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The spread of electrical activity in a dendritic tree is shaped, in part, by its mor-1

phology. Conversely, experimental evidence is growing that electrical and chemical2

activity can slowly shape the morphology of the dendrite. In this theoretical study,3

the dendritic spines are dynamic elements, with biophysical properties that change4

in response to patterns of electrical activity. Recent experiments and diagrammatic5

models suggest that activity-dependent processes can regulate structural modifica-6

tions in dendritic spines as well as their distribution along the dendrite. This study7

considers how local changes in spine structure (minutes to hours) can influence8

patterns of electrical activity along the dendrite; and how electrical activity due9

to synaptic events and excitable membrane dynamics can, over time, influence the10

morphology of the dendrite.11

The model presents a slow subsystem for structural synaptic plasticity associated12

with long-term potentiation. A perturbation problem evolves naturally when the13

spine stem shortens, since the ratio of spine stem resistance to input resistance14

is small. Hence, the difference between the spine head and dendritic potentials15

become negligible. This paper presents an asymptotic expansion of head potential16

in terms of dendritic potential. This leads to a reduced model for post-synaptic17

restructuring that captures the dynamics of the full model in a briefer computation18

period when the spines are well connected to the dendrite.19

c© 2003 Published by Elsevier Ltd on behalf of Society for Mathematical Biology.20

1. INTRODUCTION21

Dendritic spines are the post-synaptic targets of over 90% of all excitatory synap-22

ses in the central nervous system. They are abundant in brain regions associated23

with learning and memory. Experimental evidence is mounting that the physical24

structure of a spine and the distribution of spines along the dendrite are modifiable25

in response to chemical and/or electrical activity (Segev and Rall, 1998; Korkortian26

and Segal, 1999; Maletic-Savaticet al., 1999). For example, in response to activity,27

spine head volume (and membrane surface area) can increase or decrease; spine28

necks can change shape from long and slender to short and stubby, and a single29

synapse on a single spine head can transform into a spine with multiple heads and30

0092-8240/03/000001 + 18 $30.00/0c© 2003 Published by Elsevier Ltd on behalf of Society for
Mathematical Biology.
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multiple synapses (Geinismanet al., 1993; Shepherd, 1996; Harris, 1999a). Con- 1

sequently, populations of spines on dendritic trees are subject to activity-dependent2

processes. 3

Schematic models have been proposed, by experimenters, in order to understand4

the sequence of events that lead to changes in spine structure and spine count in5

response to synaptic, electrical, and biochemical activity (Geinismanet al., 1993, 6

1996; Edwards, 1995; Harris, 1999b; Sorraet al., 1999). This paper formulates 7

a mathematical description for one of these models (Geinismanet al., 1996) and 8

uses it to investigate possible interactions between electrical activity and struc-9

tural changes in the dendrite. The phenomenological model builds on Wu and10

Baer’s work (Wu and Baer, 1998) for a single spine with an activity-dependent 11

stem conductance. Different in this paper, a continuum of spines is studied over12

time and space in a system of partial differential equations, extending the cable13

theory of Baer and Rinzel (Baer and Rinzel, 1991). The spines are stimulated peri- 14

odically, rather than with a constant current, and active membrane simulations use15

Hodgkin–Huxley (HH) (Hodgkin and Huxley, 1952) rather than Fitzhugh–Naguma 16

kinetics (FitzHugh, 1969). As a result, the system may be closer to reality, but it is17

less tractable for analysis. 18

Simulations explore how activity-dependent changes in spine structure and den-19

sity may influence patterns of electrical activity, and how electrical activity due to20

synaptic events and excitable membrane dynamics may, over time, influence spine21

structure and distribution. The structure of spines is dynamic, changing in time22

and space in response to changes in local levels of activity, and the local density of23

spines is a function (over time) of spine structure. The equations governing spine24

morphology and density comprise a slow subsystem to the cable model. The full25

system models structural synaptic plasticity associated with long-term potentiation26

