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Abstract: A spine is a protrusion from the dendritic (or somatic) surface of a neuron. In recent exper-
iments, cafffeine-induced calcium released from internal stores was shown to cause elongation of dendritic
spine stems in slice cultures. Still another experiment indicates that glutamate-induced increases in calcium
may cause spine stem shortening. Harris draws a schematic model to explain these seemingly conflicting
results, indicating that a small amount of activity may increase free calcium within the spines and cause
spine stem elongation, but an excessive amount of activity may increase intraspine calcium beyond a critical
level and cause spine stem shortening (see Fig. 2 in [8]).

This paper develops a mathematical model for a fixed population of spines along the dendrite, each with
a dynamic structure and calcium level. The system is integrated over time and space to observe an inter-
dependent relationship between calcium, morphology and chemical/electrical activity. Results of simulation
qualitatively capture phenomena observed in recent experiments and exhibit periodic oscillations in poten-
tial when the spines have excitable membrane properties by allowing spine structure to transition through
threshold geometries for generation of action potentials in a bi-directional manner. As in recent experiments,
a variety of chemical and structural profiles emerge, depending on membrane properties, patterns of synaptic
input, and initial conditions considered.
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1 Introduction

Experimental evidence is mounting that the physical structure of dendritic spines is modifiable in response to
chemical and/or electrical activity [1, 2, 3]. In response to activity, spine head volume (and membrane surface
area) can increase or decrease; spine necks can change shape from long and slender to short and stubby, and
a single synapse on a single spine head can transform into a spine with multiple heads and multiple synapses
[4, 5]. Consequently, populations of spines on dendritic trees are subject to activity-dependent processes.

The mechanisms underlying structural changes in spines may be due to one or more cellular influences.
One possible mechanism may be the activation of calcium-dependent enzymes as a result of increased calcium
levels at the sites of excitatory synapses [6]. Recent experiments implicate intraspine calcium levels as a
mediator for changes in dendritic spine structure [8]. Korkotian and Segal monitored and 3-D reconstructed
spines in cultured hippocampal neurons over several hours on a confocal laser scanning microscope. Release
of calcium from internal stores in response to pulse applications of caffeine induced a small, transient rise in
Ca?t (200 —400nM), but caused a significant increase in the length of spine stems in less than 5 minutes [1].
An opposite response was observed in a similar experiment performed by Halpain, Hippolito and Saffer [7].
They induced a rapid collapse of dendritic spines (also within 5 minutes) by stimulating cultured neurons
with glutamate. This caused calcium influx, raising intraspine calcium to much higher levels.

Harris proposes a model for spine stem restructuring based on the above experiments [8]. A primary
goal of this paper is to formulate a mathematical description of Harris’ model, and to investigate possible
interactions between electrical/biochemical activity and structural changes in dendritic spines. The system
builds on Wu and Baer’s model [9] for a single spine with an activity-dependent stem conductance, and on
the cable model [10] to explore how calcium-mediated changes in the structure of a population of spines
along a dendrite may influence patterns of electrical activity; and how electrical activity due to synaptic
events and excitable membrane dynamics may, over time, influence spine structure and calcium dynamics.

The model qualitatively recovers chemical and morphological phenomena observed in recent experiments
and exhibits periodic oscillations in potential when the spines have excitable membrane properties. As in
recent experiments, a variety of chemical and structural profiles emerge, depending on membrane properties,
patterns of synaptic input, and initial conditions considered. The equations are formulated in Sect. 2 and
tested in simulation in Sect. 3, followed by Discussion. A table of parameters, summary of the model, and
stability analysis may be found in the Appendix.

2 Methods

Confocal videos from slice culture experiments confirm that activity-dependent processes regulate the struc-
ture of the dendrite in hippocampal neurons [8]. A small amount of electrical/chemical activity increases a
spine’s level of free calcium within the cytosol, and causes the spine stem to elongate. However, a higher
level of activity may cause calcium influx and induce spine stem shortening or loss, perhaps due to actin
depolymerization [8]. A mathematical description of these observations may be built upon cable theory, a
system of partial differential equations which permits the density of spines, membrane potentials, and stem
resistance to vary continuously in space and time [10]. Since the length and shape of the spine stem is
correlated to its resistance and ultimately to stem current flow, it is of interest to explore how this model
for a continuum of spines may be adapted to simulate Harris’ model (see Fig. 2 in [8]).



