
AUTO 2000 :
CONTINUATION AND BIFURCATION SOFTWARE

FOR ORDINARY DIFFERENTIAL EQUATIONS

(with HomCont)

Eusebius J. Doedel 1

California Institute of Technology
Pasadena, California USA

Randy C. Paffenroth
California Institute of Technology

Pasadena, California USA

Alan R. Champneys
University of Bristol

United Kingdom

Thomas F. Fairgrieve
Ryerson Polytechnic University

Toronto, Canada

Yuri A. Kuznetsov
Universiteit Utrecht

The Netherlands

Bart E. Oldeman
University of Bristol

United Kingdom

Björn Sandstede
Ohio State University
Columbus, Ohio USA

Xianjun Wang
Concordia University

Montreal, Canada

July 30, 2002

1On leave from Concordia University, Montreal, Canada

Con ten ts

1 Installing A UTO . 9
1.1 TypographicalConventions . 9
1.2 Installation. 9
1.3 Restrictions on Problem Size. 10
1.4 Compatibilit y with Older Versions. 11
1.5 Parallel Version. 11

2 Overview of Capabilities. 13
2.1 Summary. 13
2.2 Algebraic Systems.. 13
2.3 Ordinary Di�eren tial Equations. 14
2.4 Parabolic PDEs. 15
2.5 Discretization. 16

3 How to Run A UTO . 17
3.1 User-SuppliedFiles. 17

3.1.1 The equations-�le xxx.c . 17
3.1.2 The constants-�le c.xxx . 17

3.2 User-SuppliedSubroutines. 18
3.3 Arguments of stpn t . 18
3.4 User-SuppliedDerivatives.. 19
3.5 Output Files. 19

4 Command Line User In terface. 21
4.1 TypographicalConventions . 21
4.2 GeneralOverview. 21
4.3 First Example . 22
4.4 Scripting . 25
4.5 SecondExample . 26
4.6 Extending the AUTO 2000CLUI . 29
4.7 Bifurcation Diagram Files . 31
4.8 Solution Files . 31
4.9 The .autorc File . 36
4.10 Two DimensionalPlotting Tool . 36
4.11 Three DimensionalPlotting Tool . 38

1

4.12 Quick Reference . 39
4.13 Reference . 41

4.13.1 commandAppend . 41
4.13.2 commandCat . 41
4.13.3 commandCd. 42
4.13.4 commandClean . 42
4.13.5 commandCopyAndLoadDemo . 43
4.13.6 commandCopyDataFiles . 43
4.13.7 commandCopyDemo . 44
4.13.8 commandCopyFortFiles . 44
4.13.9 commandCreateGUI . 45
4.13.10commandDeleteDataFiles . 45
4.13.11commandDeleteFortFiles . 46
4.13.12commandDouble . 46
4.13.13commandInteractiveHelp . 47
4.13.14commandLs . 47
4.13.15commandMoveFiles . 48
4.13.16commandParseConstantsFile . 48
4.13.17commandParseDiagramAndSolutionFile 49
4.13.18commandParseDiagramFile . 49
4.13.19commandParseSolutionFile. 50
4.13.20commandPlotter . 50
4.13.21commandPlotter3D . 51
4.13.22commandQueryBranchPoint . 51
4.13.23commandQueryEigenvalue . 52
4.13.24commandQueryFloquet . 52
4.13.25commandQueryHopf . 53
4.13.26commandQueryIterations. 53
4.13.27commandQueryLimitpoint . 54
4.13.28commandQueryNote . 54
4.13.29commandQuerySecondaryPeriod . 55
4.13.30commandQueryStepsize . 55
4.13.31commandRun . 56
4.13.32commandRunnerCon�gFort2 . 56
4.13.33commandRunnerLoadName. 57
4.13.34commandRunnerPrintFort2 . 58
4.13.35commandShell. 58
4.13.36commandTriple . 59
4.13.37commandUserData . 59
4.13.38commandWait . 60

5 Description of A UTO -Constan ts. 61
5.1 The AUTO -Constants File. 61
5.2 Problem Constants. 61

5.2.1 NDIM. 61

2

5.2.2 NBC. 61
5.2.3 NINT . 62
5.2.4 JAC. 62

5.3 Discretization Constants. 62
5.3.1 NTST. 62
5.3.2 NCOL. 62
5.3.3 IAD . 62

5.4 Tolerances. 63
5.4.1 EPSL. 63
5.4.2 EPSU. 63
5.4.3 EPSS. 63
5.4.4 ITMX . 63
5.4.5 NWTN. 63
5.4.6 ITNW. 63

5.5 Continuation Step Size. 64
5.5.1 DS . 64
5.5.2 DSMIN . 64
5.5.3 DSMAX. 64
5.5.4 IADS . 64
5.5.5 NTHL. 65
5.5.6 NTHU. 65

5.6 Diagram Limits. 65
5.6.1 NMX. 65
5.6.2 RL0. 65
5.6.3 RL1. 66
5.6.4 A0 . 66
5.6.5 A1 . 66

5.7 FreeParameters. 66
5.7.1 NICP, ICP . 66
5.7.2 Fixed points. 66
5.7.3 Periodic solutions and rotations. 66
5.7.4 Folds and Hopf bifurcations. 67
5.7.5 Folds and period-doublings. 67
5.7.6 Boundary value problems. 67
5.7.7 Boundary value folds. 67
5.7.8 Optimization problems. 68
5.7.9 Internal free parameters. 68
5.7.10 Parameteroverspeci�cation. 68

5.8 Computation Constants. 69
5.8.1 ILP . 69
5.8.2 ISP . 69
5.8.3 ISW. 69
5.8.4 MXBF. 70
5.8.5 IRS . 70
5.8.6 IPS . 70

3

5.9 Output Control. 72
5.9.1 NPR. 72
5.9.2 IID . 72
5.9.3 IPLT . 73
5.9.4 NUZR. 74

6 Notes on Using A UTO . 75
6.1 Restrictions on the Useof PAR. 75
6.2 E�ciency . 75
6.3 Correctnessof Results.. 76
6.4 Bifurcation Points and Folds. 76
6.5 Floquet Multipliers. 76
6.6 Memory Requirements. 77

7 A UTO Demos : Tutorial. 78
7.1 Introduction. 79
7.2 ab : A Tutorial Demo. 79
7.3 Copying the Demo Files. 79
7.4 Executing all Runs Automatically. 80
7.5 Executing SelectedRuns Automatically. 82
7.6 Using AUTO -Commands.. 82
7.7 Plotting the Resultswith AUTO . 83
7.8 Following Folds and Hopf Bifurcations. 84
7.9 Relabeling Solutions in the Data-Files. 86
7.10 Plotting the 2-ParameterDiagram. 86

8 A UTO Demos : Fixed poin ts. 88
8.1 enz : Stationary Solutionsof an EnzymeModel. 88
8.2 dd2 : Fixed Points of a DiscreteDynamical System. 89

9 A UTO Demos : Perio dic solutions. 90
9.1 lrz : The Lorenz Equations. 91
9.2 abc : The A ! B ! C Reaction. 92
9.3 pp2 : A 2D Predator-Prey Model. 93
9.4 lor : Starting an Orbit from Numerical Data. 94
9.5 frc : A Periodically ForcedSystem. 95
9.6 ppp : Continuation of Hopf Bifurcations. 96
9.7 plp : Fold Continuation for Periodic Solutions. 97
9.8 pp3 : Period-Doubling Continuation. 98
9.9 tor : Detection of Torus Bifurcations. 99
9.10 pen : Rotations of CoupledPendula. 100
9.11 chu : A Non-Smooth System(Chua's Circuit). 102
9.12 phs : E�ect of the PhaseCondition. 103
9.13 ivp : Time Integration with Euler's Method. 104

4

10 A UTO Demos : BVP . 105
10.1 exp : Bratu's Equation. 105
10.2 int : Boundary and Integral Constraints. 106
10.3 bvp : A Nonlinear ODE Eigenvalue Problem. 107
10.4 lin : A Linear ODE Eigenvalue Problem. 108
10.5 non : A Non-AutonomousBVP. 109
10.6 kar : The Von Karman Swirling Flows. 110
10.7 spb : A Singularly-Perturbed BVP. 111
10.8 ezp : Complex Bifurcation in a BVP. 112

11 A UTO Demos : Parab olic PDEs. 113
11.1 pd1 : Stationary States(1D Problem). 114
11.2 pd2 : Stationary States(2D Problem). 115
11.3 wav : Periodic Waves. 116
11.4 brc : ChebyshevCollocation in Space. 117
11.5 brf : Finite Di�erences in Space. 118
11.6 bru : Euler Time Integration (the Brusselator). 119

12 A UTO Demos : Optimization. 120
12.1 opt : A Model Algebraic Optimization Problem. 121
12.2 ops : Optimization of Periodic Solutions.. 122
12.3 obv : Optimization for a BVP. 126

13 A UTO Demos : Connecting orbits. 128
13.1 fsh : A Saddle-Node Connection. 129
13.2 nag : A Saddle-SaddleConnection. 130
13.3 stw : Continuation of Sharp Traveling Waves. 131

14 A UTO Demos : Miscellaneous. 133
14.1 pvl : Useof the Subroutine pvls . 134
14.2 ext : SpuriousSolutions to BVB. 135
14.3 tim : A Test Problem for Timing AUTO . 136

15 HomCon t. 137
15.1 Introduction. 137
15.2 HomCont Files and Subroutines.. 137
15.3 HomCont-Constants. 138

15.3.1 NUNSTAB. 138
15.3.2 NSTAB. 138
15.3.3 IEQUIB. 138
15.3.4 ITWIST. 139
15.3.5 ISTART. 139
15.3.6 NREV,IREV . 140
15.3.7 NFIXED, IFIXED . 140
15.3.8 NPSI, IPSI . 140

5

15.4 Restrictions on HomCont Constants. 140
15.5 Restrictions on the Useof PAR. 141
15.6 Test Functions. 141
15.7 Starting Strategies.. 142
15.8 Notes on Running HomCont Demos. 144

16 HomCon t Demo : san. 145
16.1 Sandstede'sModel. 145
16.2 Inclination Flip. 145
16.3 Non-orientable Resonant Eigenvalues. 147
16.4 Orbit Flip. 147
16.5 Detailed AUTO -Commands. 149

17 HomCon t Demo : mtn. 152
17.1 A Predator-Prey Model with Immigration. 152
17.2 Continuation of Central Saddle-Node Homoclinics. 152
17.3 Switching betweenSaddle-Node and SaddleHomoclinic Orbits. 154
17.4 Three-ParameterContinuation. 155
17.5 Detailed AUTO -Commands. 156

18 HomCon t Demo : kpr. 159
18.1 Koper's Extended Van der Pol Model. 159
18.2 The Primary Branch of Homoclinics. 159
18.3 More Accuracy and Saddle-Node Homoclinic Orbits. 163
18.4 Three-ParameterContinuation. 166
18.5 Detailed AUTO -Commands. 167

19 HomCon t Demo : cir. 169
19.1 Electronic Circuit of Freire et al. 169
19.2 Detailed AUTO -Commands. 172

20 HomCon t Demo : she. 173
20.1 A Heteroclinic Example. 173
20.2 Detailed AUTO -Commands. 175

21 HomCon t Demo : rev. 177
21.1 A ReversibleSystem. 177
21.2 An R1-ReversibleHomoclinic Solution. 177
21.3 An R2-ReversibleHomoclinic Solution. 178
21.4 Detailed AUTO -Commands. 182

22 HomCon t Demo : Homo clinic branc h switc hing. 183
22.1 Branch switching at an inclination
ip in Sandstede'smodel. 183
22.2 Branch switching for a Shil'nikov type homoclinic orbit in the FitzHugh-Nagumo

equations. 190

6

22.3 Branch switching to a 3-homoclinic orbit in a
5th-order Korteweg-DeVries model . 193

A Running A UTO using Command Mo de. 196
A.0.1 Basic commands.. 196
A.0.2 Plotting commands. 197
A.0.3 File-manipulation. 197
A.0.4 Diagnostics.. 197
A.0.5 File-editing. 198
A.0.6 File-maintenance. 198
A.0.7 HomCont commands. 199
A.0.8 Copying a demo. 199
A.0.9 Pendula animation. 199
A.0.10 Viewing the manual. 199

B The Graphics Program PLA UT. 200
B.1 Basic PLAUT-Commands. 200
B.2 Default Options. 201
B.3 Other PLAUT-Commands. 202
B.4 Printing PLAUT Files. 202

C Graphical User In terface. 203
C.1 GeneralOverview. 203

C.1.1 The Menu bar. 203
C.1.2 The De�ne-Constants-buttons. 204
C.1.3 The Load-Constants-buttons. 204
C.1.4 The Stop- and Exit-buttons. 204

C.2 The Menu Bar. 204
C.2.1 Equations-button. 204
C.2.2 Edit-button. 204
C.2.3 Write-button. 204
C.2.4 De�ne-button. 205
C.2.5 Run-button. 205
C.2.6 Save-button. 205
C.2.7 Append-button. 205
C.2.8 Plot-button. 205
C.2.9 Files-button. 205
C.2.10 Demos-button. 206
C.2.11 Misc.-button. 206
C.2.12 Help-button. 206

C.3 Using the GUI. 206
C.4 Customizing the GUI. 206

C.4.1 Print-button. 206
C.4.2 GUI colors. 207
C.4.3 On-line help. 207

7

Preface

This is a guide to the software package AUTO for continuation and bifurcation problems in
ordinary di�eren tial equations.Earlier versionsof AUTO weredescribed in Doedel(1981),Doedel
& Kern�evez (1986a), Doedel & Wang (1995), Wang & Doedel (1995). For a description of the
basic algorithms seeDoedel, Keller & Kern�evez (1991a), Doedel, Keller & Kern�evez (1991b).
This versionof AUTO incorporatesthe HomCont algorithms of Champneys& Kuznetsov (1994),
Champneys,Kuznetsov & Sandstede(1996) for the bifurcation analysis of homoclinic orbits.
The graphical user interface was written by Wang (1994). The Floquet multiplier algorithms
werewritten by Fairgrieve (1994), Fairgrieve & Jepson(1991).

Acknowledgments

The �rst author is much indebted to H. B. Keller of the California Institute of Technology for
his inspiration, encouragement and support. He is also thankful to AUTO usersand research
collaborators who have directly or indirectly contributed to its development, in particular, Jean
Pierre Kern�evez,UTC, Compi�egne,France;Don Aronson, University of Minnesota,Minneapolis;
and Hans Othmer, University of Utah. Material in this document related to the computation
of connecting orbits was developed with Mark Friedman, University of Alabama, Huntsville.
Also acknowledgedis the work of Nguyen Thanh Long, Concordia University, Montreal, on the
graphicsprogramPLAUT and the pendulaanimation program. An earliergraphicaluserinterface
for AUTO on SGI machineswas written by Taylor & Kevrekidis (1989). Special thanks are due
to SheilaShull, California Institute of Technology, for her cheerfulassistancein the distribution of
AUTO over a long period of time. Over the years,the development of AUTO hasbeensupported
by variousagenciesthrough the California Institute of Technology. Work on this updated version
was supported by a generalresearch grant from NSERC (Canada).

The development of HomCont has much bene�tted from various piecesof help and advice
from, amongothers,W.-J. Beyn, Universit•at Bielefeld,M. J. Friedman,University of Alabama,A.
Rucklidge, University of Cambridge, M. Koper, University of Utrecht and C. J. Budd, University
of Bristol. Financial support for collaboration was received from the U.K. Engineering and
Physical ScienceResearch Council and the Nu�eld Foundation.

8

Chapter 1

Installing A UTO .

1.1 Typographical Conventions

This manual usesthe following conventions.
command This font is usedfor commandswhich you can type in.
PAR This font is usedfor AUTO parameters.
�lename This font is usedfor �le and directory names.
variable This font is usedfor environment variable.
site This font is usedfor world wide web and ftp sites.
function This font is usedfor function names.

1.2 Installation.

The AUTO �les are available via HTTP from
http://www.ama.caltech.edu/� redrod/auto2000/distribution/.

bzipped Postscript manual auto2000-0.9.6.ps.bz2
gzipped Postscript manual auto2000-0.9.6.ps.gz
compressedPostscript manual auto2000-0.9.6.ps.Z
tarred and gzipped sourcecode auto2000-0.9.6.tgz
tarred and bzipped sourcecode auto2000-0.9.6.tbz2
tarred and compressedsourcecode auto2000-0.9.6.tar.Z
zipped sourcecode auto2000-0.9.6.zip

Below it is assumedthat you areusingthe Unix shell cshand that the �le auto2000-0.9.6.tar.Z
is in your main directory.

While in your main directory, enter the commands uncompress auto2000-0.9.6.tar.Z ,
followed by tar xvfo auto2000-0.9.6.tar . This will result in a directory auto, with one
subdirectory, auto/2000. Type cd auto/2000 to changedirectory to auto/2000. Then type
configure , to check your system for required compilers and libraries. Once the con�gure
script has �nished you may then type maketo compile AUTO and its ancillary software. The
con�gure script is designedto detect the details of your systemwhich AUTO requiresto compile
successfully. If either the con�gure script or the make commandshould fail, you may assistthe

9

con�gure script by giving it various commandline options. Pleasetype configure --help for
more details. Upon compilation, you may type makeclean to remove unnecessary�les.

There is a new CLUI under development which includes someof the capabilities of the old
GUI and will eventually be the recommendway to run AUTO. More information on the CLUI
may be found in Chapter 4. The new CLUI doesnot require any additional options to be passed
to the configure script.

To run the new Command Line User Interface (CLUI) and the old command languageyou
need to set your environment variables correctly. Assuming AUTO is installed in your home
directory, the following commandsset your environment variablesso that you will be able to run
the AUTO commands,and may be placed into your .login, .pro�le, or .cshrc�le, as appropri-
ate. If you are using a sh compatible shell, such as sh, bash, ksh, or ash enter the command
source $HOME/auto/2000/cmds/auto. env. sh. On the other hand, if you are using a csh com-
patible shell,such ascsh or tcsh , enter the command source $HOME/auto/2000/cmds/a ut o. env.c sh.

There is an old and unsupported Graphical UserInterface(GUI) which requiresthe X-Window
systemand Motif, and it is not compiledby default. Note that AUTO can be very e�ectiv ely run
in CommandMode, i.e., the GUI is not strictly necessary. To compile AUTO with the old GUI,
type configure --enable-gui and then make in directory auto/2000.

The PostScript conversioncommand @pswill be enabledif the con�gure script detects the
appropriatesoftware,but you may haveto enter the correctprinter namein auto/2000/cmds/@pr.

To generatethe on-line manual, type makein auto/2000/doc.
To prepare AUTO for transfer to another machine, type makesuperclean in directory

auto/2000 before creating the tar-�le. This will remove all executable,object, and other non-
essential �les, and thereby reducethe sizeof the package.

AUTO can be tested by typing make> TEST& in directory auto/2000/test. This will
executea selectionof demosfrom auto/2000/demosand write a summaryof the computationsin
the �le TEST. The contents of TEST can then be comparedto other test result �les in directory
auto/2000/test. Note that minor di�erences are to be expecteddue to architecture and compiler
di�erences.

SomeEISPACK routines usedby AUTO for computing eigenvaluesand Floquet multipliers
are included in the package(Smith, Boyle, Dongarra, Garbow, Ikebe, Klema & Moler (1976)).

1.3 Restrictions on Problem Size.

There are sizerestrictions in the �le auto/2000/src/auto c.h on the following AUTO -constants :
the e�ectiv e number of equation parameters NPAR, and the number of stored branch points
NBIF for algebraicproblems. SeeChapter 5 for the signi�cance theseconstants. Their maxima
are denotedby the corresponding constant followed by an X. For example, NPARXin auto c.h
denotesthe maximum value of NPAR. If the maxima of NBIFis exceededin an AUTO -run then
a messagewill be printed. On the other hand, the maximum value of NPAR, if exceeded,may
lead to unreported errors. Upon installation NPARX=36; it shouldnever be decreasedbelow that
value; seealso Section6.1. Sizerestrictions can be changedby editing auto c.h. This must be
followed by recompilation by typing makein directory auto/2000/src.

Note that in certain casesthe e�ective dimensionmay be greaterthan the userdimension. For
example,for the continuation of folds, the e�ectiv edimensionis 2 NDIM+1 for algebraicequations,

10

and2 NDIMfor ordinary di�eren tial equations,respectively. Similarly, for the continuation of Hopf
bifurcations, the e�ectiv e dimensionis 3 NDIM+2.