(LTP), based on a schematic proposed by Geinisman (Geinismanet al., 1996). 27

Spine stem resistance has been identified (Rall and Rinzel, 1971) as an important 28

synaptic parameter in that depolarization delivered to the dendrite from passive29

spines depends critically on the ratio of spine stem resistance to input resistance30

in the cable(Rss/R∞). Recent observations in the literature indicate that lower31

values ofRss may be commonplace, rather than the exception (Geinismanet al., 32

1996; Svobodaet al., 1996; Boyer et al., 1998; Harris, 1999b; Svoboda, 1999; 33

Luscheret al., 2000), and occur naturally in the model. A singular perturbation34

problem evolves whenRss/R∞ is small, since this causes the difference between35

spine head and dendritic potentials to become negligible. An asymptotic expansion36

of spine head potential leads to a reduced model for synapse restructuring when the37

spines are well connected to the dendrite. 38

The model qualitatively captures morphological phenomena observed in recent39

experiments and is robust for wave propagation dynamics when the spines have40

active membrane properties. As in recent experiments (Geinismanet al., 1993, 41

1996), a variety of density and structural profiles emerge over time, depending on42

membrane properties and initial conditions. The paper is organized as follows.43
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(a) (c)(b) (d)

Figure 1. Activity-dependent synapse restructuring. A single dendritic spine under sus-
tained, high-level activity transitions to two spines after retraction into the dendrite. (a) A
spine with a narrow stem that separates the spine head from the parent dendrite. (b) Over
time, a spine receiving sustained high levels of activity is partially retracted into the den-
drite, and the PSDs are separated. (c) If the activity continues over time, the spine is
completed retracted to become two axodendritic synapses, (d) that re-emerge as separate
spines [adapted, with permission, from Geinisman et al. (1996)].

The model is derived and simulated in Section 2. In Section 3, the reduced model1

is derived and results are compared to the full model. The last section is the sum-2

mary and conclusions. A table of parameters, summaries of the formulations, and3

stability analysis for the cable equation may be found in the appendix.4

2. MODELING ACTIVITY-DEPENDENT SYNAPSE RESTRUCTURING5

In Geinisman’s model of structural synaptic plasticity (based on electron micro-6

scopy), axospinous perforated synapses increase in number shortly after the induc-7

tion of LTP (Geinisman et al., 1993), and are then converted into axodendritic8

synapses during LTP maintenance (Geinisman et al., 1996). He conjectures that9

in the process of remodeling, the post-synaptic spine may lose its neck to become10

first partially and then completely retracted into the parent dendrite [see Fig. 4 in11

Geinisman et al. (1996)]. Harris (1999a) comments that Geinisman’s observations12

of LTP maintenance may be an intermediate step toward the creation of two sep-13

arate synapses, rather than the creation of a single synapse terminating on two14

post-synaptic densities.15

A mathematical description of the above phenomenological model may be based16

on cable theory (Baer and Rinzel, 1991), which permits the spine density, mem-17

brane potentials, and spine stem current to vary continuously in space and time.18

Since the length and shape of the spine stem is correlated to its resistance and ulti-19

mately to stem current flow, it is of interest to explore how the cable model for a20

continuum of spines along the dendrite may be adapted to simulate Geinisman’s21

diagrammatic model [Fig. 4 in Geinisman et al. (1996)].22

Fig. 1 depicts the process of activity-dependent synapse restructuring modeled in23

this paper [adapted, with permission, from Geinisman et al. (1996)]. Spines recei-24

ving a sustained high level of electrical activity are slowly retracted into the parent25
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dendrite, to emerge later as two separate dendritic spines. The axospinous synapse 1

in Fig. 1(a) has a spine with a narrow stem that separates it from the dendrite and 2

a single set of PSDs receiving input from the presynaptic axon. In Fig. 1(b), the 3

stem is partially retracted and the PSDs have been split into two sets. [Results from 4

a separate paper Verzi (2000) indicate that merely separating the PSDs, without a 5

corresponding change in spine morphology, will not significantly change a spine’s 6

electrical signal.] Fig. 1(c) represents two axodendritic synapses, as the spine stem 7

is completely retracted into the dendrite. If a locally high level of activity contin- 8

ues, they may re-emerge as two separate dendritic spines [Fig. 1(d)]. 9

2.1. The cable model. The electrical potential Vd(X, t) in a passive dendrite of 10

electrotonic (dimensionless) length L = l/λ (l, the physical length), studded with 11

n spines per unit length, satisfies the cable equation 12

τm
∂Vd

∂t
= ∂2Vd

∂ X2
− Vd + R∞nIss (1) 13

(Baer and Rinzel, 1991), where Iss is the spine stem current, τm the membrane 14

time constant and n the average density of spines at each location X = x/λ, with 15

λ the length constant. The simulations in this paper assume that both ends of the 16

dendrite are sealed, so that the voltage gradient is always zero at the boundaries, 17

with a resting potential of zero in both the dendritic shaft and spines. 18

An equation for the membrane potential in each spine head is obtained from a 19

current-balance relation for the capacitive, ionic, synaptic and spine stem currents: 20