2.1 The Cable Model
The electrical potential V3(X,t) in a passive dendrite of electrotonic (dimensionless) length L = [/, studded
with 7 spines per unit length satisfies the cable equation
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[10] where I, is the spine stem current, 7,, is the membrane time constant, and R is the cable input
resistance. The fixed spine density (7) represents the average number of spines per unit length at X = z/A.
For simulations in this paper, A = 180um. (For a detailed derivation of the cable equation, see [10].)

An equation for the membrane potential in each spine head is obtained from a current balance relation
for the capacitive, ionic, synaptic and spine stem currents given by
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[11]. (See Fig. 1 for the schematic of a single spine.)
The spine stem current is computed as an Ohm’s Law voltage drop over the stem resistance:
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The term I;,, represents the ionic currents passing through the head membrane and I, the synaptically
applied current. In a simulation involving passive spines Lo, = Vin/Rsp, but if the spines have excitable

membrane properties, Hodgkin-Huxley kinetics (set to 22°C) simulate voltage-dependent ion channel cur-
rents:
Lion(Vsn, X, t) = YA ((Vsh — Viva)gnam®h + (Van — Vi)ggn® + (Von — Vi )gr) (4)

[12]. A table of parameters may be found in the Appendix.
Synapses over an interval Xo < X < (Xo + AX) are activated periodically by applying to the spines in
that interval
Isyn(VshyXy t) = gsyn(X7 t)(Vsh - Vsyn)7 (5)

where V;,, is the synaptic reversal potential and gsy, is a brief synaptic conductance generated by the
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[11]. In this paper, spines in the interval 0.0 < X < 2.0 are activated every T' = 10ms.

2.2 Dynamic Morphology

The model now breaks from cable theory [10] to view the spine stem current (Is5) as an important measure,
over time (minutes to hours), of the electrical activity between the spine head and dendritic base. The
following subsystem, appended to the cable model, explores the possibility that this electrical interaction
controls slow, local changes in spine structure and calcium level:
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Free intraspine calcium (nM) changes proportional to activity (regardless of direction), relative to a
minimal level, as measured by (n|Iss| — p), increasing when |Is5| > p/n and leaking away slowly when
|Iss|] < p/n. The ratio of spine stem resistance to input resistance (Rss/Rs) controls how electrically
connected the spine is to the dendrite [10, 11, 5]. In the model, R, is fixed, while R, varies over time
and space, so that the difference between spine head and base potentials (Vi — V) becomes negligible as
Rss = Ruin, imposing a kinetic upper bound on calcium (i.e. |Is5| = |Vsp — Vy|/Rss becomes small enough
so that 0C, /0t is negative). The factor (C, — Cpin) prevents calcium from becoming negative in areas
receiving no activity over a sustained period of time.

The stem resistance R, is generally computed as the ratio of the specific cytoplasmic resistance to the
cross-sectional area, integrated over the length of the stem [11]. Stem resistance has previously been used
as a measure for stem structure [13, 9, 14], since spines with long, narrow stems have a higher resistance
to current flow than spines with short, broad stems. Equation (8) models slow, bounded changes in spine
structure as measured by stem resistance. Activity-dependent calcium regulates changes in stem resistance,
and a critical intraspine calcium level (C..;z) controls the direction of change, decreasing for Cy, > Cepit,
modelling spine stem shortening, and increasing for C, < C, ., modelling spine stem elongation, as in
Harris’ model [8].

A low level of synaptic input into spines, over an extended period of time, may increase calcium levels, and
the resulting spine stem lengthening may lead synaptic input to depolarize a spine with excitable membrane
properties. Threshold conditions for action potential (AP) generation in the spine heads is sensitive to
conductance loading provided by the spine stem [11]. Thus, in the model, a fixed density of spines (%)
with little free calcium and below threshold for AP may elongate from a small amount of periodic synaptic
input over time and reach threshold for generating an AP (See Fig. 2a-b). The increased stem current from
repetitive spiking in each cycle of activity will ramp-up the level of internal free calcium until it passes Ceri,
and the spine stems begin to shorten over time, as in Fig. 2c-d. When the spine stem no longer provides
the necessary conductance loading, APs will cease, and activity will fall below a minimum level (n|Is| < p).
If periodic synaptic input continues over time at a low level, the calcium will again fall below C...;+, and the
spine stems will elongate, repeating the cycle of morphological adaptation. Thus, for spines with excitable
membrane, the model can exhibit burst oscillations between periods of active and silent phases, allowing
calcium to modulate signaling within the dendritic tree. A summary of the fast and slow system, including
initial and boundary conditions, along with a table of parameters may be found in the Appendix.