1.4 Compatibility with Older Versions.

There are two changescomparedto early versionsof AUTO 94 : The user-suppliedequations-
�les must contain the subroutine pvls . For an example of use of pvls seethe demo pvl in
Section14.1. There is alsoa small changein the q.xxxdata-�le. If necessary, older AUTO 94 �les
can be converted using the @94to97command;seeSectionA. Data �les from AUTO 97 are fully
compatible with AUTO 2000, but asAUTO 2000is written in C userde�ned function �les from
AUTO 97 , which are generally in Fortran, must be rewritten.

1.5 Parallel Version.

AUTO 2000contains codewhich allowsit to run in onvarioustypesof parallel computers.Namely,
it canuseeither the Pthreadslibrary for running on shared-memorymulti-pro cessors,or the MPI
messagepassinglibrary. When the con�gurescript is run it will try to �nd the abovetwo libraries,
and if it is successfulit will include their functionality into AUTO 2000. To force the con�gure
script not to use either of the above libraries, one may type configure --without-mpi or
configure --without-pthreads , and then type make. One may even precludeboth by typing
configure --without-mpi --without-pthreads and then typing make. On the other hand,
unlessthere is someparticular di�cult y, we recommendthat that the con�gure script be used
without arguments, sincethe parallel versionof AUTO 2000may easily be controlled, and even
run in a serial mode, through the useof commandline options at run time. The commandline
options are listed in Table 1.1.

-v Give verboseoutput.
-m Usethe MessagePassingInterface library for parallelization.

-t

Usethe Pthreads library for parallelization. This option
takesoneof three arguments.

conpar parallelizesthe condensationof parametersrou-
tine.

setub v parallelizesthe Jacobiansetup routine.

both parallelizesboth routines.

In generalthe recommendedoption is 'both'.

-#
The number of processingunits to use (currently only
usedwith the -t option).

Table 1.1: Commandline options.

For example,to run the AUTO 2000executableauto.exein serialmodeyou just type auto.exe.

11

To run the samecommandin parallel usingthe Pthreadslibrary on 4 processorsyou type auto.exe
-t both -# 4. If you were to try and run the above commandon a machine which did not have
the Pthreads library, the commandwould exit with an error and inform you that the Pthreads
library is not available.

Running the MPI version is somewhatmore complexbecauseof the fact that MPI normally
usessomeexternal program for starting the computational processes.The exact nameand com-
mand line options of this external program dependson your MPI installation. A commonname
for this MPI external program is mpirun, and a commoncommandline option which de�nes the
number of computational processesis -np. Accordingly, if you wanted to run the MPI version
of AUTO 2000on four processors,with the above external program, you would type mpirun-np
4 auto.exe-m. Pleaseseeyour local MPI documentation for more detail. As with the Pthreads
library, if you were to try and run the above commandon a machine which did not have MPI,
the commandwould exit with an error and inform you that MPI is not available.

The commandsin the auto/2000/cmdsdirectory and described in Chapter 3 may beusedwith
the parallel versionaswell, by setting the AUTO COMMAND PREFIX and AUTO COMMAND ARGS
environment variables. For example, to the run AUTO 2000 in parallel using the Pthreads li-
brary on 4 processorsjust type setenv AUTOCOMMANDARGS̀`-t both -# 4'' and then use
the commandsin auto/2000/cmdsnormally. To run AUTO 97in parallel usingthe MPI library on
4 processorsjust type setenv AUTOCOMMANDARGS̀`-m'' and setenv AUTOCOMMANDPREFIX
``mpirun -np 4'' , and then usethe commandsin auto/2000/cmdsnormally. The previousex-
amplesassumedyou are using the csh shell or the tcsh shell, for other shellsyou should modify
the commandsappropriately.

12

Chapter 2

Overview of Capabilities.

2.1 Summary.

AUTO can do a limited bifurcation analysisof algebraicsystems

f (u, p) = 0, f (�, �), u 2 Rn, (2.1)

and of systemsof ordinary di�eren tial equation (ODEs) of the form

u′(t) = f
(

u(t), p
)

, f (�, �), u(�) 2 Rn, (2.2)

Herep denotesoneor more free parameters.
It can also do certain stationary solution and wave calculations for the partial di�eren tial

equation (PDE)
ut = Duxx + f (u, p), f (�, �), u(�) 2 Rn, (2.3)

whereD denotesa diagonal matrix of di�usion constants. The basic algorithms used in the
package, as well as related algorithms, can be found in Keller (1977), Keller (1986), Doedel,
Keller & Kern�evez (1991a), Doedel,Keller & Kern�evez (1991b).

Below, the basiccapabilitiesof AUTO arespeci�ed in moredetail. Somerepresentativ edemos
are also indicated.

2.2 Algebraic Systems.

Speci�cally, for (2.1) the program can :

- Compute solution branches.
(Demo ab; Run 1.)

- Locate branch points and automatically computebifurcating branches.
(Demo pp2; Run 1.)

- Locate Hopf bifurcation points and continue thesein two parameters.
(Demo ab; Runs 1 and 5.)

13

- Locate folds (limit points) and continue thesein two parameters.
(Demo ab; Runs 1,3,4.)

- Do each of the above for �xed points of the discretedynamical systemu(k+1) = f (u(k), p)
(Demo dd2.)

- Find extrema of an objective function along solution branches and successively continue
such extrema in more parameters.
(Demo opt.)

2.3 Ordinary Differential Equations.

For the ODE (2.2) the program can :

- Compute branchesof stable and unstableperiodic solutionsand compute the Floquet mul-
tipliers, that determine stabilit y, along thesebranches. Starting data for the computation
of periodic orbits are generatedautomatically at Hopf bifurcation points.
(Demo ab; Run 2.)

- Locate folds, branch points, period doubling bifurcations, and bifurcations to tori, along
branchesof periodic solutions. Branch switching is possibleat branch points and at period
doubling bifurcations.
(Demos tor, lor.)

- Continue folds and period-doubling bifurcations, in two parameters.
(Demos plp, pp3.) The continuation of orbits of �xed period is also possible. This is the
simplest way to computecurvesof homoclinic orbits, if the period is su�cien tly large.
(Demo pp2.)

- Do each of the above for rotations, i.e., when someof the solution components are periodic
modulo a phasegain of a multiple of 2π.
(Demo pen.)

- Follow curves of homoclinic orbits and detect and continue various codimension-2bifur-
cations, using the HomCont algorithms of Champneys& Kuznetsov (1994), Champneys,
Kuznetsov & Sandstede(1996).
(Demos san, mnt, kpr, cir, she, rev.)

- Locate extrema of an integral objective functional along a branch of periodic solutionsand
successively continue such extrema in more parameters.
(Demo ops.)

- Compute curvesof solutions to (2.2) on [0,1], subject to generalnonlinear boundary and
integral conditions. The boundary conditions neednot be separated,i.e., they may involve
both u(0) and u(1) simultaneously. The side conditions may also depend on parameters.
The number of boundary conditions plus the number of integral conditions neednot equal
the dimensionof the ODE, provided there is a correspondingnumber of additional parameter

14

variables.
(Demos exp, int.)

- Determine folds and branch points along solution branches to the above boundary value
problem. Branch switching is possibleat branch points. Curvesof folds can be computed
in two parameters.
(Demos bvp, int.)

2.4 Parabolic PDEs.

For (2.3) the program can :

- Trace out branches of spatially homogeneoussolutions. This amounts to a bifurcation
analysisof the algebraicsystem(2.1). However, AUTO usesa related system instead, in
order to enablethe detection of bifurcations to wave train solutions of given wave speed.
More precisely, bifurcations to wave trains are detected as Hopf bifurcations along �xed
point branchesof the related ODE

u′(z) = v(z),
v′(z) = � D−1

[

c v(z) + f
(

u(z), p
)]

,
(2.4)

wherez = x � ct , with the wave speedc speci�ed by the user.
(Demo wav; Run 2.)

- Traceout branchesof periodic wave solutionsto (2.3) that emanatefrom a Hopf bifurcation
point of Equation 2.4. The wave speedc is �xed along such a branch, but the wave length
L, i.e., the period of periodic solutions to (2.4), will normally vary. If the wave length L
becomeslarge, i.e., if a homoclinic orbit of Equation 2.4 is approached, then the wave tends
to a solitary wave solution of (2.3).
(Demo wav; Run 3.)

- Trace out branchesof wavesof �xed wave length L in two parameters. The wave speedc
may be chosenas one of theseparameters. If L is large then such a continuation givesa
branch of approximate solitary wave solutions to (2.3).
(Demo wav; Run 4.)

- Do time evolution calculations for (2.3), given periodic initial data on the interval [0, L].
The initial data must be speci�ed on [0,1] and L must be set separatelybecauseof internal
scaling. The initial data may be givenanalytically or obtainedfrom a previouscomputation
of wave trains, solitary waves,or from a previous evolution calculation. Conversely, if an
evolution calculation results in a stationary wave then this wave can be used as starting
data for a wave continuation calculation.
(Demo wav; Run 5.)

- Do time evolution calculations for (2.3) subject to user-speci�ed boundary conditions. As
above, the initial data must be speci�ed on [0,1] and the spaceinterval length L must be
speci�ed separately. Time evolution computationsof (2.3) areadaptive in spaceand in time.

15

Discretization in time is not very accurate : only implicit Euler. Indeed, time integration
of (2.3) has only beenincluded as a convenienceand it is not very e�cien t. (Demos pd1,
pd2.)

- Compute curves of stationary solutions to (2.3) subject to user-speci�ed boundary con-
ditions. The initial data may be given analytically, obtained from a previous stationary
solution computation, or from a time evolution calculation.
(Demos pd1, pd2.)

In connectionwith periodic waves,note that (2.4) is just a special caseof (2.2) and that its
�xed point analysisis a special caseof (2.1). One advantage of the built-in capacity of AUTO to
deal with problem (2.3) is that the userneedonly specify f , D, and c. Another advantage is the
compatibilit y of output data for restart purposes.This allows switching back and forth between
evolution calculationsand wave computations.

2.5 Discretization.

AUTO discretizesODE boundary value problems (which includes periodic solutions) by the
method of orthogonal collocation using piecewisepolynomials with 2-7 collocation points per
mesh interval (de Boor & Swartz (1973)). The mesh automatically adapts to the solution to
equidistribute the local discretization error (Russell& Christiansen(1978)). The number of mesh
intervals and the number of collocation points remain constant during any given run, although
they may be changedat restart points. The implementation is AUTO -speci�c. In particular, the
choiceof local polynomial basisand the algorithm for solving the linearized collocation systems
werespeci�cally designedfor usein numerical bifurcation analysis.

16

Chapter 3

How to Run A UTO .

3.1 User-Supplied Files.

The user must preparethe two �les described below. This can be donewith the GUI described
in Chapter 4, or independently.

3.1.1 The equations-file xxx.c

A source�le xxx.ccontaining the C subroutines func , stpn t , bcnd , icnd , fopt , and pvls .
Here xxxstandsfor a user-selectedname. If any of thesesubroutinesis irrelevant to the problem
then its body neednot be completed. Examplesare in auto/2000/demos, where, e.g., the �le
ab/ab.c de�nes a two-dimensionaldynamical system,and the �le exp/exp.cde�nes a boundary
value problem. The simplest way to createa new equations-�le is to copy an appropriate demo
�le. In GUI mode, this �le can be directly loaded with the GUI-button Equations/New; see
SectionC.2.

3.1.2 The constants-file c.xxx

AUTO -constants for xxx.carenormally expectedin a corresponding �le c.xxx. Speci�c examples
include ab/c.ab and exp/c.expin auto/2000/demos. SeeChapter 5 for the signi�cance of each
constant.

17

3.2 User-Supplied Subroutines.

The purposeof each of the user-suppliedsubroutinesin the �le xxx.cis described below.

- func : de�nes the function f (u, p) in (2.1), (2.2), or (2.3).

- stpn t : This subroutineis calledonly if IRS=0 (seeSection5.8.5for IRS), which typically
is the casefor the �rst run. It de�nes a starting solution (u, p) of (2.1) or (2.2). The starting
solution should not be a branch point.
(Demos ab, exp, frc, lor.)

- bcnd : A subroutine bcnd that de�nes the boundary conditions.
(Demo exp, kar.)

- icnd : A subroutine icnd that de�nes the integral conditions.
(Demos int, lin.)

- fopt : A subroutine fopt that de�nes the objective functional.
(Demos opt, ops.)

- pvls : A subroutine pvls for de�ning \solution measures".
(Demo pvl.)

3.3 Arguments of stpnt.

Note that the arguments of stpn t depend on the solution type :

- When starting from a �xed point or an analytically or numerically known space-dependent
solution, stpn t must have four arguments, namely, (NDIM,U,PAR,T). Here T is the inde-
pendent spacevariable which takesvaluesin the interval [0,1]. T is ignored in the caseof
�xed points.
(Demosexpand ab.)

- Similarly, when starting from an analytically known time-periodic solution or rotation, the
arguments of stpn t are (NDIM,U,PAR,T), whereT denotesthe independent time variable
which takes values in the interval [0,1]. In this caseone must also specify the period in
PAR(11).
(Demosfrc, lor, pen.)

- When using the @fccommand(Section A) for conversionof numerical data, stpn t must
have four arguments, namely, (NDIM,U,PAR,T). In this caseonly the parametervaluesneed
to be de�ned in stpn t . (Demoslor and pen.)

18

3.4 User-Supplied Derivatives.

If AUTO -constant JACequals0 then derivativesneednot be speci�ed in func , bcnd , icnd ,
and fopt ; seeSection5.2.4. If JAC=1then derivativesmust be given. This may be necessaryfor
sensitive problems,and is recommendedfor computationsin which AUTO generatesan extended
system. Examplesof user-suppliedderivativescan be found in demos dd2, int, plp, opt, and
ops.

3.5 Output Files.

AUTO writes four output-�les :

- fort.6 : A summary of the computation is written in fort.6, which usually corresponds to
the window in which AUTO is run. Only special, labeledsolution points are noted, namely
those listed in Table 3.1. The letter codesin the Table are usedin the screenoutput. The
numericalcodesareusedinternally and in the fort.7 and fort.8 output-�les describedbelow.

BP (1) Branch point (algebraicsystems)
LP (2) Fold (algebraicsystems)
HB (3) Hopf bifurcation

(4) User-speci�ed regular output point
UZ (-4) Output at user-speci�ed parametervalue
LP (5) Fold (di�eren tial equations)
BP (6) Branch point (di�eren tial equations)
PD (7) Period doubling bifurcation
TR (8) Torus bifurcation
EP (9) End point of branch; normal termination
MX (-9) Abnormal termination; no convergence

Table 3.1: Solution Types.

- fort.7 : The fort.7 output-�le contains the bifurcation diagram. Its format is the sameas
the fort.6 (screen)output, but the fort.7 output is more extensive, asevery solution point
hasan output line printed.

- fort.8 : The fort.8 output-�le contains complete graphics and restart data for selected,
labeledsolutions. The information per solution is generallymuch more extensive than that
in fort.7. The fort.8 output should normally be kept to a minimum.

- fort.9 : Diagnostic messages,convergencehistory, eigenvalues,and Floquet multipliers are
written in fort.9. It is strongly recommendedthat this output be habitually inspected. The
amount of diagnosticdata canbecontrolled via the AUTO -constant IID ; seeSection5.9.2.

The userhassomecontrol over the fort.6 (screen)and fort.7 output via the AUTO -constant
IPLT (Section5.9.3). Furthermore, the subroutine pvls canbeusedto de�ne \solution measures"

19

which can then be printed by \parameter overspeci�cation"; seeSection5.7.10. For an example
seedemo pvl.

The AUTO -commands @sv, @ap, and @dfcan be used to manipulate the output-�les
fort.7, fort.8, and fort.9. Furthermore, the AUTO -command @lbcan be used to delete and
relabel solutions simultaneously in fort.7 and fort.8. For details seeSectionA.

The graphicsprogramPLAUT canbeusedto graphically inspect the data in fort.7 and fort.8;
seeChapter B.

20

Chapter 4

Command Line User In terface.

4.1 Typographical Conventions

This chapter usesthe following conventions. All code exampleswill be in in the following font.

AUTO>copydemo("ab")
Copying demoab ... done

To distinguish commandswhich are typed to the Unix shell from those which are typed to
the AUTO 2000commandline user interface(CLUI) we will usethe following two prompts.

> Commandswhich follow this prompt are for the Unix shell.
AUTO> Commandswhich follow this prompt are for the AUTO 2000CLUI.

4.2 General Overview.

The AUTO 2000command line user interface (CLUI) is similar to the command languagede-
scribed in Section A in that it facilitates the interactive creating and editing of equations-�les
and constants-�les. It di�ers from the other commandlanguagein that it is basedon the object-
oriented scripting languagePython (seeLutz (1996)) and provides extensive programming ca-
pabilities. This chapter will provide documentation for the AUTO 2000CLUI commands,but
is not intended as a tutorial for the Python language. We will attempt to make this chapter
self contained by describing all Python constructs that we use in the examples,but for more
extensive documentation on the Python language,including tutorials and pointers to further
documentation, pleaseseeLutz (1996) or the web pagehttp://www.python.org which contains
an excellent tutorial at http://www.python.org/doc/current/tut/tut.html.

To usethe CLUI for a newequation,changeto an empty directory. For an existing equations-
�le, changeto its directory. (Do not activate the CLUI in the directory auto/2000 or in any of
its subdirectories.) Then type

auto .
If your command search path has been correctly set (see Section 1.2), this command will

start the AUTO 2000CLUI interactive interpretor and provide you with the AUTO 2000CLUI
prompt.

21

> auto
Initializing
Python 1.5.2 (1, Feb 1 2000, 16:32:16) [GCCegcs-2.91.66 19990314/Linux
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
(AUTOInteractiveConsol e)
AUTO>

Figure 4.1: Typing auto at the Unix shell prompt starts the AUTO 2000CLUI.

In addition to the examplesin the following sectionsthere are several examplescripts which
can be found in auto/2000/demos/python and are listed in Table 4.1. These scripts are fully
annotated and provide good examplesof how AUTO 2000CLUI scripts are written. The scripts
in auto/2000/demos/python/n-bodyareespcially lucid examplesand preform variousrelatedparts
of a calculation involving the gravitional N-body problem. Scripts which end in the su�x .auto
are called \basic" scripts and can be run by typing auto scriptname.auto . The scripts show in
Section4.3and Section4.5areexamplesof basicscripts. Scripts which end in the su�x .xautoare
called \expert" scripts and can be run by typing autox scriptname.xauto . More information
on expert scripts can be found in Section 4.6. Seethe README�le in that directory for more
information.

4.3 First Example

We begin with a simple exampleof the AUTO 2000CLUI. In this examplewe copy the ab demo
from the AUTO 2000installation directory and run it. For more information on the ab demosee
Section7.2. The commandslisted in Table4.2will copy the demo�les to your work directory and
run the �rst part of the demo. The results of running thesecommandsare shown in Figure 4.2.

Let usexaminemorecloselywhat action each of the commandsperforms. First, copydemo('ab')
(Section4.13.7in the reference)copiesthe �les in $AUTO DIR/demo/ab into the work directory.

Next, load(equation='ab') (Section4.13.33in the reference)informs the AUTO 2000CLUI
that the name of the user de�ned function �le is ab.c. The command load is one of the most
commonlyusedcommandsin the AUTO 2000CLUI, sinceit readsand parsesthe user�les which
aremanipulatedby other commands.The AUTO 2000CLUI storesthis setting until it is changed
by a command,such as another load command. The idea of storing information is one of the
ideasthat setsthe CLUI apart from the commandlanguagedescribed in SectionA.

Next, load(constants='ab.1') parsesthe AUTO constants �le c.ab.1 and reads it into
memory. Note that changes to the file c.ab.1 after it has been loaded in will not be used by
AUTO 2000 unless it is loaded in again after the changes are made.

Finally, run() (Section4.13.31in the reference)usesthe userde�ned functions loadedby the
load(equation='ab') command,and the AUTO constants loadedby the load(constants='ab.1')
to run AUTO 2000.

Figure 4.2 showed two of the �le typesthat the load commandcan read into memory, namely
the user de�ned function �le and the AUTO constants �le (Section 3.1). There are two other
�les types that can be read in using the load command, and they are the restart solution �le
(Section3.5) and the HomCont parameter �le (Section15.2).