Csh
∂Vsh

∂t
= −Iion − Isyn − Iss (2) 21

(Segev and Rall, 1988). 22

In this paper, the spine stem current is computed as an Ohm’s Law voltage drop 23

over the stem resistance 24

Iss = Vsh − Vd

Rss
, (3)

25

where Rss represents the ratio of specific cytoplasmic resistance to the cross-sectio- 26

nal area, integrated over the length of the stem (Segev and Rall, 1988). If the 27

potential in the spine head is larger than the potential in the dendrite (Vsh > Vd), 28

then Iss > 0.0 and the current flows from spine head to spine base. Conversely, if 29

the potential in the base is larger than the potential in the head (Vd > Vsh), then 30

Iss < 0.0 and current flows from base to head. If Iss = 0.0, then no current is 31

passing through the spine stem [see Fig. 1 in Wu and Baer (1998)]. 32

The term Iion represents ionic currents passing through the head membrane and 33

Isyn the synaptically applied current. In a simulation involving passive spines Iion = 34

Vsh/Rsh , but if the spines are considered to have excitable membrane properties, 35
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HH kinetics set to 22 ◦C (Hodgkin and Huxley, 1952) model voltage-dependent1

ion channel currents2

Iion(Vsh, X, t) = γ Ash((Vsh − VNa)gNam3h + (Vsh − VK )gK n4 + (Vsh − VL)gL),

(4)3

using increased channel densities (Baer and Rinzel, 1991).4

Synapses over a small interval are activated by applying to the spines in that5

interval6

Isyn(Vsh, X, t) = gsyn(X, t)(Vsh − Vsyn), (5)7

where Vsyn is the synaptic reversal potential and gsyn is a brief synaptic conductance8

generated by the α-function9

gsyn(X, t) = gp
t

tp
e

(
1− t

t p

)
. (6)

10

The continuum description permits simulations involving different distributions of11

spines and synaptic input patterns. For all simulations in this paper, Isyn is applied12

to the spines at 0.0 ≤ X ≤ 0.2.13

2.2. Activity-dependent spine stem resistance. The model now breaks from the14

formulations of Baer and Rinzel (1991) to view the spine stem current (Iss) as an15

important measure, over time (minutes to hours), of the electrical activity between16

the spine head and dendritic base. This paper explores the possibility that this17

interaction controls slow, local changes in spine structure.18

Following Wu and Baer (1998), the model uses stem conductance as a local19

measure for structural change. They considered a dynamic stem conductance for20

a single spine in a system of ordinary differential equations as dGss(t)/dt = ε Iss.21

In the system of partial differential equations presented here, a dynamic stem con-22

ductance will vary in time and space as ∂Gss(X, t)/∂t = ε Iss. Since Gss = 1/Rss ,23

substituting and rearranging terms, and bounding Rss within a range of established24

estimates (Segev and Rall, 1988), the rate of change in stem resistance becomes25

∂ Rss

∂t
= −εR2

ss Iss

(
1 − Rss

Rmax

) (
Rss

Rmin
− 1

)
, ε � 1. (7)

26

Since a significant change in spine structure has been observed over minutes to27

hours, and individual action potentials (a.p.) are on a time scale of milliseconds28

(ms), the computation time for a simulation could be of the order of hours. In the29

simulations that follow, synaptic input is repeated every 10 ms, long enough to30

allow potentials in the head and dendrite to return to resting values. To identify a31

value for ε that reduces computation time, but preserves the basic dynamics of the32

system as ε → 0, results were compared during corresponding cycles for different33
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Figure 2. Spine density as a function of stem resistance. Spine density defined by equation
(8) is plotted as a function of Rss , setting m = 2, n0 = 20, β = 30 and Rcrit = 150 M�.
The spine density transitions from n0 to mn0 as Rss transitions through Rcrit from above.

simulations, varying ε. For example, results for the time course of a propagating 1

wave of a.p. over 60 cycles of synaptic events using ε are superimposed over results 2

of every other cycle from a second simulation, using ε/2. As ε is successively 3

reduced, the results converge, and ε is chosen to be computationally efficient, yet 4

sufficiently small enough to preserve the qualitative structure of the results over 5

longer, real-time evolutions as ε → 0. 6

2.3. Spine density. Assume that there is a smooth and relatively rapid transi- 7

tion from one spine to m spines as they become well connected (electrically) to 8

the dendritic shaft, as measured (locally) by the spine stem resistance. The model 9

assumes a value for stem resistance (Rcrit) that identifies the spines as well con- 10

nected. The following equation captures the phenomena suggested by Geinisman’s 11

model (Geinisman et al., 1996): 12

n(X, t) = n0

[
m + 1

2
− m − 1

2
tanh

β(Rss(X, t) − Rcrit)