3 Results

Of initial interest is how the above system may affect local activity and structure for spines with passive
membrane properties. Figure 3 compares the results for two separate simulations of 63 spines, located
uniformly along a dendrite of electrotonic length L = 3 (m = 21 spines/e.l. ), for two different levels of
synaptic activity. The spines at 0.0 < X < 0.2 are activated every 10ms with I,,,, (Eq. (5)-(6)), with peak
synaptic input (g, from Eq. (6)) occuring at ¢, = 0.2ms in each activation cycle. Since the spine head
membrane is considered to be passive, I;on = Vp/Rsh.



For the first simulation, calcium and stem resistance are initially uniform at C, = 800nM (above Ceriz =
300nM) and R,s = 1600MQ, respectively. Peak synaptic activation reaches g, = 0.074nS in each cycle,
modelling a weaker synapse. Figure 3 (left), shows a time course for head potential, intraspine calcium
and stem resistance for the spines under synaptic activation at X = 0.0 over 50 activation cycles. Calcium
decreases throughout the simulation (approaching Cp;, = 0.0), since the stem current is less than p/7.
When C, > C,ryt, during the first 15 cycles, R;; decreases to a minimum of 950M(2, modelling spine
stem shortening, and then increases during the remaining 35 cycles (approaching R,,,, = 1800M(2) when
C, < Cepit, modelling spine stem elongation (Fig. 3b-c). In Fig. 3a, the maximum amplitude for Vg, in each
cycle of activation is proportional to R, since current flows more rapidly from spines when stem resistance
is low.

For the second simulation, calcium and stem resistance are initially uniform at C, = 200nM (below
Cerit = 300nM) and R,s = 1000M(, respectively, and g, = 0.37nS, modelling a higher level of synaptic
activity. Figure 3 (right) again shows a time course for head potential, intraspine calcium and stem resistance
for spines under synaptic activation over 50 applications of I,y,. Now calcium increases throughout the
simulation, reaching a critical level after 25 activations. Now stem resistance increases until C, crosses Cer
from below, and then decreases for the remainder of the simulation.

3.1 Spines with Excitable Membrane Properties

Since 90% of excitatory synapses terminate on dendritic spines [4], this section explores the effects that
calcium-mediated dynamic morphology may have upon the generation and propagation of APs when the
spines have excitable membrane properties. In the next simulation, average spine density is fixed uniformly
at m = 21 excitable spines/ e.l., with initial uniform values of Rs;; = 800Mf2 and C, = 100nM. Spines are
synaptically activated every 10ms with a weaker input as in the second passive simulation (g, = 0.074nS),
but now the spines can generate and propagate an AP when properly stimulated, using Hodgkin-Huxley
kinetics [12] to model ionic current in the spine heads (Eq. (4)). Figure 4 graphs a time course for 150
activation cycles for head potential, calcium and stem resistance under synaptic input.

For a fixed density of spines, an excitable response depends on the stem resistance [11], now a dynamic
variable. The initial value for R, is below threshold to generate an AP for 21 spines/e.l., so that peak
head potential is less than 20mV for the first 10 cycles of activation (Fig. 4a). Calcium is initially less than
C.rit and decreases during this “silent” phase (absence of APs), so that resistance increases (stems elongate)
at X = 0.0 (Fig. 4b-c). When stem resistance reaches a threshold value of approximately 1000M(2, the
spines begin firing A Ps, causing calcium to increase. Stem resistance and peak values for head potential and
stem resistance continue to rise, until C;, = C..;+- The “active” phase of repetitive spiking in head potential
continues until ¢ = 800ms, as resistance slowly decreases (stems shorten), for calcium above a critical level.
Calcium reaches a peak value of 820nM just before activity begins a second silent phase. Then calcium and
resistance decrease until C, < C.; again at ¢ = 1000ms.