22

Script Description
demo1.auto The demoscript from Section4.3.
demo2.auto The demoscript from Section4.5.
userScript.xauto The expert demoscript from Figure 4.11.

userScript.py The loadableexpert demoscript from Fig-
ure 4.12.

fullTest.auto
A script which uses the entire
AUTO 2000 command set, except for
the plotting commands.

plotter.auto
A demonstration of someof the plotting
capabilities of AUTO 2000.

fullTest.auto A script which implements the tutorial
from Section7.2.

n-body/compute lagrangepoints family.auto
A basicscript which computesandplots all
of the \Lagrange points" as a function of
the ratio of the massesof the two planets.

n-body/compute lagrangepoints 0.5.auto

A basic script which computesall of the
\Lagrange points" for the casewhere the
massesof the two planets are equal, and
savesthe data.

n-body/compute periodic family.xauto

An expert script which starts at a
\Lagrange point" computed by com-
pute lagrangepoints 0.5.auto and contin-
uesin the ratio of the massesuntil a spec-
i�ed massratio is reached. It then com-
putes a family of periodic orbits for each
pair of purely complexeigenvalues.

n-body/to matlab.xauto

A script which takes a set of
AUTO 2000 data �les and creates a
set of �les formatted for importing into
Matlab for either plotting or further
calculations.

Table 4.1: The various demonstrationscripts for the AUTO 2000CLUI.

23

Unix-COMMAND ACTION
auto start the AUTO 2000CLUI

AUTO 2000CLUI COMMAND ACTION
copydemo('ab') copy the demo�les to the work directory
load(equation='ab') load the �lename ab.c into memory
load(constants='ab.1') load the contents of the �le r.ab.1 into memory
run() run AUTO 2000with the current set of �les

Table 4.2: Running the demo ab �les.

> auto
Initializing
Python 1.5.2 (#1, Feb 1 2000, 16:32:16) [GCCegcs-2.91.66 19990314/Linux
(egcs- on linux-i386
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
(AUTOInteractiveConso le)
AUTO>copydemo('ab')
Copying demoab ... done
AUTO>load(equation='ab')
Runner configured
AUTO>load(constants='ab.1')
Runner configured
AUTO>run()
gcc -O -DPTHREADS-O -I/home/amavisitors/red ro d/ sr c/ aut o/ 2000/i ncl ude -c ab.c
gcc -O ab.o -o ab.exe /home/amavisitors/redr od/s rc /a uto /2 000/ li b/* .o
-lpthread -L/home/amavisitors/red ro d/ sr c/ aut o/ 2000/l ib -lauto_f2c -lm
Starting ab ...

1 1 EP 1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
1 33 LP 2 1.057390E-01 1.484391E+00 3.110230E-01 1.451441E+00
1 70 LP 3 8.893185E-02 3.288241E+00 6.889822E-01 3.215250E+00
1 90 HB 4 1.308998E-01 4.271867E+00 8.950803E-01 4.177042E+00
1 92 EP 5 1.512417E-01 4.369748E+00 9.155894E-01 4.272750E+00

Total Time 9.502E-02
ab ... done
AUTO>

Figure 4.2: Typing auto at the Unix shell prompt starts the AUTO 2000CLUI. The rest of the
commandsare interpreted by the AUTO 2000CLUI.

24

Note that the namegiven to the load commandis not the sameas the �lename which is read
in, for example load(constants='ab.1 ') reads in the �le c.ab.1. This di�erence is a result of
the automatic transformation of the �lenames by the AUTO 2000CLUI into the standard names
usedby AUTO 2000. The standard �lename transformations are show in Table 4.3.

Long name Short name Nameentered Transformed�le name
equation e foo foo.c
constants c foo c.foo
solution s foo s.foo
bifurcationDiagram b foo b.foo
diagnostics d foo d.foo
homcont h foo h.foo

Table 4.3: This table shows the standard AUTO 2000CLUI �lename translations. In load and
run commandseither the long nameor the short namemay be usedfor loading the appropriate
�les.

Sincethe load commandis socommon,there arevariousshorthandversionsof it. First, there
are short versionsof the various arguments as shown in Table 4.3. For example, the command
load(constants='ab.1') canbe shortenedto load(c='ab.1') . Next, several di�eren t �les may
be loadedat onceusing the sameload command. For example,the two commandsin Figure 4.3
have the samee�ect as the singlecommandin Figure 4.4.

AUTO>load(e='ab')
Runner configured
AUTO>load(c='ab.1)
Runner configured

Figure 4.3: Loading two �les individually.

AUTO>load(e='ab',c='ab.1')
Runner configured

Figure 4.4: Loading two �les at the sametime.

Also, since it is common that several �les will be loaded that have the same base name
load('ab') performs the sameaction as load(e='ab',c='ab',s= 'a b' ,h =' ab') . Note, for the
commandload('ab') it is only required that ab.cand c.abexist; s.aband h.abare optional, and
if they do not exist, no error messagewill be given.

4.4 Scripting

Section4.3 showed commandsbeing interactively entered at the AUTO 2000CLUI prompt, but
sincethe AUTO 2000CLUI is basedon Python onehasthe abilit y to write scripts for performing

25

sequencesof commandsautomatically. A Python script is very similar to the interactive mode
shown in Section 4.3 except that the commandsare placed in a �le and read all at once. For
example,if the commandsfrom Figure 4.2 whereplaced into the �le demo1.auto, in the format
shown in Figure 4.5, then the commandscould be run all at onceby typing auto demo1.auto.
SeeFigure 4.6 for the full output.

copydemo('ab')
load(equation='ab')
load(constants='ab.1')
run()

Figure 4.5: The commandsfrom Figure 4.2 and they would appear in a AUTO 2000CLUI script
�le. The sourcefor this script can be found in $AUTO DIR/demos/python/demo1.auto.

4.5 Second Example

In Section4.3 we showed a very simple AUTO 2000CLUI script, in this Sectionwe will describe
a more complexexample,which introducesseveral new AUTO 2000CLUI commandsas well as
somebasic Python constructs for conditionals and looping. We will not provide an exhaustive
referencefor the Python language,but only the very basics.For more extensive documentation
we refer the reader to Lutz (1996) or the web pagehttp://www.python.org. In this section we
will describe each line of the script in detail, and the full text of the script is in Figure 4.7.

The script beginswith a section, extracted into Figure 4.8, which performs a task identical
to that shown in Figure 4.2 except that the shorthand discussedin Section4.3 is usedfor the ld
command.

The next sectionof the script, extractedinto Figure 4.9, introducesthreenewAUTO 2000CLUI
commands.First, sv('bvp') (Section4.13.6in the reference)savesthe resultsof the AUTO 2000run
into �les using the basenamebvp and the �lename extensionsin Table 4.3. For example,in this
casethe bifurcation diagram �le fort.7 will be saved asb.bvp, the solution �le fort.8 will be saved
as s.bvp, and the diagnostics �le fort.9 will be saved as d.bvp. Next, ld(s='bvp') loads the
solution �le s.bvpinto memory so that it can be usedby AUTO 2000for further calculations.

Up to this point all of the commandspresented have had analogsin the commandlanguage
discussedin Section A, and the AUTO 2000 CLUI has been designedin this way to make it
easyfor usersto migrate from the old command languageto the AUTO 2000CLUI. The next
command, namely data = sl('bvp') (Section 4.13.19in the reference)is the �rst command
which has no analog in the old command language. The command sl('bvp') parsesthe �le
s.bvpand returns a python object which encapsulatesthe information contained in the �le and
presents it to the user in an easyto useformat. Accordingly, the commanddata = sl('bvp')
storesthis easyto userepresentation of the object in the Python variable data . Note, variables
in Python are di�eren t from those in languagessuch as C in that their type does not have to
be declaredbefore they are created. Finally, ch("NTST",50) (Section 4.13.32in the reference)
changesthe NTSTvalue to 50 (seeSection 5.2.1). To be precise,the commandch("NTST",50)

26

> cat demo1.auto
copydemo('ab')
load(equation='ab')
load(constants='ab.1')
run()

> auto demo1.auto
Initializing
Copying demoab ... done
Runner configured
Runner configured
gcc -O -DPTHREADS-O -I/home/amavisitors/r edrod/s rc /a uto /2 000/ in clu de -c ab.c
gcc -O ab.o -o ab.exe /home/amavisitors/redro d/ sr c/ auto/ 2000/l ib /*. o -lpthread
-L/home/amavisitors/re drod/ sr c/ aut o/ 2000/l ib -lauto_f2c -lm
Starting ab ...

1 1 EP 1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
1 33 LP 2 1.057390E-01 1.484391E+00 3.110230E-01 1.451441E+00
1 70 LP 3 8.893185E-02 3.288241E+00 6.889822E-01 3.215250E+00
1 90 HB 4 1.308998E-01 4.271867E+00 8.950803E-01 4.177042E+00
1 92 EP 5 1.512417E-01 4.369748E+00 9.155894E-01 4.272750E+00

Total Time 8.740E-02
ab ... done
>

Figure 4.6: This Figure starts by listing the contents of the demo1.auto�le using the Unix cat
command. The �le is then run through the AUTO 2000CLUI by typing auto demo1.autoand
the output is shown.

only modi�es the \in memory" version of the AUTO 2000constants createdby the ld('bvp')
command. The original �le c.bvpis not modi�ed.

The next section of the script, extracted into Figure 4.10, shows as exampleof looping and
conditionals in an AUTO 2000 CLUI script. The �rst line for solution in data: is the
Python syntax for loops. The data variable was de�ned in Figure 4.9 to be the parsed ver-
sion of an AUTO 2000fort.8 �le, and accordingly contains a list of the solutions from the fort.8
�le. The commandfor solution in data: is usedto loop over all solutionsin the data variable
by setting the variable solution to be one of the solutions in data and then calling the rest of
the code in the block.

Python di�ers from most other computer languagesin that blocks of code are not de�ned by
somedelimiter, such as fg in C, but by indentation. In Figure 4.7 the commandsplot('bvp')
and wait() are not part of the loop, becausethey are indented di�eren tly. This can be confusing
�rst time usersof Python , but it has the advantage that the code is forced to have a consistent
indentation style.

The next commandin the script, if solution["Type name"] == "BP": is a Python condi-

27

copydemo('bvp')

ld('bvp')
run()
sv('bvp')
ld(s='bvp')
data = sl('bvp')
ch("NTST",50)
for solution in data:

if solution["Type name"] == "BP":
ch("IRS", solution["Label"])
ch("ISW", -1)
Compute forward
run()
ap('bvp')
Computeback
ch("DS",-pr("DS"))
run()
ap('bvp')

plot('bvp')
wait()

Figure 4.7: This Figure shows a more complex AUTO 2000 CLUI script. The sourcefor this
script can be found in $AUTO DIR/demos/python/demo2.auto.

copydemo('bvp')

ld('bvp')
run()

Figure 4.8: The �rst part of the complexAUTO 2000CLUI script.

sv('bvp')
ld(s='bvp')
data = sl('bvp')
ch("NTST",50)

Figure 4.9: The secondpart of the complexAUTO 2000CLUI script.

28

tional. It examinesthe contents of the variable solution (which is oneof the entries in the array
of solutions data) and checks to seeif the condition solution["Type name"] == "BP" holds.
For parsedfort.8 �les Type nameBPcorrespondsto a bifurcation point. Accordingly, the function
of this loop and conditional is to examineevery solution in the fort.8 �le and run the following
commandsif the solution is a bifurcation point.

The next line is ch("IRS", solution["Label"]) which changesthe \in memory" versionof
the AUTO 2000constants �le to set IRS (seeSection5.8.5) equal to the label of the bifurcation
point. Wethen usech("ISW", -1) to changethe AUTO 2000constant ISWto -1 , which indicates
a branch switch (seeSection5.8.3).

We then usea run() commandto perform the calculation of the bifurcating branch and then
append the data to the s.bvp, b.bvp, and d.bvp�les with the ap('bvp') command(Section4.13.1
in the reference).In addition, ascan be seenin Figure 4.10, the # character is the Python com-
ment character. When the Python interpretor encounters a # character it ignoreseverything
from that character to the end of the line.

Finally, we us ch("DS",-pr("DS")) to changethe AUTO 2000initial step sizefrom positive
to negative, which allows us to compute the bifurcating branch in the other direction (seeSec-
tion 5.5.1). Running the AUTO 2000calculation with the run() commandand appending the
data the appropriate �les with the ap('bvp') commandcompletesthe body of the loop.

for solution in data:
if solution["Type name"] == "BP":

ch("IRS", solution["Label"])
ch("ISW", -1)
Compute forward
run()
ap('bvp')
Computeback
ch("DS",-pr("DS"))
run()
ap('bvp')

Figure 4.10: The secondpart of the complexAUTO 2000CLUI script.

Now that the section of script shown in Figure 4.10 has �nished computing the bifurcation
diagram, the command plot('bvp') brings up a plotting window (Section 4.13.20in the ref-
erence),and the command wait() causesthe AUTO 2000 CLUI to wait for input. You may
now exit the AUTO 2000 CLUI by pressingany key in the window in which you started the
AUTO 2000CLUI.

4.6 Extending the AUTO 2000 CLUI

The codein Figure 4.7performeda very usefulandcommonprocedure,it started anAUTO 2000cal-
culation and performedadditional continuations at every point which AUTO 2000detectedas a
bifurcation. Unfortunately, the script as written can only be usedfor the bvp demo. In this sec-
tion we will generalizethe script in Figure 4.7 for usewith any demo,and demonstratehow it can

29

be imported back into the interactive mode to createa new commandfor the AUTO 2000CLUI.
Several examplesof such \expert" scripts can be found in auto/2000/demos/python/n-body.

Just as loopsand conditionals can be usedin Python , onecan alsode�ne functions. For ex-
ample,Figure 4.11is a functional versionof script from Figure 4.7. The changesareactually quite
minor. The �rst line, from AUTOclui import * , includesthe de�nitions of the AUTO 2000CLUI
commands,and must be included in all AUTO 2000CLUI scripts which de�ne functions. The
next line, def myRun(demo):, beginsthe function de�nition, and createsa function namedmyRun
which takesone argument demo. The rest of the script is the sameexcept that it has been in-
dented to indicate that it is part of the function de�nition, and all occurrencesof string 'bvp'
have beenreplacedwith the variable demo. Finally we have added a line myRun('bvp') which
actually calls the function we have createdand runs the samecomputation as the original script.

from AUTOclui import *

def myRun(demo):

copydemo(demo)

ld(demo)
run()
sv(demo)
ld(s=demo)
data = sl(demo)
ch("NTST",50)
for solution in data:

if solution["Type name"] == "BP":
ch("IRS", solution["Label"])
ch("ISW", -1)
Compute forward
run()
ap(demo)
Compute back
ch("DS",-pr("DS"))
run()
ap(demo)

plot(demo)
wait()

myRun('bvp')

Figure 4.11: This Figure shows a complex AUTO 2000CLUI script written as a function. The
sourcefor this script can be found in $AUTO DIR/demos/python/userScript.xauto.

While the script in Figure 4.11 is only slightly di�eren t then the oneshowed in Figure 4.7 it
is much more powerful. Not only can it be usedas a script for running any demoby modifying

30

the last line, it can be read back into the interactive mode of the AUTO 2000CLUI and used
to create a new command, as in Figure 4.12. First, we create a �le called userScript.py which
contains the script from Figure 4.11, with one minor modi�cation. We want the function only
to run when we use it interactively, not when the �le userScript.py is read in, so we remove the
last line where the function is called. We start the AUTO 2000CLUI with the Unix command
auto , and oncethe AUTO 2000CLUI is running we usethe commandfrom userScript import
* , to import the �le userScript.py into the AUTO 2000CLUI. The import commandmakesall
functions in that �le available for our use (in this casemyRunis the only one). It is important
to note that from userScript import * doesnot usethe .py extensionon the �le name. After
importing our new function, we may useit just like any other function in the AUTO 2000CLUI,
for exampleby typing myRun('bvp') .

4.7 Bifurcation Diagram Files

Using the commandParseDiagramFile command(Section 4.13.18in the reference)the user can
parse and read into memory an AUTO 2000 bifurcation diagram �le. For example, the com-
mand commandParseDiagramFile (' ab') would parsethe �le b.ab(if you are using the standard
�lename translations from Table 4.3) and return an object which encapsulatesthe bifurcation
diagram in an easyto useform.

The object returned by the commandParseDiagramFile is a list of all of the solutions in the
appropriate bifurcation diagram �le, and each solution is a Python dictionary with entries for
each pieceof data for the solution. For example,the sequenceof commandsin Figure 4.13,prints
out the label of the �rst solution in a bifurcation diagram. The queriableparts of the object are
listed in Table 4.4.

The individual elements of the array may be accessedin two ways, either by index of the
solution using the [] syntax or by label number using the () syntax. For example, assume
that the parsedobject is contained in a variable data . The �rst solution may be accessedusing
the command data[0] , while the solution with label 57 may be accessedusing the command
data(57) .

This classhas two methods that are particularily useful for creating data which can be used
in other programs. First, there is a method called toArray which takes a bifurcation diagram
and returns a standard Python array. Second, there is a method called writeRawFilename
which will create a standard ASCII �le which contains the bifurcation diagram. For example,
we again assumethat the parsedobject is contained in a variable data . If one wanted to have
the bifurcation diagram returned as a Python array one would type data.toArray() . Similar-
ily, if one wanted to write out the bifurcation diagram to the �le outputfile one would type
data.writeRawFilename (' outp ut fi le ') .

4.8 Solution Files

Using the commandParseSolutionFi le command(Section4.13.19in the reference)the usercan
parseand read into memory an AUTO 2000bifurcation solution �le. For example,the command
commandParseSolutionFil e('a b') would parsethe �le b.ab (if you are using the standard �le-

31

> cp \$AUTO_DIR/python/demo/u serScri pt .p y .
> ls
userScript.py
> cat userScript.py
This is an example script for the AUTO2000commandline user
interface. See the "CommandLine User Interface" chapter in the
manual for more details.
from AUTOclui import *

def myRun(demo):

copydemo(demo)

ld(demo)
run()
sv(demo)
ld(s=demo)
data = sl(demo)
ch("NTST",50)
for solution in data:

if solution["Type name"] == "BP":
ch("IRS", solution["Label"])
ch("ISW", -1)
Compute forward
run()
ap(demo)
Computeback
ch("DS",-pr("DS"))
run()
ap(demo)

plot(demo)
wait()

> auto
Initializing
Python 1.5.2 (#1, Feb 1 2000, 16:32:16) [GCCegcs-2.91.66 19990314/Linux
(egcs- on linux-i386
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
(AUTOInteractiveConso le)
AUTO>from userScript import *
AUTO>myRun('bvp')
...

Figure 4.12: This Figure shows the functional versionof the AUTO 2000CLUI from Figure 4.11
beingusedasan extensionto the AUTO 2000CLUI. The sourcecode for this script canbe found
in $AUTO DIR/python/demo/userScript.py

32

AUTO>data=dg('ab')
Parsed file: b.ab
AUTO>print data[0]
{'LAB': 6, 'TY name': 'EP', 'data': [0.0, 0.0, 0.0, 0.0], 'section': 12,
'BR': 2, 'PT': 1, 'TY number': 9}
AUTO>print data[0]['LAB']
6
AUTO>

Figure 4.13: This �gure shows an exampleof parsinga bifurcation diagram. The �rst command,
data=dg('ab') , readsin the bifurcation diagram and puts it into the variable data . The second
command,print data[0] prints out all of the data about the �rst solution in the list. The third
command,print data[0]['LAB'] , prints out the label of the �rst point.

Query string Meaning
TY name The short namefor the solution type (seeTable 4.5).
TY number The number of the solution type (seeTable 4.5).
BR The branch number.
PT The point number.
LAB The solution label, if any.
section A unique identi�er for each branch in a �le with multiple branches.
data An array which contains the AUTO 2000output.

Table 4.4: This table shows the strings that can be usedto query a bifurcation diagram object
and their meanings.

Type Short Name Number
No Label No Label
Branch point (algebraicproblem) BP 1
Fold (algebraicproblem) LP 2
Hopf bifurcation (algebraicproblem) HB 3
Regular point (every NPR steps) RG 4
User requestedpoint UZ -4
Fold (ODE) LP 5
Bifurcation point (ODE) BP 6
Period doubling bifurcation (ODE) PD 7
Bifurcation to invarient torus (ODE) TR 8
Normal begin or end EP 9
Abnormal termination MX -9

Table4.5: This table shows the the varioustypesof points that canbe in solution and bifurcation
diagram �les, with their short namesand numbers.