R∞

]
, (8)

13

plotted in Fig. 2 for Rss bounded between 0.0 and 300 M�, with Rcrit = 150 M�. 14

Here, n0 is the initial spine density, and mn0 is the maximum spine density. R∞ is 15

introduced as a scaling factor and β controls the speed of transition. 16

For Rss low, the spines behave (electrically) like an axodendritic synapse. In 17

equations (7) and (8), current flowing from head to base (Iss > 0) slowly causes 18

Rss to decrease. As Rss falls below a critical value (Rcrit), the spine density may 19

double, triple, etc. (depending on m). Note that in equation (7), Rss increases when 20

Iss < 0, allowing for the possibility of reversing the process; Geinisman’s diagram- 21

matic model suggests this may be possible (Geinisman et al., 1996). A summary 22

of equations for the full model and a table of parameters may be found in the 23

appendix. 24



UNCO
RRECTE

D P
RO

O
F

YBULM: 410

ARTICLE  IN  PRESS

Dendritic Spine Restructuring 7

−5
0 4

25

Rcrit

i.c.
X=0

X=1

X=2

Cycle 61

i.c.R
ss

 (
M

Ω
)

(a) (b) (c)

0 3

700

0
0

n 
(s

pi
ne

s/
e.

l.)

3

40

18

0

V
sh

 (
m

V
)

600 604

25

−5

X (e.l.)X (e.l.) t (ms)

Figure 3. Activity-dependent structural changes mediate passive spine density. A cable of
electrotonic length 3 (λ = 179.3 µm) and diameter 0.36 µm, with both ends sealed, has
input resistance R∞ = 1233 M�. The dendrite has a uniform distribution of 54 passive
spines; spine density (number per λ) is initially n0 = 18. The spine resistance is initially set
to a uniform Rss = 500 M�, above Rcrit = 300 M�. Spines 0 ≤ X ≤ 0.2 are periodically
activated every 10 ms with peak conductance 0.74 nS, using Isyn given by equation (5). (a)
Stem resistance profile superimposed during initial and final cycles of activation. After 30
cycles, Rss < Rcrit in the stimulated region, with a slight increase downstream, wherever
current is felt. (b) Density profile during initial and final cycles. Spine density has almost
doubled in the stimulated region. (c) Time course for head potential during the initial
(inset) and final cycles of activation at three locations along the dendrite. Although the
number of synapses being activated has almost doubled after 60 cycles, head potential at
X = 0.0 has increased by only 5 mV due to a corresponding decrease in stem resistance.

2.4. Results. Of initial interest is how the above interdependent system may1

affect local structure and density for spines with passive membrane properties.2

Bounding stem resistance between Rmin = 200 M� and Rmax = 2000 M�, and set-3

ting m = 2 so that spine density may double as in Geinisman’s model (Geinisman4

et al., 1996), a dendrite of length L = 3 is studded with a uniform density of5

n0 = 18 passive spines/e.l. The initial structure of these spines is uniformly mod-6

eled with stem resistance of Rss = 500 M�, above Rcrit = 300 M�.7

Spines at 0.0 ≤ X ≤ 0.2 are periodically activated with Isyn [equations (5) and8

(6)] every 10 ms, and Iion = Vsh/Rsh , since the spines are assumed to have passive9

membrane properties. Fig. 3 graphs the stem resistance profile in (a) and spine10

density profile in (b) during the initial and 61st cycles of activation (superimposed).11

A time course for head potential is plotted in (c) during the first 4 ms of the initial12

(inset) and 61st cycles at three (spatial) locations along the dendrite.13

The current is always positive in the stimulated region (Iss > 0), causing stem14

resistance to decrease and the spines to become more electrically connected to the15

dendrite. Elsewhere, the current flows from dendrite to head (Iss < 0), causing16
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stem resistances to increase and the spines to become more isolated. Compare 1

Fig. 3(a) with 3(b), to observe that after 60 cycles of activation, spine density has 2

nearly doubled in the stimulated region, since local values for Rss have fallen below 3

Rcrit in response to synaptic activation. An increase of 16 spines/e.l. in the stimu- 4

lated region of width 0.2 means that approximately four new synapses have been 5

activated there. Elsewhere, n remains unchanged and Rss increases wherever cur- 6

rent to the extent that current is felt. Compare Fig. 3(c) with its inset to observe 7

that the maximum value for Vsh has risen by 5 mV at X = 0.0; one might expect 8

more of an increase since the spine density there has almost doubled, but current 9

flows out of these spines more freely since the stem resistance has also decreased! 10

