Symmetries

Following Dellnitz et al. [5], we distinguish local symmetries from global symmetries. £ C
O(k) is the group of local or internal symmetries of individual cells if, for all I € L, we have

fX5) = 1f(X5).

While local symmetries are dictated by f, global symmetries are induced by the pattern
of coupling. More precisely, G C O(N) is the group of global symmetries of the network if,
for all o € G, we have

F(oX)=0F(X).

Depending on the coupling function h, it is possible for the local symmetries [ to be also
symmetries of the network equations (2). In particular, when the action of [ on each cell
individually is a symmetry of (2), so that

hXi 1 X;) = Lh(X;, X))
h(l X, X;) = h(X;, X;),

for all [ € £, then the coupling is called wreath product coupling.



2.4 Cycling Chaos

In principle, saddle-sink connections can also lead to more “complicated” cycling behav-
ior involving other type of solutions besides steady-states. The only requirement is for the
appropriate invariant subspaces to contain those solutions. For instance, replacing the equi-
libria in the Guckenheimer-Holmes system with chaotic attractors can lead to what Dellnitz
et al. [5] call cycling chaos. They do this as follows. First, Golubitsky et al. [5] show that the
Guckenheimer-Holmes system can be interpreted as a network of three identical coupled cells.
Dellnitz et al. [5] then made the critical observation that, under certain conditions, cycling
behavior is a feature of the global dynamics that can persist independently of the internal
dynamics of each cell. It follows that if the internal dynamics of the Guckenheimer-Holmes
system is replaced by a chaotic attractor, then the new coupled system would produce cycling
chaos. Dellnitz et al. demonstrate this conclusion using first a modified version of Chua’s
circuit equations

-ft'il = a(xiz — MoTi1 — %.T?l)
Tio = Ti — Tig + Ti3 (3)
Tiz = —PBi,

where ¢ denotes the cell number, «, mg, m; and § are parameters; and then Lorenz equations

T = 0(Tw —xi)
Tio = pPTi — Tiz — Ti1Ti3 (4)
Tiz = Tali — PBTis.

where o, p and [ are parameters. Both cell equations possess local reflectional symme-
try. More precisely, Chua’s equations are symmetric under the substitution (z;1, 2, i3) —
(—xi1, —Ti2, —2;3), while Lorenz equations are symmetric under the substitution (z;, z;2) —
(—xi1, —x;2). Figure 2 illustrates the results of simulations with these last two equations.
Observe that only one cell is active at any given time.

2.5 Networks with N > 3 Identical Cells

We now address the question of whether a network of N > 3 identical cells interconnected
in a directed ring fashion can also produce cycling chaos. We consider this question with a
wreath coupling function similar to that employed by Dellnitz et al. [5]. That is, a coupling of
the form h(X;, X;) = —v||X;||X;, with identical coupling strength v > 0. Through numerical
work, we have found that a directed ring of N > 3 identical cells will not necessarily produce
cycling behavior, even after adjusting the coupling strength. We have also found, however,
that adding an all-to-all coupling scheme (see Figure 3) between non-nearest neighboring
cells can help preserve the cycling behavior. Figure 4 illustrates this conclusion in a network
with 5 cells, where the internal dynamics of each individual cell is also modeled by Chua’s
equation (3). Observe in Figure 4(a) that when the cells are connected in a directed ring
fashion only, as is the case of those cells used in Figure 2, the nature of the cycle, in which
only one cell is active at any given time disappears. Interestingly, increasing the number of
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Figure 2: Cycling chaos in a network of three identical cells connected in a directed ring
fashion, discovered by Dellnitz et al. [5]. The internal dynamics of each cell is modeled by
(a) Chua’s circuit equations and (b) Lorenz equations.

cells, does not destroy the intermittent behavior of the dynamics of each cell. The persistence
of this intermittency can be explained by recalling the fact that saddle-sink connections are
structurally stable. Consequently, a perturbation of the network such as increasing the
number of cells (without adding any further connections) can break saddle-sink connections
in a cycle but the overall “intermittency” nature of the cycle would persists. When all-to-all
coupling is added to non-nearest neighboring cells, only one cell is active at any given time,
while the others are quiescent. See Figure 4(b). We found this to be also the case in networks
with larger number of cells. In particular, we conducted simulations with up to 20 cells.

In the following two sections, we investigate the existence of cycling behavior in coupled
systems of near-identical cells. By “near-identical” we mean cells whose internal dynamics
is governed by identical equations but with possibly different parameter values. We will
consider two types of cells. First, cells whose internal dynamics is modeled by continuous-
time systems of differential equations, and then cells modeled by discrete-time maps. In
both cases, we will show that, under certain conditions, a network of near-identical cells can
also produce cycling behavior. These type of cycles, however, are “richer” in the sense that
a single trajectory can now connect different type of solutions such as steady-states (fixed
points), periodic solutions (periodic orbits), and chaotic attractors as well.