33

nametranslations from Table4.3)andreturn an object which encapsulatesthe bifurcation solution
in a easyto useform.

The object returned by the commandParseSolutionFi le is a list of all of the solutions in the
appropriate bifurcation solution �le, and each solution is a Python dictionary with entries for
each pieceof data for the solution. For example,the sequenceof commandsin Figure 4.14,prints
out the label of the �rst solution in a bifurcation solution. The queriableparts of the object are
listed in Table 4.6.

AUTO>data=sl()
Parsed file: fort.8
AUTO>print data[0]
'Branch number': 2
'ISW': 1
'Label': 6
'NCOL': 0
'NTST': 0
'Parameters': [0.0, 14.0, 2.0, 0.0, 0.0, 0.0]
'Point number': 1
'Type name': 'EP'
'Type number': 9
'p': [0.0, 14.0, 2.0, 0.0, 0.0, 0.0]
'parameters': [0.0, 14.0, 2.0, 0.0, 0.0, 0.0]
AUTO>print data[0]['Label']
6
AUTO>data[0]["data"][0]
{'t': 0.0, 'u': [0.0, 0.0]}

Figure 4.14: This �gure shows an exampleof parsing a bifurcation solution. The �rst command,
data=dg('ab') , readsin the bifurcation solution and puts it into the variable data . The second
command,print data[0] prints out all of the data about the �rst solution in the list. The third
command,print data[0]['Label'] , prints out the label of the �rst point. The last command
prints the value of the solution at the �rst point of the �rst solution.

The individual elements of the array may be accessedin two ways, either by the index of
the solution using the [] syntax or by label number using the () syntax. For example,sssume
that the parsedobject is contained in a variable data . The �rst solution may be accessedusing
the command data[0] , while the solution with label 57 may be accessedusing the command
data(57) .

This classhas two methods that are particularily useful for creating data which can be used
in other programs. First, there is a method called toArray which takes a solution and re-
turns a standard Python array. Second,there is a method called writeRawFilename which will
create a standard ASCII �le which contains the solution. The �rst element of each row will
be the 't' value and the following elements will be the values of the components at that 't'
value. For example, we again assumethat the parsed object is contained in a variable data .
If one wanted to have the solution with label 57 returned as a Python array one would type

34

Query string Meaning
data An array which contains the AUTO 2000output.

Branch number The number of the branch to which the solution belongs.

ISW The ISW value used to start the calcluation. SeeSec-
tion 5.8.3.

Label The label of the solution.

NCOL The number of collocation points used to compute the
solution. SeeSection5.3.2.

NTST The number of meshintervals usedto compute the solu-
tion. SeeSection5.3.1.

Parameters The value of all of the parametersfor the solution.
Point number The number of the point in the given branch.

Type name
A short string which describes the type of the solution
(seeTable 4.5).

Type number
A number which describes the type of the solution (see
Table 4.5).

p
The valueof all of the parametersfor the solution. (This
is an alias for 'Parameter').

parameters
The valueof all of the parametersfor the solution. (This
is an alias for 'Parameter').

Table 4.6: This table shows the strings that can be usedto query a bifurcation solution object
and their meanings.

35

data(57).toArray() . Similarily, if onewanted to write out the solution to the �le outputfile
onewould type data(57).writeRawFil ename('ou tp ut fi le ') .

4.9 The .autorc File

Much of the default behavior of the AUTO 2000CLUI can be controlled by the .autorc �le. The
.autorc �le can exist in either the main AUTO 2000directory, the usershome directory, or the
current directory. For any option which is de�ned in more then one �le, the .autorc �le in the
current directory (if it exists) takes precedence,followed by the .autorc �le in the usershome
directory (if it exists), and then the .autorc �le in the main AUTO 2000directory. Hence,options
may be de�ned on either a per directory, per user,or global basis.

The �rst section of the .autorc �le begins with the line [AUTOcommandaliases] and this
sectionde�nes short names,or aliases,for the AUTO 2000CLUI commands.Each line thereafter
is a de�nition of a command,similiar to branchPoint =commandQueryBranchPoin t . The right
hand sideof the assignment is the internal AUTO 2000CLUI namefor the command,while the
left hand side is the desiredalias. Aliasesand internal namesmay be usedinterchangably, but
the intention is that the aliaseswill be more commonlyused. A default set of aliasesis provided,
and thesealiaseswill be usedin the examplesin the rest of this Chapter. The default aliasesare
listed in the referencein Section4.13.

NOTE: Defaults for the plotting tool may be included in the .autorc file as well. The docu-
mentation for this is under developement, but the file $AUTO DIR/.autorc contains examples of
how these options may be set.

4.10 Two Dimensional Plotting Tool

The two dimensionalplotting tool can be run by using the command plot() to plot the �les
fort.7 and fort.8 after a calculation has beenrun, or using the commandplot('foo') to plote
the data in the �les s.foo and b.foo.

The menu bar provides two buttons. The File button brings up a menu which allows the
userto save the current plot asa Postscript �le or to quit the plotter. The Options button allows
the plotter con�guration options to be modi�ed. The available options are decribed in Table 4.7.
In addition, the options can be set from within the CLUI. For example, the set of commands
in Figure 4.15 shows how to create a plotter and change its background color to black. The
demoscript auto/2000/demo/python/plotter.py contains several examplesof changing options in
plotters.

Pressingthe right mousebutton in the plotting window brings up a menu of buttons which
control several aspects of the plotting window. The top two toggle buttons control what func-
tion the left button performs. The print value button causesthe left button to print out the
numerical value underneaththe pointer when it is clicked. When zoombutton is checked the left
mousebutton may be held down to createa box in the plot. When the left button is releasedthe
plot will zoom to the selectedportion of the diagram. The unzoombutton returns the diagram
to the default zoom. The Postscript button allows the userto save the plot asa Postscript �le.
The Configure... button brings up the dialog for setting con�guration options.

36

AUTO>plot=pl()
Created plotter
AUTO>plot.config(bg="black")
AUTO>

Figure 4.15: This exampleshows how a plotter is created,and how the background color may be
changedto black. All other con�guration options are set similarily. Note, the above commands
assumethat the �les fort.7 and fort.8 exist in the current directory.

Query string Meaning
background The background color of the plot.
bifurcation column defaults A set of bifurcation columnsthe user is likely to use.
bifurcation diagram A parsedbifurcation diagram �le to plot.
bifurcation diagram �lename The �lename of the bifurcation diagram to plot.
bifurcation symbol The symbol to usefor bifurcation points.
bifurcation x The column to plot along the X-axis for bifurcation diagrams.
bifurcation y The column to plot along the Y-axis for bifurcation diagrams.
color list A list of colors to usefor multiple plots.
decorations Turn on or o� the axis, tick marks, etc.
error symbol The symbol to usefor error points.
foreground The background color of the plot.
grid Turn on or o� the grid.
hopf symbol The symbol to usefor Hopf bifurcation points.
index An array of indicies to plot.
label An array of labels to plot.
label defaults A set of labels that the user is likely to use.
limit point symbol The symbol to usefor limit points.
mark t The t value to marker with a small ball.
maxx The upper bound for the x-axis of the plot.
maxy The upper bound for the y-axis of the plot.
minx The lower bound for the x-axis of the plot.
miny The lower bound for the y-axis of the plot.
period doubling symbol The symbol to usefor period doubling bifurcation points.
runner The runner object from which to get data.
special point colors An array of colorsusedto mark special points.
special point radius The radius of the spheresusedto mark special points.
solution A parsedsolution �le to plot.
solution column defaults A set of solution columnsthe user is likely to use.
solution �lename The �lename of the solution to plot.
solution x The column to plot along the X-axis for solutions.
solution y The column to plot along the Y-axis for solutions.
symbol font The font to usefor marker symbols.

37

symbol color The color to usefor the marker symbols.
tick label template A string which de�nes the format of the tick labels.
tick length The length of the tick marks.
torus symbol The symbol to usefor torus bifurcation points.
type The type of the plot, either \solution" or \bifurcation".
user point symbol The symbol to usefor userde�ned output points.
xlabel The label for the x-axis.
xmargin The margin betweenthe graph and the right and left edges.
xticks The number of ticks on the x-axis.
ylabel The label for the y-axis.
ymargin The margin betweenthe graph and the top and bottom edges.
yticks The number of ticks on the y-axis.

Table4.7: This table showsthe optionsthat canbesetfor
the AUTO 2000CLUI two dimensionalplotting window
and their meanings.

4.11 Three Dimensional Plotting Tool

NOTE: the documentation in this section is under developement.
The AUTO 2000 three dimensional plotting tool can use DataViewer or OpenInventor for

rendering three dimensional representations of bifurcation diagramsand solutions and is under
active development. Neither DataViewer nor OpenInventor are provided with AUTO 2000and
must be downloadedseperately. If you are interestedin the three dimensionalplotting tool please
contact redrod@acm.org.

38

4.12 Quick Reference

In this sectionwe have createda table of all of the AUTO 2000CLUI commands,their abbrevia-
tions, and a one line description of what function they perform. Each commandmay be entered
using its full nameor any of its aliases.

Command Aliases Description
commandAppend ap append Append data �les.
commandCat cat Print the contents of a �le
commandCd cd Changedirectories.
commandClean cleancl Clean the current directory.
commandCopyAndLoadDemo dm demo Copy a demo into the cur-

rent directory and load it.
commandCopyDataFiles copy cp Copy data �les.
commandCopyDemo copydemo Copy a demo into the cur-

rent directory.
commandCopyFortFiles sv save Save data �les.
commandCreateGUI gui Show AUTOs graphicaluser

interface.
commandDeleteDataFiles deletedl Delete data �les.
commandDeleteFortFiles df deletefort Clear the current directory

of fort �les.
commandDouble double db Double a solution.
commandInteractiveHelp man help Get help on the AUTO com-

mands.
commandLs ls List the current directory.
commandMoveFiles move mv Move data-�les to a new

name.
commandParseConstantsFile cn constantsget Get the current continuation

constants.
commandParseDiagramAndSolutionFile bt diagramandsolu-

tionget
Parse both bifurcation dia-
gram and solution.

commandParseDiagramFile dg diagramget Parsea bifurcation diagram.
commandParseSolutionFile sl solutionget Parsesolution �le:
commandPlotter p2 pl plot 2D plotting of data.
commandPlotter3D plot3 p3 3D plotting of data.
commandQueryBranchPoint br bp branchpoint Print the \branch-point

function".
commandQueryEigenvalue eigenvalue ev eg Print eigenvalues of Jaco-

bian (algebraiccase).
commandQueryFloquet

o quet Print the Floquet multipli-

ers.
commandQueryHopf hb hp hopf lp Print the value of the \Hopf

function".

39

commandQueryIterations iterations it Print the number of Newton
interations.

commandQueryLimitpoint lm limitp oint Print the value of the \limit
point function".

commandQueryNote nt note Print notes in info �le.
commandQuerySecondaryPeriod sc secondaryperiod

sp
Print value of \secondary-
periodic bif. fcn".

commandQueryStepsize ssstepsizest Print continuation step
sizes.

commandRun r run rn Run AUTO.
commandRunnerCon�gFort2 changeconstant cc ch Modify continuation con-

stants.
commandRunnerLoadName ld load Load �les into the AUTO

runner.
commandRunnerPrintFort2 pc pr printconstant Print continuation parame-

ters.
commandShell shell Run a shell command.
commandTriple tr triple Triple a solution.
commandUserData us userdata Covert user-supplied data

�les.
commandWait wait Wait for the user to enter a

key.

40

4.13 Reference

4.13.1 commandAppend

Purpose

Append data �les.

Description

TypecommandAppend('xxx') to appendthe output-�les fort.7, fort.8, fort.9, to exist-
ing data-�les s.xxx, b.xxx, and d.xxx (if you areusingthe default �lename templates).
Type commandAppend('xxx','yyy') to append existing data-�les s.xxx, b.xxx, and
d.xxx to data-�les s.yyy, b.yyy, and d.yyy (if you are using the default �lename
templates).

Aliases

ap append

4.13.2 commandCat

Purpose

Print the contents of a �le

Description

Type 'commandCat xxx' to list the contents of the �le 'xxx'. This calls the Unix
function 'cat' for reading the �le.

Aliases

cat

41

4.13.3 commandCd

Purpose

Changedirectories.

Description

Type 'commandCdxxx' to changeto the directory 'xxx'. This commandunderstands
both shell variablesand homedirectory expansion.

Aliases

cd

4.13.4 commandClean

Purpose

Clean the current directory.

Description

Type commandClean()to clean the current directory. This commandwill deleteall
�les of the form fort.*, *.o, and *.exe.

Aliases

cleancl

42

4.13.5 commandCopyAndLoadDemo

Purpose

Copy a demointo the current directory and load it.

Description

Type commandCopyAndLoadDemo('xxx') to copy all �les from
auto/2000/demos/xxx to the current user directory. Here 'xxx' denotes a
demo name; e.g., 'abc'. Note that the 'dm' command also copies a Make�le to
the current user directory. To avoid the overwriting of existing �les, always run
demosin a cleanwork directory. NOTE: This commandautomatically performs the
commandRunnerLoadNamecommandas well.

Aliases

dm demo

4.13.6 commandCopyDataFiles

Purpose

Copy data �les.

Description

Type commandCopyDataFiles('xxx','yyy') to copy the data-�les c.xxx, d.xxx, b.xxx,
and h.xxx to c.yyy, d.yyy, b.yyy, and h.yyy (if you are using the default �lename
templates).

Aliases

copy cp

43

4.13.7 commandCopyDemo

Purpose

Copy a demointo the current directory.

Description

Type commandCopyDemo('xxx') to copy all �les from auto/2000/demos/xxx to the
current user directory. Here 'xxx' denotesa demo name; e.g., 'abc'. Note that the
'dm' command also copiesa Make�le to the current user directory. To avoid the
overwriting of existing �les, always run demosin a cleanwork directory.

Aliases

copydemo

4.13.8 commandCopyFortFiles

Purpose

Save data �les.

Description

Type commandCopyFortFiles('xxx') to save the output-�les fort.7, fort.8, fort.9, to
b.xxx, s.xxx, d.xxx (if you are using the default �lename templates). Existing �les
with thesenameswill be overwritten.

Aliases

sv save

44

4.13.9 commandCreateGUI

Purpose

Show AUTOs graphical user interface.

Description

Type commandCreateGUI()to start AUTOs graphical user interface.
NOTE: This commandis not implemented yet.

Aliases

gui

4.13.10 commandDeleteDataFiles

Purpose

Deletedata �les.

Description

Type commandDeleteDataFiles('xxx')to deletethe data-�les d.xxx, b.xxx, and s.xxx
(if you are using the default �lename templates).

Aliases

deletedl

45

4.13.11 commandDeleteFortFiles

Purpose

Clear the current directory of fort �les.

Description

Type commandDeleteFortFiles() to clean the current directory. This commandwill
deleteall �les of the form fort.*.

Aliases

df deletefort

4.13.12 commandDouble

Purpose

Double a solution.

Description

Type commandDouble()to double the solution in 'fort.7' and 'fort.8'.
Type commandDouble('xxx') to double the solution in b.xxx and s.xxx (if you are
using the default �lename templates).

Aliases

double db

46

4.13.13 commandInteractiveHelp

Purpose

Get help on the AUTO commands.

Description

Type 'help' to list all commandswith a online help. Type 'help xxx' to get help for
command'xxx'.

Aliases

man help

4.13.14 commandLs

Purpose

List the current directory.

Description

Type 'commandLs' to run the system 'ls' command in the current directory. This
commandwill acceptwhatever arguments are acceptedby the Unix command'ls'.

Aliases

ls

47

4.13.15 commandMoveFiles

Purpose

Move data-�les to a new name.

Description

Type commandMoveFiles('xxx','yyy') to move the data-�les b.xxx, s.xxx, d.xxx, and
c.xxx to b.yyy, s.yyy, d.yyy, and c.yyy (if you are using the default �lename tem-
plates).

Aliases

move mv

4.13.16 commandParseConstantsFile

Purpose

Get the current continuation constants.

Description

Type commandParseConstantsFile('xxx') to get a parsedversionof the constants �le
c.xxx (if you are using the default �lename templates).

Aliases

cn constantsget

48

4.13.17 commandParseDiagramAndSolutionFile

Purpose

Parseboth bifurcation diagram and solution.

Description

Type commandParseDiagramAndSolutionFile('xxx') to get a parsedversion of the
diagram �le b.xxx and solution �le s.xxx (if you are using the default �lename tem-
plates).

Aliases

bt diagramandsolutionget

4.13.18 commandParseDiagramFile

Purpose

Parsea bifurcation diagram.

Description

Type commandParseDiagramFile('xxx') to get a parsedversion of the diagram �le
b.xxx (if you are using the default �lename templates).

Aliases

dg diagramget

49

4.13.19 commandParseSolutionFile

Purpose

Parsesolution �le:

Description

Type commandParseSolutionFile('xxx') to get a parsed version of the solution �le
s.xxx (if you are using the default �lename templates).

Aliases

sl solutionget

4.13.20 commandPlotter

Purpose

2D plotting of data.

Description

TypecommandPlotter('xxx') to run the graphicsprogramfor the graphical inspection
of the data-�les b.xxx and s.xxx (if you are using the default �lename templates).
The return value will be the handle for the graphicswindow.
Type commandPlotter() to run the graphics program for the graphical inspection
of the output-�les 'fort.7' and 'fort.8'. The return value will be the handle for the
graphicswindow.

Aliases

p2 pl plot

50

4.13.21 commandPlotter3D

Purpose

3D plotting of data.

Description

TypecommandPlotter3D('xxx') to run the graphicsprogramfor the graphical inspec-
tion of the data-�les b.xxx and s.xxx (if you areusingthe default �lename templates).
The return value will be the handle for the graphicswindow.
Type commandPlotter3D() to run the graphicsprogram for the graphical inspection
of the output-�les 'fort.7' and 'fort.8'. The return value will be the handle for the
graphicswindow.

Aliases

plot3 p3

4.13.22 commandQueryBranchPoint

Purpose

Print the \branch-point function".

Description

Type commandQueryBranchPoint() to list the value of the \branch-point function"
in the output-�le fort.9. This function vanishesat a branch point.
Type commandQueryBranchPoint('xxx') to list the value of the \branch-point func-
tion" in the info �le 'd.xxx'.

Aliases

br bp branchpoint

51

4.13.23 commandQueryEigenvalue

Purpose

Print eigenvaluesof Jacobian(algebraiccase).

Description

Type commandQueryEigenvalue() to list the eigenvalues of the Jacobian in fort.9.
(Algebraic problems.)
Type commandQueryEigenvalue('xxx') to list the eigenvaluesof the Jacobianin the
info �le 'd.xxx'.

Aliases

eigenvalue ev eg

4.13.24 commandQueryFloquet

Purpose

Print the Floquet multipliers.

Description

TypecommandQueryFloquet() to list the Floquet multipliers in the output-�le fort.9.
(Di�eren tial equations.)
Type commandQueryFloquet('xxx') to list the Floquet multipliers in the info �le
'd.xxx'.

Aliases

o quet

52

4.13.25 commandQueryHopf

Purpose

Print the value of the \Hopf function".

Description

Type commandQueryHopf()to list the valueof the \Hopf function" in the output-�le
fort.9. This function vanishesat a Hopf bifurcation point.
Type commandQueryHopf('xxx') to list the value of the \Hopf function" in the info
�le 'd.xxx'.

Aliases

hb hp hopf lp

4.13.26 commandQueryIterations

Purpose

Print the number of Newton interations.

Description

Type commandQueryIterations()to list the number of Newton iterations per contin-
uation step in fort.9.
Type commandQueryIterations('xxx') to list the number of Newton iterations per
continuation step in the info �le 'd.xxx'.

Aliases

iterations it

53

4.13.27 commandQueryLimitpoint

Purpose

Print the value of the \limit point function".

Description

Type commandQueryLimitpoint() to list the value of the \limit point function" in
the output-�le fort.9. This function vanishesat a limit point (fold).
Type commandQueryLimitpoint('xxx') to list the value of the \limit point function"
in the info �le 'd.xxx'.

Aliases

lm limitp oint

4.13.28 commandQueryNote

Purpose

Print notes in info �le.