Also of interest are the effects that this interdependent system may have upon 11

propagation of a.p. when the spines have excitable membrane properties. Fig. 4 12

graphs results for a second simulation, where 18 spines/e.l. are, again, uniformly 13

located along the dendrite. This time, however, the spines have excitable membrane 14

properties, i.e., Iion is from equation (4). All other parameter and initial values, 15

along with synaptic activation, are as in the previous simulation. The spatial profile 16

for Rss (left) and n (center) are shown during selected cycles of activation. A time 17

course for the formation of a propagating wave of a.p. is graphed (right) for three 18

locations along the dendrite, during the same activation cycles as those selected for 19

spatial profiles. 20

There is no a.p. generated initially for this configuration of density and stem 21

resistance (not shown). However, after 42 cycles, resistance has decreased so that 22

the corresponding spine density at the activation site is just below threshold for 23

a.p. (right) for Rss = 275 M�. Stem resistance has fallen below Rcrit (left), caus- 24

ing spine density to increase to n = 33 in the activated region (center). Out- 25

side the stimulated region, stem resistance has increased because these spines are 26

not firing, so that their current source is still from the activated region (i.e., from 27

the dendritic shaft). After 70 cycles, resistance has decreased out to X = 1.5 28

[Fig. 4(b)] in response to generation of local a.p., with a corresponding rise in 29

density. The smallest value for Rss is still in the activated region, as in the pas- 30

sive simulation. Spines with low stem resistance are typically short and broadly 31

based, and offer little resistance to current flow, so that head potential may be well 32

approximated by dendritic potential [c.p. solid and dashed lines in Fig. 4(b) right 33

for X = 0.0]. The largest value for Rss over the length of the dendrite is at the 34

point where wave propagation fails. This is also the point where the greatest differ- 35

ence between head and dendritic potentials exists [c.p. solid and dashed lines in 36

Fig. 4(b) right for X = 1.0 and 2.0]. After 90 cycles [Fig. 4(c)], stem resistance 37

has fallen below the initial value along the entire dendrite, except immediately 38

downstream of the stimulated region, where base potential dominates due to incr- 39

eased current flowing from newly activated synapses upstream. Wave propagation 40

has decreased Rss , with a corresponding rise in density. A.p. have caused local 41

Iss to be positive and ∂ Rss/∂t negative, on average, for each cycle of activation, 42

allowing n to increase and forge a path for impulse propagation. 43
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Figure 4. Activity-dependent dendritic structure mediates impulse propagation in spines
with excitable membrane properties. A passive cable, with the same geometric and elec-
trical parameters as in Fig. 3, has an initial uniform distribution of 54 excitable spines.
Excitable spines have HH membrane in their spine heads; ion channel densities are γ = 2.5
HH values (HH kinetics for squid at 22 ◦C). As in Fig. 3, the stem resistance is initially
Rss = 500 M�, above Rcrit = 300 M�, and spines over the input region 0 ≤ X ≤ 0.2
are periodically activated every 10 ms with peak conductance 0.74 nS, using equation (5).
(a) After 42 cycles, spines in the stimulated region are just below threshold for generating
an a.p. (right). Rss has decreased (left) and n has increased (center) from synaptic input.
(b) After 70 cycles, a.p. propagates to X = 1.0, along with corresponding local decreases
in Rss and increases in n. (c) After 90 cycles, a.p. propagates to X = 2.0. Rss has fallen
below the initial value along the entire length of the dendrite, except immediately adjacent
to the activation site. The number of synapses firing a.p. upstream has almost doubled.
An increase in density of 18 spines in the stimulated region means that approximately four
new synapses have been activated.
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3. MODELING SPINES THAT ARE WELL-CONNECTED TO THE DENDRITE 1

The ratio of spine stem resistance to input resistance (δ = Rss/R∞) controls how 2

electrically connected the spine is to the dendrite (Segev and Rall, 1988; Shepherd, 3