Figure 3: Interconnection scheme that supports cycling chaos. Nearest neighbors are con-
nected in a directed ring fashion, while all remaining cells are connected in an all-to-all
fashion. All couplings are identical.
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Figure 4: Simulations of a network of five identical cells, where the internal dynamics of each
cell is modeled by a modified version of Chua’s circuit equations. (a) When only nearest
neighbors are connected in a directed ring fashion, two or more cells can be simultaneously
active. (b) When non-nearest neighbors are connected in an all-to-all fashion, however, only
one cell is active at any given time, while the others are quiescent.

3 Continuous-Time Near-Identical Cell Systems

3.1 Modeling Equations

We now consider cells whose internal dynamics is modeled by continuous-time systems of
differential equations. That is, for 1 <7 < N

dX;
= Xi7 )\Z ) b}
= (X0 )
where X; = (z4,...,2T4) € R” denotes the state variables of cell i, N is the total number of
cells, \; = (Aij, ..., A;,) is a vector of parameter values that controls the internal dynamics

of cell 7, f is smooth and independent of 7 since the cells are near-identical. Observe that
although each cell is governed by the same equation, the dependence of the parameter vector
A on the cell number ¢ allows for each uncoupled cell to exhibit its own unique internal
dynamics.

A network is now a collection of near-identical interconnected cells, which can be modeled
by a system of coupled differential equations of the form

dX
dt

F(Xa, )+ aih(X;, X;), (6)

]—)Z



where h is the coupling function between two cells, the summation is taken over those cells j
that are coupled to cell ¢, and «; is a matrix of coupling strengths.

3.2 Simulations

Numerical simulations with networks similar to those depicted in Figure 3 were conducted. In
particular, we conducted simulations of a network with N = 4 cells, with internal dynamics
modeled by Chua’s equations (3), and then of a network with NV = 6 cells, where the internal
dynamics of cell 7 is modeled by Rossler’s equations

Ty = —Tip — Tig
Tio = Ty + aTi (7)
jJig = b -+ (xil — ci)a:ig.

In both cases, wreath product coupling h(X;, X;) = ||X,||.X; of identical strength given by
«;; = —7, where v > 0, was used. Figure 5(a) shows the results of simulations of the
network with four Chua’s cell equations. Observe that, at any given time, only one cell
is active while the others are quiescent. Parameter values that are identical in all cells
are: a = 15, myg = —0.230769, m; = 0.0123077, and v = 0.2. We then varied § from
cell 1 through 4 as follows, f; = 30, By = 53, B3 = 33.136, and By = 35, respectively.
This particular choice of 8 values yields internals dynamics in cells 1-4 that consists of a
double scroll chaotic attractor, period-1 solution, another chaotic attractor, and a period-
2 solution, respectively. The overall behavior of the interconnected network then yields a
cycling trajectory that connects all of these solutions. Figure 5(b) shows similar results with
cells whose internal dynamics is described by Rossler’s equations (7). In this latter case,
identical parameter values are: ¢ = 0.1, b = 0.1, and v = 0.2. Distinct values for parameter
¢ from cell 1 through 6 are: ¢; = 9, co = 13, c3 = 18, ¢4 = 4, ¢5 = 12, ¢¢ = 12.8. This
last choice of parameters causes (7) to yield three chaotic attractors, and periodic solutions
of period 1, 3, and 6, respectively. These solutions become connected by the overall cycling
behavior of the network.

4 Discrete-Time Near-Identical Cell Systems

4.1 Network Equations

We consider again systems with N near-identical cells, in the same sense as before, except
that now the internal dynamics of each cell is governed by a k-dimensional difference equation
of the form

Xinr = [(Xi, M) (8)

n+1

where X; = (;,,..,7;,) € R" denotes the state variable of cell i and A; = (A;,...,A;,) is a
vector of parameters. A network of N cells is now modeled by a system of coupled difference
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equations of the form

Jj—

where h is the coupling function between those cells j that are coupled to cell 2, 1 <7 < N,
and «;; represents the strength of the coupling. Observe that f is independent of 7 because
the cells are assumed to be identical. Similarly, A is also independent of both ¢ and j due to
identical coupling.

4.2 Cells with Local Z; Symmetry

As a representative example, we consider a network of four cells interconnected as is shown in
Figure 3(b). The internal dynamics of each individual cell is governed by the Z,-symmetric
cubic map

fl@,\) =Xz -2 A>0, (10)