The results from Fig. 4 raise several questions: Will the bursting pattern for active and silent phases
continue over time, and what effect does this pattern of impulses have upon the spines “downstream” from
the stimulated region. Figure 5 compares results under synaptic activation and downstream for 500 cycles of
activation for the same simulation shown in Fig. 4. Figures 5a and 5b graph head and dendritic potentials
over time at X = 0.0 (left) and X = 1.0 (right). Figure 5c shows a state space diagram for the slow variables
of calcium and resistance over the same period of time at these same locations.

Let us first consider what is happening in the stimulated region (X = 0.0 left). In Fig. 5a, the initial
resistance is just below threshold for generation of APs, so that n|ls;s| < p and calcium decreases while
R, increases since Cy < Ceriz (Quadrant 1 Fig. 5c¢)until spines in the stimulated region begin firing APs.



Since n|Iss| > p (on average over each activation cycle) in the presence of APs, both measured quantities
continue to rise (Quadrant 2) until C, = C.ri+ and Ry, is approximately 1770MS). Spiking continues while
C, increases and R, decreases (Quadrant 3) until stem resistance once again falls below threshold for AP
generation (approximately 1000M{2) and C, reaches its peak value of approximately 820nM after 80 cycles
of activation (c.p. Fig. 5c¢ to Fig. 4b). A silent phase then begins in the absence of AP generation, as
both measured quantities decrease (Quadrant 4) until C, = C,.;+ and R, is approximately 570Mf). Once
C, < Crit, resistance begins rising toward threshold, and a period of high level activity begins again after
120 applications of Iy, (Fig. 5a). The potential in the dendrite at the base of the spines (V) is graphed in
Fig. 5b to compare differences from X = 0.0 to 1.0.

Downstream from synaptic activation, at X = 1.0, there are several noticeable differences in the graphs.
The shapes of the active and silent phases are different, the magnitude for potential during silent phases is
much smaller in both the spines and the dendrite, and the phase plane indicates that (C,, Rss) is tending to
(0.0, Rpnaz). While the spines downstream are brought to threshold by APs firing in the stimulated region,
the edges of the active phases are sharper (c.p. left), an indication of the “all or nothing response” that
occurs in the absence of synaptic input; i.e. spines at X = 0.0 have a few cycles where they are generating
APs just below threshold for propagation on the leading and trailing edges of each active phase. Potentials
in both the spines and the dendrite are greatly reduced during silent phases (c.p. left) since current flowing
down the dendrite is attenuated by increasing values for R,,. At the end of the initial silent phase, resistance
at X = 1.0 is approximately 1200M(2, but approaches R, by the end of the second silent phase (Fig. 5¢
right).

Calcium is initially less than C..;;, and decreases throughout the simulation, causing R, to increase
toward its upper bound, further isolating the spines downstream and locally reducing |Iss|. There are brief
periods of time in each AP response when C, increases slightly (note the “noise” in Fig. 5¢), but on average,
calcium decreases and resistance increases over each 10ms-cycle, so that (Cy, Rss) = (0.0, Ryaz) at X = 1.0.
A stability analysis for critical points in the slow subsystem is included in the Appendix.

4 Discussion

This paper considers one way to model the interdependence of activity and morphology in the dendrite by
theoretically studying specifically observed phenomena. Intraspine calcium levels respond to local changes
in activity and mediate spine structure, as measured by stem resistance. The model qualitatively captures
chemical and morphological phenomena observed in recent experiments. Intraspine calcium levels decrease
in response to weaker synaptic activation (g, = 0.074nS) and increase in response to stronger synpatic inputs
(gp = 0.37TnS) or AP generation in the spine heads. Stem resistance increases (modelling stem elongation)
when calcium is subcritical, and decreases (modelling stem shortening) when calcium is supercritical.

The model predicts a higher percentage of spines more electrically connected to the dendrite (shorter
spine stems) in areas receiving a sustained high level of activity. Results also predict that areas of the
dendrite experiencing a sustained lack of electrical activity (whether synaptic activation or current flowing
along the dendrite) will have a higher percentage of spines with long, narrow stems. The result that stem
resistance increases monotonically outside the stimulated region (see Fig. 5c¢) is consistent with experimental
observations that dendrites are more spiny when synapses are inactivated, possibly to compensate for lost
activity [15]. The length of time for chemical and structural transition depends on the magnitudes of €; and
€2, respectively, selected here for computational efficiency. To achieve the changes shown in this paper over
5-10 minutes, as observed in recent experiments [1, 7], one would need to set the rates of change in calcium
and resistance to 107°, and 1079, respectively (three orders of magnitude lower than values used for this



paper.)