Description

Type commandQueryNote()to show any notes in the output-�le fort.9.
Type commandQueryNote('xxx') to show any notes in the info �le 'd.xxx'.

Aliases

nt note

54

4.13.29 commandQuerySecondaryPeriod

Purpose

Print value of \secondary-periodic bif. fcn".

Description

Type commandQuerySecondaryPeriod() to list the value of the \secondary-periodic
bifurcation function" in the output-�le 'fort.9. This function vanishesat period-
doubling and torus bifurcations.
Type commandQuerySecondaryPeriod('xxx') to list the value of the \secondary-
periodic bifurcation function" in the info �le 'd.xxx'.

Aliases

sc secondaryperiod sp

4.13.30 commandQueryStepsize

Purpose

Print continuation step sizes.

Description

TypecommandQueryStepsize()to list the continuation stepsizefor each continuation
step in 'fort.9.
Type commandQueryStepsize('xxx')to list the continuation step size for each con-
tinuation step in the info �le 'd.xxx'.

Aliases

ssstepsizest

55

4.13.31 commandRun

Purpose

Run AUTO.

Description

Type commandRun([options])to run AUTO with the given options. There are four
possibleoptions:

Long name Short name Description
--------------------- -- -- -- -- --- -- -- -- -- -- -
equation e The equations file
constants c The AUTOconstants file
solution s The restart solution file
homcont h The Homcontparameter file

Options which arenot explicitly set retain their previousvalue. For exampleonemay
type: commandRun(e='ab',c='ab.1') to use'ab.c' as the equations�le and c.ab.1as
the constants �le (if you are using the default �lename templates).
Type commandRun('name')load all �les with base'name'. This doesthe samething
as running commandRun(e='name',c='name,s='name',h='name').

Aliases

r run rn

4.13.32 commandRunnerConfigFort2

Purpose

Modify continuation constants.

Description

Type commandRunnerCon�gFort2('xxx',yyy) to changethe constant 'xxx' to have
value yyy.

Aliases

changeconstant cc ch

56

4.13.33 commandRunnerLoadName

Purpose

Load �les into the AUTO runner.

Description

Type commandRunnerLoadName([options])to modify AUTO runner. There are four
possibleoptions:

Long name Short name Description
--------------------- -- -- -- -- --- -- -- -- -- -- -
equation e The equations file
constants c The AUTOconstants file
solution s The restart solution file
homcont h The Homcontparameter file

Options which arenot explicitly set retain their previousvalue. For exampleonemay
type: commandRunnerLoadName(e='ab',c='ab.1')to use'ab.c' as the equations�le
and c.ab.1as the constants �le (if you are using the default �lename templates).
Type commandRunnerLoadName('name') load all �les with base
'name'. This does the same thing as running commandRunnerLoad-
Name(e='name',c='name,s='name',h='name').

Aliases

ld load

57

4.13.34 commandRunnerPrintFort2

Purpose

Print continuation parameters.

Description

Type commandRunnerPrintFort2() to print all the parameters.Type commandRun-
nerPrintFort2('xxx') to return the parameter 'xxx'.

Aliases

pc pr printconstant

4.13.35 commandShell

Purpose

Run a shell command.

Description

Type 'shell xxx' to run the command'xxx' in the Unix shell and display the results
in the AUTO commandline user interface.

Aliases

shell

58

4.13.36 commandTriple

Purpose

Triple a solution.

Description

Type commandTriple() to triple the solution in 'fort.7' and 'fort.8'.
Type commandTriple('xxx') to triple the solution in b.xxx and s.xxx (if you areusing
the default �lename templates).

Aliases

tr triple

4.13.37 commandUserData

Purpose

Covert user-supplieddata �les.

Description

Type commandUserData('xxx') to convert a user-supplied data �le 'xxx.dat' to
AUTO format. The converted �le is called 's.dat'. The original �le is left unchanged.
AUTO automatically setsthe period in PAR(11). Other parametervaluesmust beset
in 'stpnt'. (When necessary, PAR(11) may also be rede�ned there.) The constants-
�le �le 'c.xxx' must be present, asthe AUTO-constants 'NTST' and 'NCOL' areused
to de�ne the new mesh. For examplesof using the 'userData' commandseedemos
'lor' and 'pen' (where it has the old name'fc').

Aliases

us userdata

59

4.13.38 commandWait

Purpose

Wait for the user to enter a key.

Description

Type 'commandWait' to have the AUTO interface wait until the user hits any key
(mainly usedin scripts).

Aliases

wait

60

Chapter 5

Description of A UTO -Constan ts.

5.1 The AUTO -Constants File.

As described in Section 3.1, if the equations-�le is xxx.c then the constants that de�ne the
computation are normally expected in the �le c.xxx. The generalformat of this �le is the same
for all AUTO runs. For example,the �le c.ab in directory auto/2000/demos/abis listed below.
(The tutorial demo ab is described in detail in Chapter 7.)

2 1 0 1 NDIM,IPS,IRS,ILP
1 1 NICP,(ICP(I),I=1,NIC P)
50 4 3 1 1 0 0 0 NTST,NCOL,IAD,ISP,ISW,IPLT,NBC,NINT
100 0. 0.15 0. 100. NMX,RL0,RL1,A0,A1
100 10 2 8 5 3 0 NPR,MXBF,IID,ITMX,ITNW,NWTN,JAC
1.e-6 1.e-6 0.0001 EPSL,EPSU,EPSS
0.01 0.005 0.05 1 DS,DSMIN,DSMAX,IADS
1 NTHL,((I,THL(I)),I=1 ,NTHL)
11 0.
0 NTHU,((I,THU(I)),I=1 ,NTHU)
0 NUZR,((I,UZR(I)),I=1 ,NUZR)

The signi�cance of the AUTO -constants, grouped by function, is described in the sections
below. Representativ e demosthat illustrate useof the AUTO -constants are alsomentioned.

5.2 Problem Constants.

5.2.1 NDIM

Dimensionof the systemof equationsas speci�ed in the user-suppliedsubroutine func .

5.2.2 NBC

The number of boundary conditions as speci�ed in the user-suppliedsubroutine bcnd .
(Demos exp, kar.)

61

5.2.3 NINT

The number of integral conditions as speci�ed in the user-suppliedsubroutine icnd .
(Demos int, lin, obv.)

5.2.4 JAC

Usedto indicate whether derivativesare supplied by the useror to be obtained by di�erencing :

- JAC=0: No derivativesare given by the user. (Most demosuse JAC=0.)

- JAC=1: Derivatives with respect to state- and problem-parametersare given in the user-
suppliedsubroutines func , bcnd , icnd and fopt , whereapplicable. This may be neces-
sary for sensitive problems. It is alsorecommendedfor computations in which AUTO gen-
eratesan extendedsystem,for example,when ISW=2.

(Demos int, dd2, obt, plp, ops.)

(For ISWseeSection5.8.3.)

5.3 Discretization Constants.

5.3.1 NTST

The number of meshintervals usedfor discretization. NTSTremains�xed during any particular
run, but can be changedwhen restarting. Recommendedvalue of NTST: As small aspossibleto
maintain convergence.

(Demos exp, ab, spb.)
(For meshadaption seeIAD in Section5.3.3.)

5.3.2 NCOL

The number of Gausscollocation points per meshinterval, (2 � NCOL� 7). NCOLremains�xed
during any given run, but can be changedwhen restarting at a previously computed solution.
The choice NCOL=4, usedin most demos,is recommended.If NDIMis \large" and the solutions
\v ery smooth" then NCOL=2 may be appropriate.

5.3.3 IAD

This constant controls the meshadaption :

- IAD=0: Fixed mesh. Normally, this choiceshouldnever be used,asit may result in spurious
solutions. (Demo ext .)

- IAD>0 : Adapt the meshevery IADstepsalongthe branch. Most demosuse IAD=3, which
is the strongly recommendedvalue.

62

When computing \trivial" solutions to a boundary value problem, for example, when all
solution components are constant, then the meshadaption may fail under certain circumstances,
and over
ow may occur. In such case,try recomputing the solution branch with a �xed mesh
(IAD=0) . Be sure to set IAD back to IAD=3 for computing eventual non-trivial bifurcating
solution branches.

5.4 Tolerances.

5.4.1 EPSL

Relative convergencecriterion for equation parameters in the Newton/Chord method. Most
demosuse EPSL=10−6 or EPSL=10−7, which is the recommendedvalue range.

5.4.2 EPSU

Relative convergencecriterion for solution components in the Newton/Chord method. Most
demosuse EPSU=10−6 or EPSU=10−7, which is the recommendedvalue range.

5.4.3 EPSS

Relative arclength convergencecriterion for the detection of special solutions. Most demosuse
EPSS=10−4 or EPSS=10−5, which is the recommendedvalue range. Generally, EPSSshould be
approximately 100 to 1000times the value of EPSL, EPSU.

5.4.4 ITMX

The maximum number of iterations allowed in the accurate location of special solutions, such
as bifurcations, folds, and user output points, by M•uller's method with bracketing. The recom-
mendedvalue is ITMX=8, usedin most demos.

5.4.5 NWTN

After NWTNNewton iterations the Jacobian is frozen, i.e., AUTO usesfull Newton for the �rst
NWTNiterations and the Chord method for iterations NWTN+1 to ITNW. The choice NWTN=3
is strongly recommendedand usedin most demos. Note that this constant is only e�ectiv e for
ODEs, i.e., for solving the piecewisepolynomial collocation equations. For algebraic systems
AUTO always usesfull Newton.

5.4.6 ITNW

The maximum number of combined Newton-Chord iterations. When this maximum is reached,
the step will be retried with half the stepsize. This is repeated until convergence,or until the
minimum stepsizeis reached. In the latter casethe computation of the branch is discontinued
and a messageprinted in fort.9. The recommendedvalue is ITNW=5, but ITNW=7 may be used
for \di�cult" problems,for example,demos spb, chu, plp, etc.

63

5.5 Continuation Step Size.

5.5.1 DS

AUTO usespseudo-arclengthcontinuation for following solution branches. The pseudo-arclength
stepsizeis the distance between the current solution and the next solution on a branch. By
default, this distanceincludesall state variables(or state functions) and all freeparameters.The
constant DSde�nes the pseudo-arclengthstepsizeto be usedfor the �rst attempted step along
any branch. (Note that if IADS>0 then DSwill automatically be adapted for subsequent steps
and for failed steps.) DSmay be chosenpositive or negative; changing its sign reversesthe
direction of computation. The relation DSMIN� j jDS � DSMAXmust be satis�ed. The precise
choiceof DSis problem-dependent; the demosusea value that wasfound appropriate after some
experimentation.

5.5.2 DSMIN

This is minimum allowable absolute value of the pseudo-arclengthstepsize. DSMINmust be
positive. It is only e�ectiv e if the pseudo-arclengthstep is adaptive, i.e., if IADS>0. The choice
of DSMINis highly problem-dependent; most demosusea value that wasfound appropriate after
someexperimentation. Seealso the discussionin Section6.2.

5.5.3 DSMAX

The maximum allowable absolutevalue of the pseudo-arclengthstepsize. DSMAXmust be pos-
itiv e. It is only e�ectiv e if the pseudo-arclengthstep is adaptive, i.e., if IADS>0. The choice
of DSMAXis highly problem-dependent; most demosusea value that wasfound appropriate after
someexperimentation. Seealso the discussionin Section6.2.

5.5.4 IADS

This constant controls the frequencyof adaption of the pseudo-arclengthstepsize.

- IADS=0: Use�xed pseudo-arclengthstepsize,i.e., the stepsizewill be equal to the speci�ed
value of DSfor every step. The computation of a branch will be discontinued as soon as
the maximum number of iterations ITNWis reached. This choiceis not recommended.

(Demo tim.)

- IADS>0 : Adapt the pseudo-arclengthstepsizeafter every IADS steps. If the New-
ton/Chord iteration convergesrapidly then j jDS will be increased,but never beyond
DSMAX. If a step fails then it will be retried with half the stepsize. This will be done
repeatedly until the step is successfulor until j jDS reaches DSMIN. In the latter casenon-
convergencewill be signalled. The strongly recommendedvalue is IADS=1, which is used
in almost all demos.

64

5.5.5 NTHL

By default, the pseudo-arclengthstepsizeincludesall state variables(or state functions) and all
free parameters. Under certain circumstancesone may want to modify the weight accordedto
individual parametersin the de�nition of stepsize.For this purpose, NTHLde�nes the number of
parameterswhoseweight is to be modi�ed. If NTHL=0 then all weights will have default value
1.0 . If NTHL>0 then onemust enter NTHLpairs, Parameter Index Weight , with each pair on
a separateline.

For example, for the computation of periodic solutions it is recommendedthat the period
not be included in the pseudo-arclengthcontinuation stepsize,in order to avoid period-induced
limitations on the stepsizenear orbits of in�nite period. This exclusioncan be accomplishedby
setting NTHL=1, with, on a separateline, the pair 11 0.0 . Most demosthat computeperiodic
solutions usethis option; seefor exampledemo ab.

5.5.6 NTHU

Under certain circumstancesone may want to modify the weight accordedto individual state
variables (or state functions) in the de�nition of stepsize. For this purpose, NTHUde�nes the
number of states whoseweight is to be modi�ed. If NTHU=0 then all weights will have default
value 1.0 . If NTHU>0 then one must enter NTHUpairs, State Index Weight , with each pair
on a separateline. At present noneof the demosusethis option.

5.6 Diagram Limits.

There are three ways to limit the computation of a branch :

- By appropriate choice of the computational window de�ned by the constants RL0, RL1,
A0, and A1. One should always check that the starting solution lies within this computa-
tional window, otherwisethe computation will stop immediately at the starting point.

- By specifying the maximum number of steps, NMX.

- By specifying a negative parameter index in the list associated with the constant NUZR;
seeSection5.9.4.

5.6.1 NMX

The maximum number of stepsto be taken along any branch.

5.6.2 RL0

The lower bound on the principal continuation parameter. (This is the parameterwhich appears
�rst in the ICP list; seeSection5.7.1.).

65

5.6.3 RL1

The upper bound on the principal continuation parameter.

5.6.4 A0

The lower boundon the principal solution measure.(By default, if IPLT=0, the principal solution
measureis the L2-norm of the state vector or state vector function. Seethe AUTO -constant
IPLT in Section5.9.3 for choosinganother principal solution measure.)

5.6.5 A1

The upper bound on the principal solution measure.

5.7 Free Parameters.

5.7.1 NICP, ICP

For each equationtype and for each continuation calculation there is a typical (\generic") number
of problem parametersthat must be allowed to vary, in order for the calculationsto be properly
posed. The constant NICPindicates how many free parametershave beenspeci�ed, while the
array ICP actually designatesthese free parameters. The parameter that appears �rst in the
ICP list is called the \principal continuation parameter". Speci�c examplesand special casesare
described below.

5.7.2 Fixed points.

The simplest caseis the continuation of a solution branch to the system f (u, p) = 0, where
f (�, �), u 2 Rn, cf. Equation (2.1). Such a systemarisesin the continuation of ODE stationary
solutionsand in the continuation of �xed points of discretedynamical systems.There is only one
free parameterhere,so NICP=1.

As a concreteexample,considerRun 1 of demo ab, where NICP=1, with ICP(1)=1. Thus,
in this run PAR(1) is designatedas the free parameter.

5.7.3 Periodic solutions and rotations.

The continuation of periodic solutionsand rotations genericallyrequirestwo parameters,namely,
one problem parameter and the period. Thus, in this case NICP=2. For example, in Run 2
of demo ab we have NICP=2, with ICP(1)=1 and ICP(2)=11. Thus, in this run, the free
parametersare PAR(1)and PAR(11). (Note that AUTO reserves PAR(11)for the period.)

Actually, for periodic solutions, one can set NICP=1 and only specify the index of the free
problemparameter,asAUTO will automatically addd PAR(11). However, in this casethe period
will not appear in the screenoutput and in the fort.7 output-�le.

For �xed period orbits one must set NICP=2 and specify two free problem parameters. For
example,in Run 7 of demo pp2, we have NICP=2, with PAR(1)and PAR(2)speci�ed as free

66

problem parameters.The period PAR(11)is �xed in this run. If the period is large then such a
continuation provides a simple and e�ectiv e method for computing a locus of homoclinic orbits.

5.7.4 Folds and Hopf bifurcations.

The continuation of folds for algebraicproblemsand the continuation of Hopf bifurcations requires
two free problem parameters,i.e., NICP=2. For example, to continue a fold in Run 3 of demo
ab, we have NICP=2, with PAR(1) and PAR(3) speci�ed as free parameters. Note that one
must set ISW=2 for computing such loci of special solutions. Also note that in the continuation
of folds the principal continuation parametermust be the onewith respect to which the fold was
located.

5.7.5 Folds and period-doublings.

The continuation of folds, for periodic orbits and rotations, and the continuation of period-
doubling bifurcations require two freeproblem parametersplus the free period. Thus, onewould
normally set NICP=3. For example, in Run 6 of demo pen, where a locus of period-doubling
bifurcations is computedfor rotations, we have NICP=3, with PAR(2), PAR(3), and PAR(11)
speci�ed as free parameters. Note that one must set ISW=2 for computing such loci of special
solutions. Also note that in the continuation of folds the principal continuation parametermust
be the onewith respect to which the fold was located.

Actually, one may set NICP=2, and only specify the problem parameters, as AUTO will
automatically add the period. For example, in Run 3 of demo plp, where a locus of folds is
computed for periodic orbits, we have NICP=2, with PAR(4) and PAR(1) speci�ed as free
parameters. However, in this casethe period will not appear in the screenoutput and in the
fort.7 output-�le.

To continue a locus of folds or period-doublings with �xed period, simply set NICP=3 and
specify three problem parameters,not including PAR(11).

5.7.6 Boundary value problems.

The simplest caseis that of boundary value problemswhere NDIM= NBCand where NINT=0.
Then, generically, one free problem parameter is required for computing a solution branch. For
example,in demo exp, we have NDIM= NBC=2, NINT=0. Thus NICP=1. Indeed, in this demo
one free parameter is designated,namely PAR(1).

More generally, for boundary value problems with integral constraints, the genericnumber
of free parametersis NBC+ NINT� NDIM+1. For example, in demo lin, we have NDIM=2,
NBC=2, and NINT=1. Thus NICP=2. Indeed, in this demotwo free parametersare designated,
namely PAR(1)and PAR(3).

5.7.7 Boundary value folds.

To continue a locus of folds for a generalboundary value problem with integral constraints, set
NICP= NBC+ NINT� NDIM+2, and specify this number of parameterindicesto designatethe free
parameters.

67

5.7.8 Optimization problems.

In algebraicoptimization problemsonemust set ICP(1)=10, asAUTO uses PAR(10)asprincipal
continuation parameter to monitor the value of the objective function. Furthermore, one must
designateone free equation parameter in ICP(2). Thus, NICP=2 in the �rst run.

Folds with respect to PAR(10)correspond to extrema of the objective function. In a second
run onecanrestart at such a fold, with an additional freeequationparameterspeci�ed in ICP(3).
Thus, NICP=3 in the secondrun.

The aboveprocedurecanberepeated. For example,foldsfrom the secondrun canbecontinued
in a third run with three equationparametersspeci�ed in addition to PAR(10). Thus, NICP=4
in the third run.

For a simple example seedemo opt, where a four-parameter extremum is located. Note
that NICP=5 in each of the four constants-�les of this demo,with the indicesof PAR(10)and
PAR(1)-PAR(4)speci�ed in ICP. Thus, in the �rst three runs, there areoverspeci�ed parameters.
However, AUTO will always use the correct number of parameters. Although the overspeci�ed
parameterswill be printed, their valueswill remain �xed.

5.7.9 Internal free parameters.

The actual continuation schemein AUTO may useadditional freeparametersthat are automati-
cally added. The simplest exampleis the computation of periodic solutionsand rotations, where
AUTO automatically addsthe period, if not speci�ed. The computation of loci of folds, Hopf bi-
furcations, and period-doublingsalsorequiresadditional internal continuation parameters.These
will be automatically added,and their indiceswill be greater than 10.

5.7.10 Parameter overspecification.

The number of speci�ed parameter indices is allowed to be be greater than the genericnumber.
In such casethere will be \overspeci�ed" parameters,whosevalueswill appear in the screenand
fort.7 output, but which are not part of the continuation process.A simple exampleis provided
by demo opt, where the �rst three runs have overspeci�ed parameterswhosevalues,although
constant, are printed.