1996). When δ is small, the electrical coupling is strong; moreover, as δ → 0, the 4

governing equations (1)–(3) in the model become singular (see the appendix for 5

a stability analysis of the cable equation). The simulations in Section 2 involving 6

lower values for Rss require reduced time and spatial steps to prevent numerical 7

instabilities, and this dramatically increases computation time. 8

While experimenters cannot directly measure spine stem resistance, they have 9

inferred values by passing light through the stem and measuring its rate of diffu- 10

sion. These experiments (Svoboda et al., 1996; Svoboda, 1999) indicate that the 11

lower levels considered in Section 2 may be more realistic than those considered 12

in earlier theoretical studies (Baer and Rinzel, 1971; Segev and Rall, 1988). 13

Simulations with lower stem resistances involving several hours to days of evo- 14

lution in dendritic morphology over longer and more complex spine and arbor con- 15

figurations (Coombes and Bressloff, 2000; Poznanski and Bell, 2000; Vetter et al., 16

2001; Tsay and Yuste, 2002), will require methods to reduce the computation time. 17

One remedy to this situation is to exploit the perturbation procedure suggested by 18

Baer and Rinzel (1971). As δ → 0, the difference between spine head and base 19

potentials is negligible, so that one could approximate head potential in terms of 20

base potential, i.e., 21

Vsh = Vd + W0δ + W1δ
2 + · · · (9) 22

where δ � 1. If δ = Rss/R∞, then a first order approximation for the stem current 23

is 24

Iss = W0

R∞
. (10)

25

If equations (9) and (10) are substituted into equations (1) and (2) (neglecting terms 26

involving δ), then two first-order formulations for the potential result: 27

τm
∂Vd

∂t
= ∂2Vd

∂ X2
− Vd + nW0 (11) 28

Csh
∂Vd

∂t
= −Iion(Vd) − Isyn(Vd) − W0

R∞
. (12)

29

Multiply equation (12) by n R∞ and add it to equation (11) to eliminate the last 30

term and recover the HH cable equation (Baer and Rinzel, 1991): 31

(τm + n R∞Csh)
∂Vd

∂t
= ∂2Vd

∂ X2
− Vd − nR∞(Iion + Isyn). (13) 32

More specific to this paper, equation (12) may be used to approximate stem current 33

(Iss = W0/R∞) as a function of potential, and this value may be used to compute 34
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local changes in structure [Iss in equation (7)]. The functional relation between1

stem resistance and density in the original system remains unchanged. The new2

system is stable as Rss/R∞ → 0, enabling it to capture the dynamics of the full3

system in 1/25th of the computation time. A summary of equations for the reduced4

system may be found in the appendix.5

To demonstrate the power of this approximation scheme, results from a different6

simulation involving active spines are shown in Fig. 5. Bounding stem resistance7

lower, between Rmin = 40 and Rmax = 1000 M�, the dendrite is again studded8

with a uniform density of n0 = 18 excitable spines/e.l., but this time the initial9

stem resistance is uniformly set at Rss = 300 M�, above Rcrit = 150 M�. All10

other parameter values, and synaptic and ionic currents are as in Fig. 4.11

After 40 cycles, an a.p. is generated in the stimulated region, since Rss has12

dropped below Rcrit, causing local spine density to rise above threshold [Fig. 5(a)].13

Over time, Rss begins to decrease behind the propagating wave, with a correspond-14

ing rise in n as Rss → Rcrit, out to X = 1.0 after 60 cycles [5(b)] and out to15

X = 2.0 after 80 cycles [Fig. 5(c)]. Differences in potential for the two simula-16

tions are proportional to δ, with the greatest error occurring when Rss is relatively17

large. Errors in Rss and n depend on the error for Vd and accumulate over time.18

The greatest difference in Rss for each cycle occurs just in front of the propagating19

wave, where δ has been large over the greatest period of time.20

It is interesting to note that the magnitude of the propagating wave of a.p.21

[Fig. 5(c)] is greatest in the center of the dendrite. Spine density upstream is22

larger, but stem resistance is smaller, allowing current to flow out of the spines23

more freely. On the other hand, spines downstream have higher stem resistances to24

impede current flow, but the density has not yet increased there.25

For the purpose of graphing, incremental steps are the same for both simula-26

tions. However, when the reduced model is run again with larger incremental steps,27

results are qualitatively similar, and can be obtained in 1/25th of the computational28

time, since the reduced model is stable as Rss → 0.29

4. SUMMARY AND CONCLUSIONS30

This paper considers one way to model the interdependence of activity and mor-31

phology in the dendrite by studying specifically observed phenomena. Spine struc-32

ture responds to changes in activity levels and density approaches a maximum33

value in areas of sustained activity, as measured by the spine stem current. How-34

ever, the formulation does not allow density to fall below its initial condition. An35

interesting question for future work is how to formulate a dynamic spine density36