where Z; = {1, —1}. The bifurcation diagram of Figure 6 depicts the long-term dynamics
of orbits for values of A in the range 0 < A < 3. A wide range of complex behavior can
be observed in this diagram, including period-doubling cascades and chaotic attractors. In
fact, the bifurcations in (10) are reminiscent of those found in the logistic map [22], except
that now local Zy-symmetry forces two nontrivial fixed points (one with z > 0 and one
with z < 0) to bifurcate from the trivial solution z = 0 at A = 1. Each fixed point, in
turn, undergoes a period-doubling cascade leading to a pair of chaotic attractors. Local Zy
symmetry again forces the cascades to occur at the same parameter values for each fixed
point [4]. For A < A\, = 3\/3/2, the attractors are confined to opposite sides of the z = 0
axis and each attractor has its own basin of attraction. At A = \., the basins of attraction
collide and the two attractors merge into a single one. See Rogers and Whitley [29] for a
more comprehensive analysis of a similar map f(z,a) = az® + (1 —a)z, 0 < a < 4.
To form the interconnected network equations (9), we consider a wreath product coupling
function of the form
M@, 5) = |z;[™ s, (11)

where 0 < m < 1. We will assume identical coupling strength given by «;; = —v, where
v > 0. Observe that, as expected, h is equivariant under the Z, action. The four-cells
network, which possesses local Zy-symmetry and global Zz-symmetry, then takes the form

Tl = M1, — 25 — (|22, ™ + |23,[™)21,
Lo, = Moo, — 25 — (w3, ™ + |24, [™) 22, (12)
T3, = Msx3, — 23 — V(|74 | + |21, [™)23,
Tippy = M, — 23 — Y21, ™ + |22, [™) 24,

The value of the coupling strength v and the parameter m are critical for the creation of
cycling behavior because they control the global dynamics away from the internal dynamics
of an individual cell. More specifically, the fact that 0 < m < 1 prevents the global dynamics



11

from escaping to infinity and controls the rate at which the excursions from the dynamics
of one cell to the next one occur. As m decreases, a typical orbit near a cycle spends longer
time lingering around the dynamics of an active cell before it makes an excursion to the
dynamics of the next cell.

Numerical simulations of (12) with various combinations of parameter values were con-
ducted. For 1 < \; < A., and appropriate values of coupling strength v and parame-
ter m, the simulations yield trajectories that cycle around the orbits generated by the
internal dynamics of each individual cell 7, according to the actual value of \;. For in-
stance, Figure 7 depicts the results of one particular simulation with initial conditions
(19, Tog, T3y, Tay) = (—0.01,0.03,0.02,0.5), and parameter values v = —3.05, m = 1/3,
A = 2.602, Ay = 2.2, A\3 = 2.44, and \y = 2.26. According to Figure 6, \; = 2.602 is
near the critical point A., where two symmetrically related chaotic attractors collide. In this
region, the internal dynamics of cell 1 produces an intermittent chaotic orbit that switches
between the remnants of the two attractors [19]. Similarly, cell 2 generates a period-2 orbit,
and cell 3 yields a chaotic attractor that fills parts of the interval [0, 2]. Local Zy symmetry
in the internal dynamics of cell 3 also forces the existence of a conjugate chaotic attractor
within [-2,0]. Finally, the long-term dynamics of cell 4 is a period-4 orbit. Observe that all
these solutions are visited by one single trajectory, and that, at any given time, only one cell
is active in its own internal dynamics, while the others are quiescent.

We have also found that if ); lies within the interval 1 < A < A., and depending on
the coupling strength, then when cell ¢ becomes active it can exhibit one of two types of
behavior. Either the active cell always selects the same of two conjugate orbits (z > 0 or
x < 0), or it can switch intermittently between conjugate orbits. In the former case, the
actual sign of the orbit that is selected depends on the initial conditions of the active cell.
In Figure 7, cells 1-3 switch intermittently when they become active.

5 Conclusions

We have presented a network connectivity that supports the existence of cycling behavior in
coupled systems of identical and near-identical cells with more than three cells, and where
the cell dynamics is modeled by either continuous- or discrete-time systems of differential or
difference equations. In particular, we have shown that cycling behavior in coupled systems
of near-identical cells, as is the case with identical cells, can also be a global phenomenon
that persists independently of the local dynamics of individual cells. Even when distinct
parameter values force each cell to generate different long-term behavior. This type of cycles
offer a wider range of behavior in the sense that a single trajectory can now visit multiple
types of solutions or orbits, including chaotic attractors.
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(a) Cycling behavior in Chua’s circuit. (b) Magnification of active phase in (a)
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(¢) Cycling behavior in Rossler’s equations (d) Magnification of active phase in (c)

Figure 5: Cycling behavior in networks of coupled near-identical cells. (a) Cycling trajectory
connecting chaotic set, period-1 solution, chaotic set, and period-2 solution of Chua’s circuit.
(b) Cycling trajectory connecting chaotic sets, period-1, period-3, and period-6 solutions of
Rossler’s equations.
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Figure 6: Bifurcation diagram for a cell with internal dynamics f(z,\) = Az — z°.
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(a) Cycling behavior in cubic map.
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(b) Magnification of active phase in (a)

Figure 7: Cycling behavior in a network of four near-identical discrete cells. Cycling trajec-
tory connects (in order) an intermittent chaotic attractor with a period-2 orbit with another
chaotic set with a period-4 orbit and back to the intermittent chaotic attractor.