There is, however, a more useful application of parameter overspeci�cation. In the user-
supplied subroutine pvlsonecan de�ne solution measuresand assigntheseto otherwiseunused
parameters.Such parameterscan then be overspeci�ed, in order to print them on the screenand
in the fort.7 output. It is important to note that such overspeci�ed parametersmust appear at
the end of the ICP list, as they cannot be usedas true continuation parameters.

For an exampleof using parameter overspeci�cation for printing user-de�ned solution mea-
sures,seedemo pvl. This is a boundary value problem (Bratu's equation) which has only one
true continuation parameter, namely PAR(1). Three solution measuresare de�ned in the sub-
routine pvls, namely, the L2-norm of the �rst solution component, the minimum of the second
component, and the left boundary value of the secondcomponent. Thesesolution measuresare
assignedto PAR(2), PAR(3), and PAR(4), respectively. In the constants-�le c.pvl we have
NICP=4, with PAR(1)-PAR(4)speci�ed asparameters.Thus, in this example, PAR(2)-PAR(4)

68

are overspeci�ed. Note that PAR(1) must appear �rst in the ICP list; the other parameters
cannot be usedas true continuation parameters.

5.8 Computation Constants.

5.8.1 ILP

- ILP=0 : No detection of folds. This choiceis recommended.

- ILP=1 : Detection of folds. To be usedif subsequent fold continuation is intended.

2

5.8.2 ISP

This constant controls the detection of branch points, period-doubling bifurcations, and torus
bifurcations.

- ISP=0 : This setting disablesthe detection of branch points, period-doubling bifurcations,
and torus bifurcations and the computation of Floquet multipliers.

- ISP=1 : Branch points are detectedfor algebraicequations,but not for periodic solutions
and boundary value problems. Period-doubling bifurcations and torus bifurcations are not
located either. However, Floquet multipliers are computed.

- ISP=2 : This setting enablesthe detection of all special solutions. For periodic solutions
and rotations, the choice ISP=2 should be usedwith care,due to potential inaccuracyin
the computation of the linearizedPoincar�e map and possiblerapid variation of the Floquet
multipliers. The linearized Poincar�e map always has a multiplier z = 1. If this multiplier
becomesinaccuratethen the automatic detection of secondaryperiodic bifurcations will be
discontinued and a warning messagewill be printed in fort.9. SeealsoSection6.4.

- ISP=3: Branch points will be detected,but AUTO will not monitor the Floquet multipliers.
Period-doubling and torus bifurcations will go undetected. This option is useful for certain
problemswith non-genericFloquet behavior. The Floquet multipliers will be output to the
diagnostic �le.

5.8.3 ISW

This constant controls branch switching at branch points for the caseof di�eren tial equations.
Note that branch switching is automatic for algebraicequations.

- ISW=1: This is the normal value of ISW.

- ISW=� 1 : If IRS is the label of a branch point or a period-doubling bifurcation then branch
switching will be done. For period doubling bifurcations it is recommendedthat NTSTbe
increased.For examplesseeRun 2 and Run 3 of demo lor, wherebranch switching is done

69

at period-doubling bifurcations, and Run 2 and Run 3 of demo bvp, wherebranch switching
is doneat a transcritical branch point.

- ISW=2: If IRS is the label of a fold, a Hopf bifurcation point, or a period-doubling or torus
bifurcation then a locus of such points will be computed. An additional free parameter
must be speci�ed for such continuations; seealsoSection5.7.

5.8.4 MXBF

This constant, which is e�ectiv e for algebraicproblemsonly, setsthe maximum number of bifur-
cations to be treated. Additional branch points will be noted, but the corresponding bifurcating
branches will not be computed. If MXBFis positive then the bifurcating branches of the �rst
MXBFbranch points will be traced out in both directions. If MXBFis negative then the bifurcating
branchesof the �rst j MXBFj branch points will be traced out in only onedirection.

5.8.5 IRS

This constant setsthe label of the solution wherethe computation is to be restarted.

- IRS=0: This setting is typically usedin the �rst run of a newproblem. In this casea starting
solution must be de�ned in the user-suppliedsubroutine stpnt; seealso Section 3.3. For
representativ e examplesof analytical starting solutionsseedemos ab and frc. For starting
from unlabelednumerical data seethe @fc command(SectionA) and demos lor and pen.

- IRS>0 : Restart the computation at the previously computed solution with label IRS.
This solution is normally expectedto be in the current data-�le q.xxx; seealsothe @r and
@R commandsin SectionA. Various AUTO -constants can be modi�ed when restarting.

5.8.6 IPS

This constant de�nes the problem type :

- IPS=0 : An algebraic bifurcation problem. Hopf bifurcations will not be detected and
stabilit y properties will not be indicated in the fort.7 output-�le.

- IPS=1: Stationary solutionsof ODEs with detection of Hopf bifurcations. The sign of PT,
the point number, in fort.7 is usedto indicate stabilit y : � is stable , + is unstable.

(Demo ab.)

- IPS=� 1 : Fixed points of the discretedynamical systemu(k+1) = f (u(k), p), with detection
of Hopf bifurcations. The signof PT in fort.7 indicatesstabilit y : � is stable, + is unstable.
(Demo dd2.)

- IPS=� 2 : Time integration using implicit Euler. The AUTO -constants DS, DSMIN,
DSMAX, and ITNW, NWTNcontrol the stepsize. In fact, pseudo-arclengthis usedfor \con-
tinuation in time". Note that the time discretization is only �rst order accurate, so that
results should be carefully interpreted. Indeed, this option has been included primarily

70

for the detection of stationary solutions, which can then be entered in the user-supplied
subroutine stpn t .

(Demo ivp.)

- IPS=2 : Computation of periodic solutions. Starting data can be a Hopf bifurcation point
(Run 2 of demo ab), a periodic orbit from a previous run (Run 4 of demo pp2), an
analytically known periodic orbit (Run 1 of demo frc), or a numerically known periodic
orbit (Demo lor). The sign of PT in fort.7 is usedto indicate stabilit y : � is stable , + is
unstableor unknown.

- IPS=4 : A boundary value problem. Boundary conditions must be speci�ed in the user-
supplied subroutine bcnd and integral constraints in icnd . The AUTO -constants NBC
and NINTmust be given correct values. (Demos exp, int, kar.)

- IPS=5 : Algebraic optimization problems. The objective function must be speci�ed in the
user-suppliedsubroutine fopt . (Demo opt.)

- IPS=7 : A boundary value problem with computation of Floquet multipliers. This is a
very special option; for most boundary value problemsone should use IPS=4. Boundary
conditions must be speci�ed in the user-suppliedsubroutine bcnd and integral constraints
in icnd . The AUTO -constants NBCand NINTmust be given correct values.

- IPS=9 : This option is used in connection with the HomCont algorithms described in
Chapters15-21for the detection and continuation of homoclinic bifurcations.

(Demos san, mtn, kpr, cir, she, rev.)

- IPS=11 : Spatially uniform solutions of a system of parabolic PDEs, with detection of
travelingwavebifurcations. The userneedonly de�ne the nonlinearity (in subroutine func),
initialize the wavespeedin PAR(10), initialize the di�usion constants in PAR(15,16,� � �) ,
and set a free equation parameter in ICP(1). (Run 2 of demo wav.)

- IPS=12: Continuation of traveling wave solutions to a systemof parabolic PDEs. Starting
data canbe a Hopf bifurcation point from a previousrun with IPS=11, or a traveling wave
from a previousrun with IPS=12. (Run 3 and Run 4 of demo wav.)

- IPS=14 : Time evolution for a system of parabolic PDEs subject to periodic boundary
conditions. Starting data may be solutionsfrom a previousrun with IPS=12 or 14. Start-
ing data can also be speci�ed in stpn t , in which casethe wave length must be speci�ed
in PAR(11), and the di�usion constants in PAR(15,16,� � �) . AUTO uses PAR(14) for
the time variable. DS, DSMIN, and DSMAXgovern the pseudo-arclengthcontinuation in
the space-timevariables. Note that the time discretization is only �rst order accurate,so
that results should be carefully interpreted. Indeed, this option is mainly intended for the
detection of stationary waves. (Run 5 of demo wav.)

- IPS=15 : Optimization of periodic solutions. The integrand of the objective functional
must be speci�ed in the user-suppliedsubroutine fopt . Only PAR(1-9) should be used
for problem parameters. PAR(10) is the value of the objective functional, PAR(11)the

71

period, PAR(12) the norm of the adjoint variables, PAR(14) and PAR(15) are internal
optimalit y variables. PAR(21-29) and PAR(31) are used to monitor the optimalit y
functionals associated with the problem parametersand the period. Computations can be
started at a solution computedwith IPS=2 or IPS=15. For a detailed exampleseedemo
ops.

- IPS=16 : This option is similar to IPS=14, except that the user supplies the boundary
conditions. Thus this option can be usedfor time-integration of parabolic systemssubject
to user-de�ned boundary conditions. For examplesseethe �rst runs of demos pd1, pd2,
and bru. Note that the space-derivatives of the initial conditions must also be supplied
in the user-suppliedsubroutine stpn t . The initial conditions must satisfy the boundary
conditions. This option is mainly intended for the detecting stationary solutions.

- IPS=17 : This option can be used to continue stationary solutions of parabolic systems
obtained from an evolution run with IPS=16. For examplesseethe secondruns of demos
pd1 and pd2.

5.9 Output Control.

5.9.1 NPR

This constant can be usedto regularly write fort.8 plotting and restart data. IF NPR>0 then
such output is written every NPRsteps. IF NPR=0 or if NPR� NMXthen no such output is
written. Note that special solutions, such as branch points, folds, end points, etc., are always
written in fort.8. Furthermore, one can specify parameter values where plotting and restart
data is to be written; seeSection5.9.4. For thesereasons,and to limit the output volume, it is
recommendedthat NPRoutput be kept to a minimum.

5.9.2 IID

This constant controls the amount of diagnostic output printed in fort.9 : the greater IID the
more detailed the diagnosticoutput.

- IID=0 : Minimal diagnosticoutput. This setting is not recommended.

- IID=2 : Regular diagnosticoutput. This is the recommendedvalue of IID .

- IID=3 : This setting givesadditional diagnosticoutput for algebraicequations,namely the
Jacobianand the residual vector at the starting point. This information, which is printed
at the beginning of fort.9, is useful for verifying whether the starting solution in stpn t is
indeeda solution.

- IID=4 : This setting gives additional diagnostic output for di�eren tial equations,namely
the reducedsystemand the associated residualvector. This information is printed for every
step and for every Newton iteration, and should normally be suppressed.In particular it
can be usedto verify whether the starting solution is indeeda solution. For this purpose,

72

the stepsize DSshould be small, and oneshould look at the residualsprinted in the fort.9
output-�le. (Note that the �rst residualvector printed in fort.9 may be identically zero,as
it may correspond to the computation of the starting direction. Look at the secondresidual
vector in such case.) This residual vector has dimension NDIM+ NBC+ NINT+1, which
accounts for the NDIMdi�eren tial equations,the NBCboundary conditions, the NINTuser-
de�ned integral constraints, and the pseudo-arclengthequation. For proper interpretations
of thesedata one may want to refer to the solution algorithm for solving the collocation
system,as described in Doedel,Keller & Kern�evez (1991b).

- IID=5 : This setting givesvery extensivediagnosticoutput for di�eren tial equations,namely,
debugoutput from the linear equation solver. This setting should not normally be usedas
it may result in a huge fort.9 �le.

5.9.3 IPLT

This constant allows rede�nition of the principal solution measure,which is printed asthe second
(real) column in the screenoutput and in the fort.7 output-�le :

- If IPLT = 0 then the L2-norm is printed. Most demosuse this setting. For algebraic
problems, the standard de�nition of L2-norm is used. For di�eren tial equations, the L2-
norm is de�ned as

√

√

√

√

∫ 1

0

NDIM
∑

k=1

Uk(x)2 dx .

Note that the interval of integration is [0,1], the standard interval used by AUTO. For
periodic solutions the independent variable is transformed to range from 0 to 1, before
the norm is computed. The AUTO-constants THL(*) and THU(*) (seeSection5.5.5 and
Section5.5.6) a�ect the de�nition of the L2-norm.

- If 0 < IPLT � NDIMthen the maximum of the IPLT'th solution component is printed.

- If � NDIM� IPLT <0 then the minimum of the IPLT'th solution component is printed.
(Demo fsh.)

- If NDIM< IPLT � 2* NDIMthen the integral of the (IPLT� NDIM)'th solution component
is printed. (Demos exp, lor.)

- If 2* NDIM< IPLT � 3* NDIMthen the L2-norm of the (IPLT� NDIM)'th solution com-
ponent is printed. (Demo frc.)

Note that for algebraic problems the maximum and the minimum are identical. Also, for
ODEs the maximum and the minimum of a solution component are generallymuch lessaccurate
than the L2-norm and component integrals. Note also that the subroutine pvls provides a
second,more generalway of de�ning solution measures;seeSection5.7.10.

73

5.9.4 NUZR

This constant allows the setting of parametervaluesat which labeledplotting and restart infor-
mation is to be written in the fort.8 output-�le. Optionally, it also allows the computation to
terminate at such a point.

- Set NUZR=0 if no such output is needed.Many demosusethis setting.

- If NUZR>0 then one must enter NUZRpairs, Parameter-Index Parameter-Value , with
each pair on a separateline, to designatethe parametersand the parametervaluesat which
output is to be written. For examplesseedemos exp, int, and fsh.

- If such a parameter index is precededby a minus sign then the computation will terminate
at such a solution point. (Demos pen and bru.)

Note that fort.8 output canalsobe written at selectedvaluesof overspeci�ed parameters.For
an exampleseedemo pvl. For details on overspeci�ed parametersseeSection5.7.10.

74

Chapter 6

Notes on Using A UTO .

6.1 Restrictions on the Use of PAR.

The array PARin the user-suppliedsubroutines is available for equation parametersthat the
user wants to vary at somepoint in the computations. In any particular computation the free
parameter(s)must be designatedin ICP; seeSection5.7. The following restrictions apply :

- The maximum number of parameters, NPARXin auto/2000/src/auto c.h, has pre-de�ned
value NPARX=36. NPARXshould not normally be increasedand it should never be de-
creased.Any increaseof NPARXmust be followed by recompilation of AUTO .

- Generally one should only use PAR(1)-PAR(9) for equation parameters,as AUTO may
needthe other components internally.

6.2 Efficiency.

In AUTO , e�ciency hasat times beensacri�ced for generality of programming. This appliesin
particular to computations in which AUTO generatesan extendedsystem,for example,compu-
tations with ISW=2. However, the user has signi�cant control over computational e�ciency , in
particular through judicious choice of the AUTO -constants DS, DSMIN, and DSMAX, and, for
ODEs, NTSTand NCOL. Initial experimentation normally suggestsappropriate values.

Slowly varying solutions to ODEs can often be computed with remarkably small values of
NTSTand NCOL, for example, NTST=5, NCOL=2. Generally, however, it is recommendedto set
NCOL=4, and then to usethe \smallest" value of NTSTthat maintains convergence.

The choice of the pseudo-arclengthstepsizeparameters DS, DSMIN, and DSMAXis highly
problemdependent. Generally, DSMINshouldnot betakentoo small, in order to prevent excessive
stepre�nement in caseof non-convergence.It shouldalsonot betoo large,in order to avoid instant
non-convergence. DSMAXshould be su�cien tly large, in order to reducecomputation time and
amount of output data. On the other hand, it should be su�cien tly small, in order to prevent
stepping over bifurcations without detecting them. For a given equation, appropriate valuesof
theseconstants can normally be found after someinitial experimentation.

The constants ITNW, NWTN, THL, EPSU, EPSL, EPSSalsoa�ect e�ciency . Understanding
their signi�cance is thereforeuseful; seeSection5.4 and Section5.5. Finally, it is recommended

75

that initial computations be done with ILP=0; no fold detection; and ISP=1; no bifurcation
detection for ODEs.

6.3 Correctness of Results.

AUTO -computed solutions to ODEs are almost always structurally correct, becausethe mesh
adaption strategy, if IAD>0, safeguardsto someextent against spurioussolutions. If thesedo
occur, possiblynearin�nite-p eriod orbits, the unusualappearanceof the solution branch typically
servesas a warning. Repeating the computation with increased NTSTis then recommended.

6.4 Bifurcation Points and Folds.

It is recommendedthat the detection of folds and bifurcation points be initially disabled. For
example,if an equation has a \v ertical" solution branch then AUTO may try to locate one fold
after another.

Generally, degeneratebifurcations cannot be detected. Furthermore, bifurcations that are
closeto each other may not be noticed when the pseudo-arclengthstep size is not su�cien tly
small. Hopf bifurcation points may go unnoticed if no clear crossingof the imaginary axis takes
place. This may happen when there are other real or complex eigenvaluesnear the imaginary
axis and when the pseudo-arclengthstep is large comparedto the rate of changeof the critical
eigenvalue pair. A typical caseis a Hopf bifurcation closeto a fold. Similarly, Hopf bifurcations
may go undetected if switching from real to complex conjugate, followed by crossing of the
imaginary axis, occursrapidly with respect to the pseudo-arclengthstep size. Secondaryperiodic
bifurcations may not be detected for similar reasons. In caseof doubt, carefully inspect the
contents of the diagnostics�le fort.9.

6.5 Floquet Multipliers.

AUTO extracts an approximation to the linearized Poincar�e map from the Jacobianof the lin-
earizedcollocation systemthat arisesin Newton's method. This procedureis very e�cien t; the
map is computed at negligible extra cost. The linear equationssolver of AUTO is described in
Doedel,Keller & Kern�evez(1991b). The actual Floquet multiplier solver waswritten by Fairgrieve
(1994). For a detailed description of the algorithm seeFairgrieve & Jepson(1991).

For periodic solutions,the exactlinearizedPoincar�emapalwayshasa multiplier z = 1. A good
accuracycheck is to inspect this multiplier in the diagnosticsoutput-�le fort.9. If this multiplier
becomesinaccuratethen the automatic detection of potential secondaryperiodic bifurcations (if
ISP=2) is discontinued and a warning is printed in fort.9. It is strongly recommendedthat the
contents of this �le be habitually inspected, in particular to verify whether solutions labeled as
BP or TR (cf. Table 3.1) have indeedbeencorrectly classi�ed.

76

6.6 Memory Requirements.

Pre-de�ned maximum valuesof certain AUTO -constants are in auto/2000/src/auto c.h; seealso
Section 1.3. Thesemaxima a�ect the run-time memory requirements and should not be set to
unnecessarilylarge values. If an application only solvesalgebraicsystemsand if NDIMis \large"
then memory requirements can be much reduced by setting each of NTSTX, NCOLX, NBCX,
NINTX, equal to 1 in auto/2000/src/auto c.h, followed by recompilation of the AUTO libraries.

77

Chapter 7

A UTO Demos : Tutorial.

78

7.1 Introduction.

The directory auto/2000/demoshasa largenumber of subdirectories,for example ab, pp2, exp,
etc., each containing all necessary�les for certain illustrativ e calculations. Each subdirectory, say
xxx, corresponds to a particular equation and contains oneequations-�le xxx.cand oneor more
constants-�les c.xxx.i, one for each successive run of the demo. To seehow the equationshave
beenprogrammed,inspect the equations-�le. To understand in detail how AUTO is instructed
to carry out a particular task, inspect the appropriate constants-�le. In this chapter we describe
the tutorial demo ab in detail. A brief description of other demosis given in later chapters.

7.2 ab : A Tutorial Demo.

This demo illustrates the computation of stationary solutions, Hopf bifurcations and periodic
solutions, and the computation loci of folds and Hopf bifurcation points. The equations, that
model an A ! B reaction, are thosefrom Uppal, Ray & Poore (1974), namely

u′1 = � u1 + p1(1 � u1)eu2 ,
u′2 = � u2 + p1p2(1 � u1)eu2 � p3u2.

(7.1)

7.3 Copying the Demo Files.

The commandslisted in Table 7.1 will copy the demo�les to your work directory.

Unix-COMMAND ACTION
auto start the AUTO2000 CommandLine User Interface

AUTO -COMMAND ACTION
cd go to main directory (or other directory).
! mkdir ab createan empty work directory. Note: the

' !' is usedto signify a commandwhich is
sent to the shell.

cd ab changeto the work directory.
demo('ab') copy the demo�les to the work directory.

Table 7.1: Copying the demo ab �les.