that can range from 0.0 to a maximum value, and to consider simulations where37

the activation site is randomly selected in each cycle.38

The model qualitatively captures observed phenomena and predicts a general39

increase in spine density, as well as a higher percentage of spines more electrically40
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Figure 5. Approximating a mathematical description for activity-dependent synapse
restructuring. A passive cable, with the same geometric and electrical parameters as in
Fig. 4, has an initial uniform distribution of 54 excitable spines, only now the initial
stem resistance is reduced to a uniform value of Rss = 300 M�, above a lower value for
Rcrit = 150 M�. Spines are periodically activated as in Fig. 4 and results are superimposed
for the full model (Section 2) and the reduced model (Section 3). The upper and lower
bounds for stem resistance have been reduced to Rmax = 1000 M� and Rmin = 40 M�,
respectively. (a) An a.p. generates after 40 cycles, when Rss falls below Rcrit and n
almost doubles in the stimulated region. (b) The propagating wave causes a decrease in
Rss and a corresponding increase in n out to X = 1.0 after 60 activation cycles. The
asymptotic error depends on the magnitude of Rss . (c) The a.p. propagates to X = 2.0
as Rss decreases and n increases behind the wave. In this structural configuration, the
propagating wave reaches its greatest magnitude in the center of the dendrite [c.p. to
Fig. 4(c)].
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connected to the dendrite (shorter spine stems) in areas receiving a sustained high1

level of activity. Results also predict that areas of the dendrite experiencing a sus-2

tained lack of electrical activity (whether synaptic activation or current flowing3

along the dendrite) will have a higher percentage of spines with long, narrow stems.4

The length of time for structural transition depends on the magnitude of ε, selected5

here for computational efficiency. To achieve the results shown in this paper over6

12–13 days, as observed by Geinisman et al. (1996), one would need to set the rate7

of change in spine structure on the order of ε = 10−7.8

By allowing local spine density and structure to transition through identified9

threshold values for generation of a.p., new pathways are created for wave propa-10

gation when the spines are modeled with excitable membrane properties. Results11

shown here are for a dendrite of physical length 3λ, where λ is approximately12

180 µm. This means that the signal propagation in Fig. 4(c) represents a wave13

of a.p.s extending to a physical length of x = 0.36 mm, resulting from synaptic14

activation (Isyn) of seven axodendritic synapses (Rss = 250 M�) located between15

x = 0.0 and 0.036 mm, along with the evolving profile for spine density and struc-16

ture from previous synaptic events.17

The paper deals with the disparity of time scales between rapid changes in activ-18

ity and slow changes in morphology. Comparative simulations identify a parame-19

ter value for the rate of change in the slow system that returns results in a shorter20

period of computation time, without sacrificing the dynamics of the system for21

smaller values of the parameter. Another way to speed up computation time in22

systems with periodic activation would be to exploit the fact that the slow variables23

are piecewise continuous over time and relatively constant within each activation24

cycle. One might then use the average measure of local activity in each cycle to25

compute changes in the slow system at the end of each cycle of length T , rather26

than integrating the entire system at each time step. For example, changes in spine27

structure over each cycle may alternately be derived as28

Rss(X, Ti) − Rss(X, Ti−1)

T
= −ε f (Rss(X, Ti−1))

∫ Ti

Ti−1

Iss(X, t)dt (14)
29

Rss(X, Ti ) = −T ε f (Rss(X, Ti−1))I avg
ss (X)30

+ Rss(X, Ti−1), (15)31

where the average stem current is computed as the total contribution Iss over each32

cycle divided by the length of the cycle33

I avg
ss = 1

T

∫ Ti

Ti−1

Iss(X, t)dt. (16)
34

Calcium from internal stores was recently shown to cause elongation of den-35

dritic spine stems in slice cultures (Korkortian and Segal, 1999). Still another36
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experiment indicates that increased calcium levels may cause spine stem short- 1

ening (Halpein et al., 1998). Harris (1999b) proposes yet another model for spine 2

restructuring based upon the above experiments: A moderate amount of synaptic 3

activation may cause calcium to be released from a cell’s internal stores, resulting 4

in spine stem elongation. However, a higher level of activity may cause calcium 5

influx and induce spine stem shortening or loss (Harris, 1999b). Cable theory (Baer 6

and Rinzel, 1991) allows for dynamic molecular elements in a continuum of spines, 7

and one could begin to model calcium-dependent, bi-directional changes in spine 8

structure using a slow subsystem to the cable model to capture these experimental 9

observations. 10
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APPENDIX A 17