By allowing the morphology of the dendrite to transition through identified threshold geometries for
generating an AP, new pathways are created for wave propagation when the spines are modelled with
excitable membrane properties. Results shown here are for a dendrite of physical length 3\, where A is
approximately 180um. This means that the signal propagation to X = 1.0 shown in Fig. 5 represents a
wave of APs extending to a physical length of z = 0.18mm, resulting from synaptic activation (I,y,) of 5
synapses located between z = 0.0 and 0.036mm, along with the evolving structural profile from previous
synaptic events.

In this paper, n and p were selected so n|I;s| — p was negative for passive spines receiving low levels of
synaptic input, and positive for passive spines receiving higher levels of activation (using g, as a measure of
magnitude). Using the same values for n and p and the lower value for g,, the model can create and then
dissolve a path for impulse propagation when the spines have excitable membrane properties, by allowing
stem resistance for activated spines to transition through identified threshold values for generating an AP.
For spines with excitable membrane properties, n|Iss| — p is positive in the presence of low-level synaptic
input and membrane response A Ps, and negative in the absence of either of these two quantities.

The interdependent changes in activity and structure presented here kinetically limit the time period for
sustained higher levels of activity, and prevent calcium from reaching a toxic level for the neuron. Shortening
the stems causes spines to become more electrically connected to the dendrite, thereby reducing activity and
calcium levels in an isolated compartment of the cell. Restructuring neural circuitry modulates signaling,
and may also serve as a mechanism to prevent necrosis.

The simple proportional relationship between calcium and activity, presented here as a first step in the
modelling process, cannot capture all of the dynamic processes involved in a system with activity-dependent
morphology. Nevertheless, the strength of this model is that, like the experimental studies, it helps to
dissect the complex phenomenon of these processes. Using a continuum model allows us to exhibit a variety
of morphologies and membrane properties with just a few differential equations. The equation for ionic
current (Eq. (4)) could include voltage-dependent calcium currents, or the formulation could include a
spatio-temporal profile for Ca?t in the spines and the dendritic shaft, addressing calcium diffusion and the
influx of calcium through spine stems. Since the region for synaptic input was constant in this paper, it
would be interesting to consider simulations where the activation site is randomly selected in each cycle.
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5 Appendix

5.1 Table of Parameters

EE

> =
8

Vsyn

gNa

Ccrz't

specific cytoplasmic resistivity
passive membrane resistance
specific membrane capacitance
input resistance
length constant
membrane time constant
diameter of the dendrite
surface area of each spine head
capacitance of each spine head
channel density
sodium reversal potential
potassium reversal potential
leakage reversal potential
synaptic reversal potential
maximal sodium conductance
maximal potassium conductance
maximal leakage conductance
peak synaptic conductance
time to peak in each activation cycle
time between synaptic activations
input resistance of the dendrite
resistance of each spine head
stem resistance upper bound
stem resistance lower bound
rate of change in calcium
rate of change in stem resistance
critical intraspine calcium level
measure of minimal local activity

scaling parameter for stem current

70Q-cm
2500Q-cm?
1uFem?
R, /(Amd)
VRmd[4R;
R,.Cy,
0.36um
1.31um?
AspCh

2.5

115mV
-12mV
10.5989mV
100mV
120mS/cm?
36mS/cm?
0.3mS/cm?
(see figure legends)
0.2ms
10ms
1233M$
1.02x101Q
1800M(2
500M$2
0.01

0.001
300nM

1.0

1.0x10°
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5.2 Summary of Equations

oVy 0%V, _

Tm A axe Va + Reonlss 9)
Vs

Csh ot _Izon - Isyn - Iss (10)
ocC,

ot 610a(77|fss| —p) (11)
ORss

ot = —€3 (Ca - Ccrit)(Rss - Rmzn)(l - Rss/Rmaz)- (12)

Calcium is bounded below by Ci,.;n, = 0.0, with a critical intraspine calcium level, C.,; = 300nM. Spine
stem structure is modelled by Ry, increasing for C, < C..;+ and decreasing otherwise. Stem resistance is
bounded between R,,;, = 500MQ and R,,;,, = 1800MQ. The density of spines per unit length (77) is fixed
over time, but may vary in X. Both ends of the dendrite are sealed, so that the voltage gradient is always

zero at the boundaries, with a resting potential of zero in the dendritic shaft and the spines, i.e.