At this point you may want to seewhat �les have been copied to the work directory. In
particular, you may want to edit the equations-�le ab.c to seehow the equations have been
entered (in subroutine func) and how the starting solution hasbeenset (in subroutine stpn t).
Note that, initially , p1 = 0 p2 = 14, and p3 = 2, for which u1 = u2 = 0 is a stationary solution.

79

7.4 Executing all Runs Automatically.

To executeall prepared runs of demo ab, simply type one or both of the command given in
Table 7.2.

AUTO -COMMAND ACTION
demofile('ab old.auto') executeall runs of demo ab interactively

using a new constants �le for each run

demofile('ab new.auto') executeall runs of demo ab interactively
by modifying the constants �le beforeeach
run

Table 7.2: Executing all runs of demo ab.

Each of the commandsin Table 7.2 beginsa tutorial which will proceedone step each time
the user pressesa key. Each step consistsof a singleAUTO commandprecededby instructions
as to what action the commandperforms. The tutorial script ab old.autoperforms the demoby
reading in a sequenceof AUTO constants �les each of which corresponds to a step of the demo.
The tutorial script ab new.autoperforms the demo by reading in a single AUTO constants �le
and then interactively modifying it to perform each of the demo. Both are valid and e�ectiv e
methods for running AUTO , with ab old.autobeing similar to the way AUTO was usedbefore
the advent of the CLUI, and ab new.autousing new functionality provided by the CLUI.

Note that there are �v e separateruns. In the �rst run, a branch of stationary solutions
is traced out. Along it, two folds (LP) and one Hopf bifurcation (HB) are located. The free
parameter is p1. The other parametersremain �xed in this run. Note also that only special,
labeledsolution points are printed on the screen.More detailed resultsare saved in the data-�les
b.ab, s.ab, and d.ab.

The secondrun traces out the branch of periodic solutions that emanatesfrom the Hopf
bifurcation. The freeparametersare p1 and the period. The detailed results are appendedto the
existing data-�les b.ab, s.ab, and d.ab.

In the third run, one of the folds detected in the �rst run is followed in the two parameters
p1 and p3, while p2 remains �xed. The fourth run continues this branch in opposite direction.
Similarly, in the �fth run, the Hopf bifurcation located in the �rst run is followed in the two
parametersp1 and p3. (In this examplethis is done in one direction only.) The detailed results
of thesecontinuations are accumulated in the data-�les b.2p, s.2p, and d.2p.

The numerical results are given below in somewhatabbreviated form. Somedi�erences in
output are to be expected on di�eren t machines. This does not mean that the results have
di�eren t accuracy, but simply that arithmetic di�erences have accumulated from step to step,
possibly leading to di�eren t step sizedecisions.

One could now usethe AUTO CLUI to graphically inspect the contents of the data-�les, but
we shall do this later. However, it may be useful to edit these�les to view their contents.

Next, reset the work directory, by typing the commandgiven in Table 7.3.

80

AUTO -COMMAND ACTION
cl() remove temporary �les of demo ab
dl('ab') remove 'ab' data-�les of demo ab
dl('2p') remove '2p' data-�les of demo ab

Table 7.3: Cleaning the demo ab work directory.
ab : first run : stationary solutions

BR PT TY LAB PAR(1) L2-NORM U(1) U(2)
1 1 EP 1 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
1 33 LP 2 1.05739E-01 1.48439E+00 3.11023E-01 1.45144E+00
1 70 LP 3 8.89318E-02 3.28824E+00 6.88982E-01 3.21525E+00
1 90 HB 4 1.30899E-01 4.27186E+00 8.95080E-01 4.17704E+00
1 92 EP 5 1.51241E-01 4.36974E+00 9.15589E-01 4.27275E+00
Saved as *.ab

ab : second run : periodic solutions

BR PT TY LAB PAR(1) L2-NORM MAXU(1) MAXU(2) PERIOD
4 30 6 1.19881E-01 3.98712E+00 9.91911E-01 7.02034E+00 2.721E+00
4 60 7 1.15303E-01 3.14630E+00 9.99577E-01 9.95764E+00 6.147E+00
4 90 8 1.05650E-01 2.21917E+00 9.99166E-01 9.36609E+00 1.399E+01
4 120 9 1.05507E-01 1.69684E+00 9.99086E-01 9.29629E+00 9.956E+01
4 150 EP 10 1.05507E-01 1.60388E+00 9.99789E-01 9.28146E+00 1.867E+03
Appendedto *.ab

ab : third run : a 2-parameter locus of folds

BR PT TY LAB PAR(1) L2-NORM U(1) U(2) PAR(3)
2 27 LP 11 1.35335E-01 2.06012E+00 4.99653E-01 1.99861E+00 2.499E+00
2 100 EP 12 1.09381E-08 2.13650E+01 9.53147E-01 2.13437E+01 -3.748E-01
Saved as *.2p

ab : fourth run : the locus of folds in reverse direction

BR PT TY LAB PAR(1) L2-NORM U(1) U(2) PAR(3)
2 35 EP 11 -1.31939E-03 9.96432E-01 -3.58651E-03 9.96426E-01 -1.050E+00
Appendedto *.2p

ab : fifth run : a 2-parameter locus of Hopf points

BR PT TY LAB PAR(1) L2-NORM U(1) U(2) PAR(3)
4 100 EP 11 8.80940E-05 1.17440E+01 9.14609E-01 1.17083E+01 9.362E-02
Appendedto *.2p

81

7.5 Executing Selected Runs Automatically.

As illustrated by the commandsin Table 7.6, onecan alsoexecuteselectedruns of demo ab. In
general,this cannot be done in arbitrary order, as any given run may needrestart data from a
previousrun. Run 3 only requiresthe resultsof Run 1, sothat the displayedcommandsequenceis
indeedappropriate. The screenoutput of theseruns will be identical to that of the corresponding
earlier runs, except for a changein solution labels in Run 3.

In real usethere are two mains ways in which the AUTO can be used. First, onecan prepare
a constants-�le for each run. In the illustrativ e runs below, the constants-�les were carefully
prepared in advance. For example, the �le c.ab.1 contains the AUTO -constants for Run 1,
c.ab.3contains the AUTO -constants for Run 3, etc.

AUTO -COMMAND ACTION
ld("ab") load the problem de�nition ab
run(c="ab.1") executethe run which usesthe constants in c.ab.1
sv("ab") save the results of the run into the �les b.ab, s.ab, and d.ab
run(c="ab.3",s="ab") executethe third run of demo ab

Table 7.4: Selectedruns of demo ab.

On the other hand, one can use the CLUI to generatethe constants �le at runtime. In the
examplebelow, the constant �le c.ab.1will be read in, and the CLUI will be usedto make the
appropriate changesto perform the samecalculation as in Table 7.6.

AUTO -COMMAND ACTION
ld("ab") load the problem de�nition ab
run(c="ab.1") executethe run which usesthe constants in c.ab.1
sv("ab") save the results of the run into the �les b.ab, s.ab, and d.ab
cc("IRS",2) start the new calculation from a solution with label 2
cc("ICP",[0,2]) sincewe are following a locusof folds we require two free parameters
cc("ISP",0) turn o� detection of branch points
cc("ISW",2) sincewe start at a fold the ISW parameter indicates we

desireto computea locusof such points

cc("DSMAX",0.5) increasethe maximum allowed step size
run(s="ab") executethe third run of demo ab

Table 7.5: Selectedruns of demo ab.

7.6 Using AUTO -Commands.

Next, with the commandsin Table ??, we executethe �rst two runs of demo ab again, using
commandssimilar Table ?? that one would normally use in an actual application. We still use

82

AUTO -COMMAND ACTION
cl() remove temporary �les of any previousruns of the demo
dl("ab") remove 'ab' data-�les of any previousruns of the demo
dl("2p") remove '2p' data-�les of any previousruns of the demo
ld("ab") make sure the problem de�nition is loaded
run(c="ab.1") computea stationary solution branch with folds and Hopf bifurcation
sv("ab") save output-�les as b.ab,s.ab,d.ab
run(c="ab.2",s="ab") computea branch of periodic solutions from the Hopf point
ap("ab") append the output-�les to b.ab,s.ab,d.ab

Table 7.6: Commandsfor Run 1 and Run 2 of demo ab.

the democonstants-�les that werepreparedin advanceand assumeyou are in the directory into
which the ab demohasalready beencopied

It is instructive to look at the constants-�les c.ab.1and c.ab.2usedin the two runs above.
The signi�cance of each AUTO -constant set in these�les can be found in Chapter 5. Note in
particular the AUTO -constants that werechangedbetweenthe two runs; seeTable 7.7.

Constant Run 1 Run 2 Reasonfor Change
IPS 1 2 To computeperiodic solutions in Run 2
IRS 0 4 To specify the Hopf bifurcation restart label
NICP 1 2 The secondrun has two free parameters
ICP 1 1, 11 To useand print PAR(1)and PAR(11)in Run 2
NMX 100 150 To allow more continuation stepsin Run 2
NPR 100 30 To print output every 30 stepsin Run 2

Table 7.7: Di�erences in AUTO -constants between c.ab.1and c.ab.2.

Actually, for periodic solutions, AUTO automatically adds PAR(11)(the period) as second
parameter. However, for the period to be printed, onemust specify the index 11 in the ICP list,
as shown in Table 7.7.

7.7 Plotting the Results with AUTO .

The bifurcation diagram computedin the runs above is stored in the �le b.ab, while each labeled
solution is fully stored in s.ab. To useAUTO to graphically inspect thesedata-�les, type the
AUTO -commandgiven in Table 7.8. The saved plots are shown in Figure 7.1 and in Figure 7.2.

Figure 7.1 shows the default view of the plotting tool, which consistsof a representation of
the bifurcation diagram. Step by step instructions for creating Figure 7.2 are given below.

The plotting window consistsof a menubar at the top, a plotting area,and a control panelwith
four control widgetsat the bottom. The �rst step in creating Figure 7.2 is to changethe mode of
the plotting tool from \bifurcation" to \solution". This is accomplishedby clicking on the widget
marked \T ype" on the bottom control panel and setting it from \bifurcation" to \solution". In

83

the plotting window will appear a plot of the �rst labeled solution in s.ab. Unfortunately, this
is an equilibrium solution, so only a single point is plotted. Sincewe wish to plot the periodic
solutions, we modify the widget marked \Lab el" by changing its value from \[1]" to \[6,7,10]"
(don't forget to hit the return key when you are done modifying the value). This signi�es that
instead of plotting the solution with label 1 we want to plot the solutions with labels 6, 7, and
10 simultaneously. In the plotting window we now have three curves,each of which is a plot of
time versusthe value of the �rst state variable. If we want a di�eren t plot, say the valuesof the
two state variablesplotted against each other, we usethe two remaining widgets in the control
panel, labeled\X" and \Y". For example,if changethe value of \X" from \['t']" to \[0]" and the
value of \Y" from \[0]" to \[1]" we get a phaseplot of the period solutions (don't forget to hit
the return key when you are donemodifying each value). This plot is shown in Figure 7.2.

The plotting tool can alsobe usedto createPostscript �les from plots by selectingthe \File"
on the menubar and then selectingthe \Save Postscript..." from the drop down menu. This will
bring up a dialog into which the usercan enter the �lename of the postscript �le to save the plot
in. Further information on the plotting tool can be found in Section4.10.

AUTO -COMMAND ACTION
plot("ab") run AUTO to graph the contents of b.aband s.ab;

Table 7.8: Commandfor plotting the �les b.aband s.ab.

7.8 Following Folds and Hopf Bifurcations.

The commandsin Table7.9 will executethe remaining runs of demo ab. Here,asin later demos,
someof the AUTO -constants that have beenchangedbetweenruns are indicated in the Table.

AUTO -COMMAND ACTION
run(c="ab.3",s="ab") compute a locus of folds with changes(from c.ab.1) :

IRS, NICP, ICP, ISW, DSMAX

sv("2p") save output-�les as b.2p, s.2p,d.2p
run(c="ab.4",s="ab") compute the locus of folds in reverse direction with

changes(from c.ab.3) : DS (sign)

ap("2p") append the output-�les to b.2p, s.2p,d.2p
run(c="ab.4",s="ab") compute a locus of Hopf points with changes (from

c.ab.4) : IRS

ap("2p") append the output-�les to b.2p, s.2p,d.2p

Table 7.9: Commandsfor Runs 3, 4, and 5 of demo ab.

84

1

2

3

4
5

6

7

8

9
10

0.00e+00
1.00e−01

2.00e−01

5.00e+00

4.00e+00

3.00e+00

2.00e+00

1.00e+00

0.00e+00

Column 1

Column 0

L

L

H

Figure 7.1: The bifurcation diagram of demo ab.

2.00e−01
4.00e−01

6.00e−01
8.00e−01

1.00e+00

1.00e+01

8.00e+00

6.00e+00

4.00e+00

2.00e+00

0.00e+00

Columns 1

Columns 0

Figure 7.2: The phaseplot of solutions 6, 7, and 10 in demo ab.

85

7.9 Relabeling Solutions in the Data-Files.

Next we want to plot the two-parameterdiagram computed in the last three runs. However, the
solution labels in theseruns are not distinct. This is due to the fact that in each of thesethree
runs the restart solution was read from s.ab, while the computedsolutions were stored in s.2p.
Consequently, theseruns were unaware of each other's results, which led to non-unique labels.
For relabeling purpose,and more generally for �le maintenance,there is a utilit y program that
can be invoked as indicated in Table 7.10. Its useis illustrated in Table 7.11.

AUTO -COMMAND ACTION
rl("2p") run the relabeling program on b.2p and s.2p

Table 7.10: Commandto run the relabeling program on b.2p and s.2p.

RELABELING COMMAND ACTION
l list the labeledsolutions in s.2p
r relabel the solutions
l list the new solution labeling
w rewrite b.2p and s.2p

Table 7.11: Relabeling commandsfor the �les b.2p and s.2p.

7.10 Plotting the 2-Parameter Diagram.

To plot the �les b.2pand s.2p, enter the commandlisted in Table 7.12. The saved plot is shown
in Figure 7.3.

AUTO -COMMAND ACTION
plot("2p") run to graph the contents of b.2p and s.2p;

Table 7.12: Commandto plot the �les b.2p and s.2p.

86

11

12

11

11

−1.00e−01
1.39e−17

1.00e−01
2.00e−01

3.00e+01

2.00e+01

1.00e+01

0.00e+00

Column 1

Column 0

X

X

X

X

Figure 7.3: Loci of folds and Hopf bifurcations for demo ab.

87

Chapter 8

A UTO Demos : Fixed poin ts.

8.1 enz : Stationary Solutions of an Enzyme Model.

The equations,that model a two-compartment enzymesystem(Kern�evez (1980)), are given by

s′1 = (s0 � s1) + (s2 � s1) � ρR(s1),
s′2 = (s0 + µ � s2) + (s1 � s2) � ρR(s2),

(8.1)

where
R(s) =

s

1 + s + κs2
.

The freeparameteris s0. Other parametersare �xed. This equation is alsoconsideredin Doedel,
Keller & Kern�evez (1991a).

AUTO -COMMAND ACTION
! mkdir enz createan empty work directory
cd enz changedirectory
demo('enz') copy the demo�les to the work directory
ld('enz') load the problem de�nition
run(c='enz.1') computestationary solution branches
sv('enz') save output-�les as b.enz,s.enz,d.enz

Table 8.1: Commandsfor running demo enz.

88

8.2 dd2 : Fixed Points of a Discrete Dynamical System.

This demo illustrates the computation of a solution branch and its bifurcating branches for a
discrete dynamical system. Also illustrated is the continuation of Naimark-Sacker (or Hopf)
bifurcations The equations,a discretepredator-prey system,are

uk+1
1 = p1u

k
1(1 � uk

1) � p2u
k
1u

k
2,

uk+1
2 = (1 � p3)uk

2 + p2u
k
1u

k
2.

(8.2)

In the �rst run p1 is free. In the secondrun, both p1 and p2 are free. The remaining equation
parameter,p3, is �xed in both runs.

AUTO -COMMAND ACTION
! mkdir dd2 createan empty work directory
cd dd2 changedirectory
demo('dd2') copy the demo�les to the work directory
ld('dd2') load the problem de�nition
run(c='dd2.1') 1st run; �xed point solution branches
sv('dd2') save output-�les as b.dd2,s.dd2,d.dd2
run(c='dd2.2',s='dd2 ') 2nd run; a locus of Naimark-Sacker bifur-

cations. Constants changed: IRS, ISW

sv('ns') save output-�les as b.ns,s.ns,d.ns

Table 8.2: Commandsfor running demo dd2.

89

Chapter 9

A UTO Demos : Perio dic solutions.

90

9.1 lrz : The Lorenz Equations.

This democomputestwo symmetric homoclinic orbits in the Lorenz equations

u′1 = p3(u2 � u1),
u′2 = p1u1 � u2 � u1u3,
u′3 = u1u2 � p2u3.

(9.1)

Here p1 is the free parameter, and p2 = 8/3, p3 = 10. The two homoclinic orbits correspond to
the �nal, large period orbits on the two periodic solution branches.

AUTO -COMMAND ACTION
! mkdir lrz createan empty work directory
cd lrz changedirectory
demo('lrz') copy the demo�les to the work directory
ld('lrz') load the problem de�nition
run(c='lrz.1') computestationary solutions
sv('lrz') save output-�les as b.lrz, s.lrz,d.lrz
run(c='lrz.2',s='lrz') compute periodic solutions; the �nal orbit

is near-homoclinic. Constants changed :
IPS, IRS, NICP, ICP, NMX,NPR, DS

ap('lrz') append the output-�les to b.lrz, s.lrz,d.lrz
run(c='lrz.3',s='lrz') compute the symmetric periodic solution

branch. Constants changed: IRS

ap('lrz') append the output-�les to b.lrz, s.lrz,d.lrz

Table 9.1: Commandsfor running demo lrz.

91

9.2 abc : The A ! B ! C Reaction.

This demo illustrates the computation of stationary solutions, Hopf bifurcations and periodic
solutions in the A ! B ! C reaction (Doedel& Heinemann(1983)).

u′1 = � u1 + p1(1 � u1)eu3 ,
u′2 = � u2 + p1e

u3 (1 � u1 � p5u2),
u′3 = � u3 � p3u3 + p1p4e

u3 (1 � u1 + p2p5u2),
(9.2)

with p2 = 1, p3 = 1.55, p4 = 8, and p5 = 0.04. The free parameter is p1.

AUTO -COMMAND ACTION
! mkdir abc createan empty work directory
cd abc changedirectory
demo('abc') copy the demo�les to the work directory
ld('abc') load the problem de�nition
run(c='abc.1') compute the stationary solution branch with Hopf bifurcations
sv('abc') save output-�les as b.abc, s.abc, d.abc
run(c='abc.2',s='abc ') compute a branch of periodic solutions

from the �rst Hopf point. Constants
changed: IRS, IPS, NICP, ICP

ap('abc') append the output-�les to b.abc, s.abc, d.abc
run(c='abc.3',s='abc ') compute a branch of periodic solutions

from the secondHopf point. Constants
changed: IRS, NMX

ap('abc') append the output-�les to b.abc, s.abc, d.abc

Table 9.2: Commandsfor running demo abc.

92

9.3 pp2 : A 2D Predator-Prey Model.

This demo illustrates a variety of calculations. The equations, which model a predator-prey
systemwith harvesting, are

u′1 = p2u1(1 � u1) � u1u2 � p1(1 � e−p3u1),
u′2 = � u2 + p4u1u2.

(9.3)

Here p1 is the principal continuation parameter, p3 = 5, p4 = 3, and, initially , p2 = 3. For
two-parametercomputationsp2 is also free.

AUTO -COMMAND ACTION
! mkdir pp2 createan empty work directory
cd pp2 changedirectory
demo('pp2') copy the demo�les to the work directory
ld('pp2') load the problem de�nition
run(c='pp2.1') 1st run; stationary solutions
sv('pp2') save output-�les as b.pp2,s.pp2,d.pp2
run(c='pp2.2',s='pp2 ') 2nd run; restart at a labeledsolution. Con-

stants changed: IRS, RL1

ap('pp2') append output-�les to b.pp2,s.pp2,d.pp2
run(c='pp2.3',s='pp2 ') 3rd run; periodic solutions. Constants

changed: IRS, IPS, ILP

ap('pp2') append output-�les to b.pp2,s.pp2,d.pp2
run(c='pp2.4',s='pp2 ') 4th run; restart at a labeledperiodic solu-

tion. Constants changed: IRS, NTST

ap('pp2') append output-�les to b.pp2,s.pp2,d.pp2
run(c='pp2.5',s='pp2 ') 5th run; continuation of folds. Constants

changed: IRS, IPS, ISW, ICP

sv('lp') save output-�les as b.lp, s.lp, d.lp
run(c='pp2.6',s='pp2 ') 6th run; continuation of Hopf bifurcations.