A.1. Table of parameters. 18

Ash Surface area of each spine head 1.31 µm2

β Rate of change in stem resistance 30
Cm Specific membrane capacitance 1 µFcm2

Csh Capacitance of each spine head AshCm
d Diameter of the dendrite 0.36 µm
δ Perturbation parameter Rss/R∞
ε Rate of change in stem resistance 0.02
γ Channel density 2.5
gp Peak synaptic conductance 0.074 nS
gK Maximal potassium conductance 36 mS cm−2

gL Maximal leakage conductance 0.3 mS cm−2

gNa Maximal sodium conductance 120 mS cm−2

λ Length constant
√

Rmd/4Ri
Rcrit Critical value for stem resistance 300 M� (Section 2) 150 M� (Section 3)
Ri Specific cytoplasmic resistivity 70 � cm
R∞ Input resistance Rm/(λπd)

Rm Passive membrane resistance 2500 � cm2

Rmax Stem resistance upper bound 2000 M� (Section 2) 1000 M� (Section 3)
Rmin Stem resistance lower bound 200 M� (Section 2) 40 M� (Section 3)
Rsh Resistance of each spine head 1.02 × 1011�

τm Membrane time constant RmCm 19
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tp Time to peak in each activation cycle 0.2 ms
VK Potassium reversal potential −12 mV
VL Leakage reversal potential 10.5989 mV
VNa Sodium reversal potential 115 mV
Vsyn Synaptic reversal potential 100 mV

1

A.2. Activity-dependent synapse restructuring.2

τm
∂Vd

∂t
= ∂2Vd

∂ X2
− Vd + R∞nIss (A.1)3

Csh
∂Vsh

∂t
= −Iion − Isyn − Iss (A.2)4

∂ Rss

∂t
= −εR2

ss Iss

(
1 − Rss

Rmax

)(
Rss

Rmin
− 1

)
(A.3)

5

n(X, t) = n0

[
m + 1

2
− m − 1

2
tanh

β(Rss(X, t) − Rcrit)

R∞

]
, (A.4)

6

where7

Iss = Vsh − Vd

Rss
(A.5)

8

Isyn = gp
t

tp
e

(
1− t

t p

)
(Vsh − Vsyn). (A.6)

9

Ionic current in the passive or excitable spines is modeled, respectively by10

Iion = Vsh/Rsh (A.7)11

or12

Iion(Vsh, X, t) = γ Ash((Vsh − VNa)gNam3h + (Vsh − VK )gK n4 + (Vsh − VL)gL).

(A.8)13

The boundary and initial conditions are, respectively,14

∂Vd

∂ X
(0, t) = 0.0 (A.9)15

∂Vd

∂ X
(L , t) = 0.0. (A.10)16

and17

Vsh(X, 0) = Vd(X, 0) = 0.0. (A.11)18
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A.3. Reduced model for synapse restructuring. 1

(τm + R∞nCsh)
∂Vd

∂t
= ∂2Vd

∂ X2
− Vd − nR∞(Iion(Vd) + Isyn(Vd)) (A.12) 2

∂ Rss

∂t
= −εR2

ss Iss

(
1 − Rss

Rmax

) (
Rss

Rmin
− 1

)
(A.13)

3

n(X, t) = n0

(
m + 1

2
− m − 1

2
tanh

β(Rss(X, t) − Rcrit)

R∞

)
,

4

(A.14) 5

where 6

Iss = W0

R∞
(A.15)

7

W0 = −R∞
(

Csh
∂Vd

∂t
+ Iion(Vd) + Isyn(Vd)

)
. (A.16)

8

Synaptic and ionic currents (Isyn and Iion), as well as initial and boundary con- 9

ditions are as in the full model above. The reduced model introduces a first-order 10

measure for local activity that may be used to approximate Iss in other models 11

when Rss is small (Wu and Baer, 1998; Verzi and Baer, 2000). 12

A.4. Stability analysis for the cable equation. When Rss/R∞ is small, the elec- 13

trical coupling between the spine and dendritic shaft is strong. Moreover, the gov- 14

erning equations (1)–(3) become singular. One can easily see this by substituting 15

equation (3) into (1), namely 16

τm
∂Vd

∂t
= ∂2Vd

∂ X2
− Vd + R∞

Rss
n(Vsh − Vd). (A.17)

17

Multiply through by δ = Rss/R∞ to obtain 18

δτm
∂Vd

∂t
= δ

∂2Vd

∂ X2
− δVd + n(Vsh − Vd). (A.18) 19

For δ � 1, both time and spatial derivatives have a small coefficient. In the limit, 20

δ → 0 and the problem becomes singular. 21
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