Vg

] = 0. 1
~L0.0) = 00 (13)
Vg
—(L,t) = 0. 14
L) = 00 (14)
Ven(X,0) = 0.0 (15)
Va(X,0) = 0.0. (16)
If the spines are passive, then I;,, = Vs /Rsp, but if the spines have excitable membrane properties, the

ionic current is modelled using Hodgkin-Huxley kinetics [12]
Iz’on(Vsh; Xa t) = ’YAsh((Vsh - VNa)gNamBh + (Vsh - VK)gKn4 + (Vsh - VL)gL) (17)
with increased channel densities [10]. Synaptic input is simulated by applying

t _t
Isyn(vtshaXa t) = gpt_e(l tp)(Vsh - Vtsyn) (18)
P
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every 10ms. The system comes to full rest between activations, since synaptic input reaches its maximum
value at ¢, = 0.2ms.

Equations are integrated using a semi-implicit Crank-Nicholson/Adams-Bashforth finite differencing
method, verified against a fully explicit method. For stability, AX = .04 and At = .005. Since a sig-
nificant change in spine structure has been observed over minutes to hours and individual APs are on a time
scale of milliseconds (ms), the computation time for a simulation could be on the order of hours. To identify
values for ¢; << 1 (i = 1,2) that reduce computation time, but preserve the basic dynamics of the system
as ¢; — 0.0, results were compared during corresponding cycles for different simulations, varying ¢;. For
example, results for the time course of a propagating wave of APs over 60 cycles of synaptic events using ¢;
are superimposed over results of every other cycle from a second simulation, using €;/2. As ¢; is successively
reduced, the animations converge, and ¢; is chosen to be computationally efficient, yet sufficiently small to

preserve the qualitative structure of results for longer time periods as €; — 0.0.

5.3 Stability Analysis for the Slow Variables

The equations for change in calcium and resistance constitute a slow subsystem. Fixing X at one point along
the dendrite, insight may be obtained into the stability of stationary points at that location by considering
the average contribution of the fast variables to the measure for change in the slow system over each cycle
of length T':

T

1
|Vsn — V|9 = T [Vsn, — Vd|dt. (19)
Ti-1

Numerical simulations indicate that |V, — V4|%¥9 is approximately piecewise constant for a fixed location X,
with ¢; representing the value for active phases of bursting, and ¢, the value during silent phases. Further,
the response of the system over the synaptically activated region behaves as though it were space-clamped;

i.e., the state variables are independent of X in that region. Thus one may average over the fast variables

14



(activity) since the slow variables (C, and Rs;) are relatively constant within activation cycles. In general, ¢;
and cp are different, but insights into the dynamics of the slow system may be obtained by setting ¢; = ¢o and

averaging over the fast system to obtain the following ordinary differential equations for dynamic morphology:

dCq |Vep, — Vag|ovs

a = g, )G O (20)
dRss

aT _62(00. - Ccrit)(Rss - Rmzn)(]- - Rss/Rmaa:)- (21)

This system has critical points at (C, RZ;) = (Cerit, M), (Crmins Rmaz) and (Crin, Rmin). To
first order, the stability of these points in the non-linear system is related to the eigenvalues of the operator

matrix (Jacobian) for the corresponding linearized system, evaluated at the fixed points [16]. The generalized

Jacobian for the above system is

n|Ven —Va|®*? €1(C3 —Cmin)|Van —Va|*?
e (L4 — —p — )
AR -
— 72— (R}, — Rmin) (Rmac — By,)  —52=(Ci = Cerit) (Rmaz + Rumin — 2R3,)
Evaluating the Jacobian at the point (C%, R:,) = (Cerit, M), yields
0 _ €19%(Cerit —Cmin)
l N2 [Van—Va[**9 ] . (23)
_anzm (R:s - Rm’m) (Rmam - st) 0

The trace of the matrix is zero and the determinant is negative, so that the eigenvalues are real and of
opposite sign. Since one eigenvalue is positive, independendent of the location along the dendrite, this
critical point is unstable in the linear system, and, therefore, unstable at each location X in the nonlinear
system [16].

For the second fixed point, (Crin, Rmaz), the Jacobian is

€1 (ansE;i/:\”g_ - P) 0

0 — 22— (Cmin — Cerit)(Rmin — Rmas)
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with eigenvalues along the diagonal. The sign of (as2) is always negative since Crin < Cerit and Rpin <
R oz, but the sign of the (ai1) depends on the level of local activity when Rss = Rynq4,. Excitable spines
at 0.0 < X < 0.2 are spiking in response to synaptic activation when Rgs = R4z, so that (a11) > 0
in the presence of local synaptic activation and AP generation. Therefore, the fixed point is unstable for
synaptically activated spines. However, spines downstream are spiking in response to activity flowing along
the dendrite so that the difference in local head and dendritic potentials is, on average, smaller in the absence
of synaptic activation. For spines downstream, 5|Vsp — Va|*"? < p/Rmaa, for parameter values in this paper.
Therefore, (a11) < 0.0 and the fixed point is stable.

A similar analysis for the remaining critical point indicates that (Cinin, Rmin) also has eigenvalues along
the diagonal with (a11) as above, but (az2) = —€2(Crmin — Cerit)(Rmaz — Rmin)/Rmaz > 0.0, since Ry,qp >
Rin- The Jacobian has at least one positive eigenvalue, independent of location along the dendrite, and
this point is always unstable.

In summary, with the above assumptions at each location X under synaptic activation, the system has
no stable fixed points in a bounded region of the plane, since Rin < Rss < Rimaz, Cmin < C,, and
calcium is kinetically bounded above by the periodic behavior of activity, for the chosen parameter values.
Removing the unstable point (C, RY,) inside this region permits application of the Poincare-Bendixson
theorem (Waltman, 1986) to conclude that trajectories in this region would be either periodic, or have an
omega limit set that is periodic.

In Fig. 6, three results are plotted for the same simulation as in Fig. 5 (smoothing the trajectories for
comparison) with different initial conditions for calcium and resistance. The outer two trajectories were run
for 500 activation cycles, and the inner trajectory (dashed) was run for 1200 cycles. Since, in general, ¢; # co
in Eq. (7)-(8), the trajectories are not exactly periodic over time. Fixing X at a point not under synaptic

activation, the above system has only one stable fixed point. Unless the system is started exactly at one of
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the other two critical points, trajectories will tend to (Crin, Rmaz) Over time (see Fig. 5¢ right).
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Fig. 1 Schematic diagram of a single dendritic spine. A spine is a protrusion from the dendritic (or
somatic) surface of a neuron. Dimensions vary, with typical ranges that include stem lengths of order 1.0um,
diameters of order 0.1pm and head surface areas of order 1.0pum?. I, denotes input current into the spine
head. Spines may be modelled with passive or excitable membrane properties by varying the formulation
for I;on. In this paper, the magnitude of the stem current (|Is5] = |Vsn — Va|/Rss) measures local activity
(regardless of direction), and stem resistance (Rss) measures spine structure, decreasing (to model stem
shortening) when calcium is above a critical value, and increasing (to model stem elongation) when calcium

is below that value.
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Fig. 2 Morphological adaptation allows the spines to respond to, and regulate levels of local
activity. Spine stem structure is related to the amount of free calcium present in the spines, and changes
in calcium levels are proportional to the amount of local activity. (a) A small amount of synaptic activity
may raise calcium levels slightly, causing spine stems to elongate, and stem resistance (Rss) to increase. (b)
If synaptic activity persists over time, calcium may continue to increase beyond a critical amount. (c) If
the spines have excitable membrane properties, increased stem length (resistance) may depolarize the spine
head beyond threshold for generation of an AP. (d) In any case, increased levels of synaptic activity, or AP
responses increase calcium beyond a critical level for the spines, and stems begin to shorten, lowering stem
resistance. (e) Stems may be partially or completely retracted into the dendrite, so that synaptic input
is no longer directed at an isolated compartment, reducing local activity and calcium levels. When stem
resistance falls below threshold for depolarizing excitable spines, AP generation ceases, lowering the level of
activity and decreasing the amount of calcium present. If low-level activity continues, over time, calcium
will increase and stems will elongate, to enter another cycle of morphological adaptation.

Figure modified with permission from Proc. Natl. Acad. Sci. (1999) 96-22 pp12214. Copywrite 1999 National

Academy of Sciences, USA.
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Fig. 3 Intraspine calcium levels depend on activity, and mediate structural change. Sixty-
three spines with passive membrane properties are located uniformly along a dendrite of electrotonic length
L = 3. Spines over 0.0 < X < 0.2 are synaptically activated every 10ms with Eq. (5)-(6), for two separate
simulations. Time courses are shown for head potential, free intraspine calcium and stem resistance over
50 cycles of activation at X = 0.0. Graphs on the left show results for a simulation with peak synaptic
activation (g,) reaching 0.074nS in each cycle, and initial values for calcium and stem resistance uniformly
set to C, = 800nM (above C..i) and Rzs = 1600MSQ, respectively. Graphs on the right are for a simulation
with g, reaching 0.37nS in each cycle, and initial values for calcium and stem resistance uniformly set to
C, = 200nM (below C.ri) and Rss = 1000M(Q, respectively. (a) Maximum values for V;p, in each cycle are
proportional to gp, and also to R, since current flows out of stimulated spines more rapidly when resistance
is low. (b) Calcium decreases toward a lower bound (C,in = 0.0) when 7|Is5| — p < 0.0 (left) and increases
when 7|Iss| — p > 0.0 (right). (c) Stem resistance decreases when C, > Cerit, and increases when calcium

is subcritical.
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Fig. 4 Calcium mediates bidirectional changes in structure and activity when the spines have
excitable membrane properties. Sixty-three excitable spines are uniformly located along a dendrite
of electrotonic length L = 3. Ionic current in the spine heads is modelled with Eq. (4)). Initial values are
uniformly C, = 100nM and R, = 800M( (below threshold for m = 21 spines per unit length). Spines
are synaptically activated with a low level of input as in Fig. 3 (right) (g9, = 0.074nS), and time courses
are shown for head potential, free calcium and stem resistance over 150 activation cycles at X = 0.0. (a)
Potential is proportional to stem resistance, initially low for 10 synaptic acivations (c.p. to Fig. 3). An active
phase of 80 APs begins when stem resistance for spines in the stimulated region crosses threshold for AP
generation (in (c)). A silent phase of 40 cycles (400ms) begins when R, falls below threshold. (b) Calcium
decreases during silent phases in head potential, and increases to a maximum of 820nM after 90 cycles of
synaptic input when spiking terminates. Calcium returns to a minimum of 50nM over the following 400ms,
before increasing again when spiking returns to the spines under synaptic activation. (c) Stem resistance
increases for 52 cycles of synaptic input when C, < C..;, asymptotically approaching R, = 1800M(.
Stem resistance decreases for the next 60 cycles when C, > C.,i, reaching a minimum value of 580M2 after

112 cycles, before beginning to rise again.
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Fig. 5 A cycle for structural change induces periodic spiking in spines with excitable mem-
brane properties. Time series for head and dendritic potential are shown over 500 activation cycles (in
(a) and (b), respectively), along with a state space diagram for calcium and stem resistance (in (c)) at two
different locations, for the same simulation in Fig. 4 (g, = 0.074nS). Results are shown for X = 0.0, under
synaptic activation (left), and for X = 1.0, downstream (right). (a) Alternating periods of active and silent
phases in AP generation and propagation occur over time as R;s increases and decreases through threshold
values. The magnitude of the silent phases at X = 1.0 indicates that synaptic input for 0 < X < 0.2 is
severely attenuated by rising stem resistance for X > 0.2. (b) Periods of high and low potential at the base
of the spines are graphed over the same time evolution. The magnitude of the silent phases at X = 1.0
demonstrates that synaptic input (in the absence of APs) is severely attenuated by the (fixed) cable input
resistance (R). (c) State diagrams show the relationship between calcium and stem resistance over the
same time period. Behavior is cyclic under synaptic activation (left) as Rys crosses threshold and C, crosses
C.rit- Downstream (right), morphology tends to (Cruin, Rmaz) (long spines with minimal free calcium), due

to attenuated activity during silent phases and a persistent rise in stem resistance.

Fig. 6 Closed-curve behavior is persistent for the morphological system under synaptic ac-
tivation. Additional trajectories are superimposed for the same simulation as in Fig. 5¢ (g, = 0.074nS)
at X = 0.0, varying the initial conditions for calcium and resistance to observe the behavior of the system
under synaptic activation. The dark, solid trajectory repeats the simulation from Fig. 5 over 500 activations.
The dotted outer trajectory also runs for 500 cycles. The dashed inner trajectory begins near the center of

the region and runs for 1200 synaptic activations.
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