Constants changed: IRS

sv('hb') save output-�les as b.hb, s.hb,d.hb
run(c='pp2.7',s='pp2 ') 7th run; continuation of homoclinic orbits.

Constants changed: IRS, IPS, ISP

sv('hom') save output-�les as b.hom,s.hom,d.hom

Table 9.3: Commandsfor running demo pp2.

93

9.4 lor : Starting an Orbit from Numerical Data.

This demo illustrates how to start the computation of a branch of periodic solutions from nu-
merical data obtained, for example,from an initial value solver. As an illustrativ e application we
considerthe Lorenz equations

u′1 = p3(u2 � u1),
u′2 = p1u1 � u2 � u1u3,
u′3 = u1u2 � p2u3.

(9.4)

Numerical simulations with a simple initial value solver show the existenceof a stable periodic
orbit when p1 = 280, p2 = 8/3, p3 = 10. Numerical data representing one complete periodic
oscillation are contained in the �le lor.dat. Each row in lor.dat contains four real numbers,
namely, the time variable t, u1, u2 and u3. The correponding parameter values are de�ned in
the user-suppliedsubroutine stpnt. The AUTO -commandus('lor') then converts the data in
lor.dat to a labeledAUTO solution (with label 1) in a new �le s.dat. The meshwill be suitably
adaptedto the solution, using the number of meshintervals NTSTand the number of collocation
point per meshinterval NCOLspeci�ed in the constants-�le c.lor. (Note that the �le s.datshould
be usedfor restart only. Do not append new output-�les to s.dat, as the commandus('lor')
only creates s.dat, with no corresponding b.dat.)

AUTO -COMMAND ACTION
! mkdir lor createan empty work directory
cd lor changedirectory
demo('lor') copy the demo�les to the work directory
ld('lor') load the problem de�nition
us('lor') convert lor.dat to AUTO format in s.dat
run(c='lor.1',s='dat') computea solution branch, restart from s.dat
sv('lor') save output-�les as b.lor, s.lor, d.lor
run(c='lor.2',s='lor') switch branches at a period-doubling de-

tected in the �rst run. Constants changed
: IRS, ISW, NTST

ap('lor') append the output-�les to b.lor, s.lor, d.lor

Table 9.4: Commandsfor running demo lor.

94

9.5 frc : A Periodically Forced System.

This demo illustrates the computation of periodic solutions to a periodically forced system. In
AUTO this can be doneby adding a nonlinear oscillator with the desiredperiodic forcing asone
of the solution components. An exampleof such an oscillator is

x′ = x + βy � x(x2 + y2),
y′ = � βx + y � y(x2 + y2),

(9.5)

which has the asymptotically stable solution x = sin(βt), y = cos(βt). We couplethis oscillator
to the Fitzhugh-Nagumoequations:

v′ =
(

F (v) � w
)

/ε,
w′ = v � dw �

(

b + r sin(βt)
)

,
(9.6)

by replacing sin(βt) by x. Above, F (v) = v(v � a)(1 � v) and a, b, ε and d are �xed. The �rst
run is a homotopy from r = 0, where a solution is known analytically, to r = 0.2. Part of the
solution branch with r = 0.2 and varying β is computed in the secondrun. For detailed results
seeAlexander, Doedel& Othmer (1990).

AUTO -COMMAND ACTION
! mkdir frc createan empty work directory
cd frc changedirectory
demo('frc') copy the demo�les to the work directory
ld('frc') load the problem de�nition
run(c='frc.1') homotopy to r = 0.2
sv('0') save output-�les as b.0, s.0,d.0
run(c='frc.2',s='0') compute solution branch; restart from

s.0. Constants changed : IRS, ICP(1),
NTST, NMX,DS, DSMAX

sv('frc') save output-�les as b.frc, s.frc, d.frc

Table 9.5: Commandsfor running demo frc.

95

9.6 ppp : Continuation of Hopf Bifurcations.

This demoillustrates the continuation of Hopf bifurcations in a 3-dimensionalpredator prey model
(Doedel(1984)). This curvecontain branch points, whereonelocusof Hopf points bifurcatesfrom
another locus of Hopf points. The equationsare

u′1 = u1(1 � u1) � p4u1u2,
u′2 = � p2u2 + p4u1u2 � p5u2u3 � p1(1 � e−p6u2)
u′3 = � p3u3 + p5u2u3.

(9.7)

Herep2 = 1/4, p3 = 1/2, p4 = 3, p5 = 3, p6 = 5, and p1 is the freeparameter. In the continuation
of Hopf points the parameterp4 is also free.

AUTO -COMMAND ACTION
! mkdir ppp createan empty work directory
cd ppp changedirectory
demo('ppp') copy the demo�les to the work directory
ld('ppp') load the problem de�nition
run(c='ppp.1') computestationary solutions;detect Hopf bifurcations
sv('ppp') save output-�les as b.ppp,s.ppp,d.ppp
run(c='ppp.2',s='ppp ') compute a branch of periodic solutions.

Constants changed: IPS, IRS, ICP

ap('ppp') append the output-�les to b.ppp,s.ppp,d.ppp
run(c='ppp.3',s='ppp ') computeHopf bifurcation curves
sv('hb') save the output-�les as b.hb, s.hb,d.hb

Table 9.6: Commandsfor running demo ppp.

96

9.7 plp : Fold Continuation for Periodic Solutions.

This demo, which corresponds to computations in Doedel, Keller & Kern�evez (1991a), shows
how onecan continue a fold on a branch of periodic solution in two parameters.The calculation
of a locus of Hopf bifurcations is also included. The equations,that model a one-compartment
activator-inhibitor system(Kern�evez (1980)), are given by

s′ = (s0 � s) � ρR(s, a),
a′ = α(a0 � a) � ρR(s, a),

(9.8)

where
R(s, a) =

sa

1 + s + κs2
, κ > 0.

The free parameter is ρ. In the fold continuation s0 is also free.

AUTO -COMMAND ACTION
! mkdir plp createan empty work directory
cd plp changedirectory
demo('plp') copy the demo�les to the work directory
ld('plp') load the problem de�nition
run(c='plp.1') 1st run; computea stationary solution branch and locate HBs
sv('plp') save output-�les as b.plp, s.plp,d.plp
run(c='plp.2',s='plp ') computea branch of periodic solutionsand

locate a fold. Constants changed: IPS,
IRS, NMX

ap('plp') append output-�les to b.plp, s.plp,d.plp
run(c='plp.3',s='plp ') Compute a locus of Hopf bifurcation

points. Constants changed: IPS, ICP,
ISW, NMX,RL1

sv('2p') save output-�les as b.2p, s.2p,d.2p
run(c='plp.4',s='plp ') generatestarting data for the fold contin-

uation. Constants changed: IPS, IRS,
ICP, NMX

sv('tmp') save output-�les as b.tmp, s.tmp, d.tmp
run(c='plp.5',s='tmp ') fold continuation; restart data from s.tmp.

Constants changed: IRS, NUZR

ap('2p') append output-�les to b.2p, s.2p,d.2p
run(c='plp.6',s='2p') compute an isola of periodic solutions;

restart data from s.2p. Constants changed
: IRS, ISW, NMX,NUZR

sv('iso') save output-�les as b.iso,s.iso,d.iso

Table 9.7: Commandsfor running demo plp.

97

9.8 pp3 : Period-Doubling Continuation.

This demo illustrates the computation of stationary solutions, Hopf bifurcations, and periodic
solutions, branch switching at a period-doubling bifurcation, and the computation of a locus of
period-doubling bifurcations. The equationsmodel a 3D predator-prey systemwith harvesting
(Doedel (1984)).

u′1 = u1(1 � u1) � p4u1u2,
u′2 = � p2u2 + p4u1u2 � p5u2u3 � p1(1 � e−p6u2)
u′3 = � p3u3 + p5u2u3.

(9.9)

The free parameter is p1, except in the period-doubling continuation, where both p1 and p2 are
free.

AUTO -COMMAND ACTION
! mkdir pp3 createan empty work directory
cd pp3 changedirectory
demo('pp3') copy the demo�les to the work directory
ld('pp3') load the problem de�nition
run(c='pp3.1') 1st run; stationary solutions
sv('pp3') save output-�les as b.pp3,s.pp3,d.pp3
run(c='pp3.2',s='pp3 ') compute a branch of periodic solutions.

Constants changed: IRS, IPS, NMX

ap('pp3 append output-�les to b.pp3,s.pp3,d.pp3
run(c='pp3.3',s='pp3 ') compute the branch bifurcating at the

period-doubling. Constants changed :
IRS, ISW, NTST

ap('pp3') append output-�les to b.pp3,s.pp3,d.pp3
run(c='pp3.4',s='pp3 ') generate starting data for the period-

doubling continuation. Constants changed
: ISW

sv('tmp') save output-�les as b.tmp, s.tmp, d.tmp
run(c='pp3.5',s='tmp ') period-doubling continuation; restart from

s.tmp. Constants changed: IRS

sv('2p') save output-�les as b.2p, s.2p,d.2p

Table 9.8: Commandsfor running demo pp3.

98

9.9 tor : Detection of Torus Bifurcations.

This demo usesa model in Freire, Rodr��guez-Luis, Gamero & Ponce (1993) to illustrate the
detection of a torus bifurcation. It also illustrates branch switching at a secondaryperiodic
bifurcation with double Floquet multiplier at z = 1. The computational results also include
folds, homoclinic orbits, and period-doubling bifurcations. Their continuation is not illustrated
here;seeinstead the demos plp, pp2, and pp3, respectively. The equationsare

x′(t) =
[

� (β + ν)x + βy � a3x
3 + b3(y � x)3

]

/r,
y′(t) = βx � (β + γ)y � z � b3(y � x)3,
z′(t) = y,

(9.10)

whereγ = � 0.6, r = 0.6, a3 = 0.328578,and b3 = 0.933578.Initially ν = � 0.9 and β = 0.5.

AUTO -COMMAND ACTION
! mkdir tor createan empty work directory
cd tor changedirectory
demo('tor') copy the demo�les to the work directory
ld('tor') load the problem de�nition
run(c='tor.1') 1st run; computea stationary solution branch with Hopf bifurcation
sv('1') save output-�les as b.1, s.1,d.1
run(c='tor.2',s='1') compute a branch of periodic solutions;

restart from s.1. Constants changed :
IPS, IRS

ap('1') append output-�les to b.1, s.1,d.1
run(c='tor.3',s='1') compute a bifurcating branch of periodic

solutions; restart from s.1. Constants
changed: IRS, ISW, NMX

ap('1') append output-�les to b.1, s.1,d.1

Table 9.9: Commandsfor running demo tor.

99

9.10 pen : Rotations of Coupled Pendula.

This demo illustrates the computation of rotations, i.e., solutions that are periodic, modulo a
phasegain of an even multiple of π. AUTO checks the starting data for components with such a
phasegain and, if present, it will automatically adjust the computationsaccordingly. The model
equations,a systemof two coupledpendula, (Doedel,Aronson & Othmer (1991)), are given by

φ′′
1 + εφ′

1 + sinφ1 = I + γ(φ2 � φ1),
φ′′

2 + εφ′
2 + sinφ2 = I + γ(φ1 � φ2),

(9.11)

or, in equivalent �rst order form,

φ′
1 = ψ1,
φ′

2 = ψ2,
ψ′

1 = � εψ1 � sinφ1 + I + γ(φ2 � φ1),
ψ′

2 = � εψ2 � sinφ2 + I + γ(φ1 � φ2).

(9.12)

Throughout γ = 0.175. Initially , ε = 0.1 and I = 0.4.
Numerical data representing one complete rotation are contained in the �le pen.dat. Each

row in pen.datcontains �v e real numbers, namely, the time variable t, φ1, φ2, ψ1 and ψ2. The
correponding parametervaluesare de�ned in the user-suppliedsubroutine stpn t .

Actually, in this example,a scaledtime variable t is given in pen.dat. For this reasonthe
period (PAR(11)) is also set in stpn t . Normally AUTO would automatically set the period
accordingto the data in pen.dat.

The AUTO -commandus('pen') converts the data in pen.datto a labeledAUTO solution
(with label 1) in a new �le s.dat. The meshwill be suitably adapted to the solution, using the
number of mesh intervals NTSTand the number of collocation point per mesh interval NCOL
speci�ed in the constants-�le c.pen. (Note that the �le s.datshouldbe usedfor restart only. Do
not append new output-�les to s.dat, as the commandus('pen') only creates s.dat, with no
corresponding b.dat.)

The �rst run, with I asfreeproblemparameter,starts from the convertedsolution with label 1
in pen.dat. A period-doubling bifurcation is located,and the period-doubledbranch is computed
in the secondrun. Two branch points are located, and the bifurcating branchesare traced out in
the third and fourth run, respectively. The �fth run generatesstarting data for the subsequent
computation of a locus of period-doubling bifurcations. The actual computation is done in the
sixth run, with ε and I as free problem parameters.

100

AUTO -COMMAND ACTION
! mkdir pen createan empty work directory
cd pen changedirectory
demo('pen') copy the demo�les to the work directory
ld('pen') load the problem de�nition
us('pen') convert pen.datto AUTO format in s.dat
run(c='pen.1',s='dat') locate a period doubling bifurcation; restart from s.dat
sv('pen') save output-�les as b.pen, s.pen, d.pen
run(c='pen.2',s='pen') a branch of period-doubled (and out-of-

phase) rotations. Constants changed :
IPS, NTST, ISW, NMX

ap('pen') append output-�les tp b.pen, s.pen, d.pen
run(c='pen.3',s='pen') a secondarybifurcating branch (without

bifurcation detection). Constants changed
: IRS, ISP

ap('pen') append output-�les to b.pen, s.pen, d.pen
run(c='pen.4',s='pen') another secondary bifurcating branch

(without bifurcation detection). Constants
changed: IRS

ap('pen') append output-�les to b.pen, s.pen, d.pen
run(c='pen.5',s='pen') generatestarting data for period doubling

continuation. Constants changed: IRS,
ICP, ICP, ISW, NMX

sv('t') save output-�les as b.t, s.t, d.t
run(c='pen.6',s='t') compute a locus of period doubling bi-

furcations; restart from s.t. Constants
changed: IRS

sv('pd') save output-�les as b.pd, s.pd, d.pd

Table 9.10: Commandsfor running demo pen.

101

9.11 chu : A Non-Smooth System (Chua’s Circuit).

Chua's circuit is one of the simplest electronic devicesto exhibit complexbehavior. For related
calculationsseeKhibnik, Roose& Chua (1993). The equationsmodeling the circuit are

u′1 = α
[

u2 � h(u1)
]

,
u′2 = u1 � u2 + u3 ,
u′3 = � β u2 ,

(9.13)

where
h(x) = a1x +

1
2

(a0 � a1)
{

j x + 1 j � j x � 1 j
}

,

and wherewe take β = 14.3, a0 = � 1/7, a1 = 2/7.
Note that h(x) is not a smooth function, and hencethe solution to the equationsmay have

non-smooth derivatives. However, for the orthogonal collocation method to attain its optimal
accuracy, it is necessarythat the solution be su�cien tly smooth. Moreover, the adaptive mesh
selectionstrategy will fail if the solution or oneof its lower order derivativeshas discontinuities.
For thesereasonswe usethe smooth approximation

j x j �
2x
π

arctan(Kx),

which get better asK increases.In the numerical calculations below we useK = 10. The free
parameter is α.

AUTO -COMMAND ACTION
! mkdir chu createan empty work directory
cd chu changedirectory
demo('chu') copy the demo�les to the work directory
ld('chu') load the problem de�nition
run(c='chu.1') 1st run; stationary solutions
sv('chu') save output-�les as b.chu,s.chu,d.chu
run(c='chu.2',s='chu') 2nd run; periodic solutions,with detection

of period-doubling. constants changed :
IPS, IRS, ICP, ICP

ap('chu') append the output-�les to b.chu,s.chu,d.chu

Table 9.11: Commandsfor running demo chu.

102

9.12 phs : Effect of the Phase Condition.

This demoillustrates the e�ect of the phasecondition on the computation of periodic solutions.
We considerthe di�eren tial equation

u′1 = λu1 � u2,
u′2 = u1(1 � u1).

(9.14)

This equation has a Hopf bifurcation from the trivial solution at λ = 0. The bifurcating branch
of periodic solutions is vertical and along it the period increasesmonotonically. The branch
terminatesin a homoclinic orbit containing the saddlepoint (u1, u2) = (1,0). Graphical inspection
of the computedperiodic orbits, for exampleu1 versusthe scaledtime variable t, shows how the
phasecondition has the e�ect of keepingthe \p eak" in the solution in the samelocation.

AUTO -COMMAND ACTION
! mkdir phs createan empty work directory
cd phs changedirectory
demo('phs') copy the demo�les to the work directory
ld('phs') load the problem de�nition
run(c='phs.1') detect Hopf bifurcation
sv('phs') save output-�les as b.phs,s.phs,d.phs
run(c='phs.2',s='phs ') compute periodic solutions. Constants

changed: IRS, IPS, NPR

ap('phs') append output-�les to b.phs,s.phs,d.phs

Table 9.12: Commandsfor running demo phs.

103

9.13 ivp : Time Integration with Euler’s Method.

This demo usesEuler's method to locate a stationary solution of the following predator-prey
systemwith harvesting :

u′1 = p2u1(1 � u1) � u1u2 � p1(1 � e−p3u1),
u′2 = � u2 + p4u1u2,

(9.15)

whereall problem parametershave a �xed value. The equationsare the sameas those in demo
pp2. The continuation parameter is the independent time variable, namely PAR(14).

Note that Euler time integration is only �rst order accurate, so that the time step must
be su�cien tly small to ensurecorrect results. Indeed, this option has been added only as a
convenience,and shouldgenerallybe usedonly to locatestationary states. Note that the AUTO -
constants DS, DSMIN, and DSMAXcontrol the step size in the spaceconsisting of time, here
PAR(14), and the state vector, here(u1, u2).

AUTO -COMMAND ACTION
! mkdir ivp createan empty work directory
cd ivp changedirectory
demo('ivp') copy the demo�les to the work directory
ld('ivp') load the problem de�nition
run(c='ivp.1') time integration
sv('ivp') save output-�les as b.ivp, s.ivp,d.ivp

Table 9.13: Commandsfor running demo ivp.

104

Chapter 10

A UTO Demos : BVP .

10.1 exp : Bratu’s Equation.

This demoillustrates the computation of a solution branch to the boundary value problem

u′1 = u2,
u′2 = � p1e

u1 ,
(10.1)

with boundary conditions u1(0) = 0, u1(1) = 0. This equation is also consideredin Doedel,
Keller & Kern�evez (1991a).

AUTO -COMMAND ACTION
! mkdir exp createan empty work directory
cd exp changedirectory
demo('exp') copy the demo�les to the work directory
run(c='exp.1') 1st run; computesolution branch containing fold
sv('exp') save output-�les as b.exp,s.exp,d.exp
run(c='exp.2',s='exp ') 2nd run; restart at a labeledsolution, using

increasedaccuracy. Constants changed :
IRS, NTST, A1, DSMAXvspace0.2cm

ap('exp') append output-�les to b.exp,s.exp,d.exp

Table 10.1: Commandsfor running demo exp.

105

10.2 int : Boundary and Integral Constraints.

This demoillustrates the computation of a solution branch to the equation

u′1 = u2,
u′2 = � p1e

u1 ,
(10.2)

with a non-separatedboundary condition and an integral constraint:

u1(0) � u1(1) � p2 = 0,
∫ 1

0

u(t)dt � p3 = 0.

The solution branch contains a fold, which, in the secondrun, is continued in two equation
parameters.

AUTO -COMMAND ACTION
! mkdir int createan empty work directory
cd int changedirectory
demo('int') copy the demo�les to the work directory
run(c='int.1') 1st run; detection of a fold
sv('int') save output-�les as b.int, s.int, d.int
run(c='int.2',s='int') 2nd run; generatestarting data for a curve of folds. Constants changed : IRS, ISW vs-

pace0.2cm
sv('t') save the output-�les as b.t, s.t, d.t
run(c='int.3',s='t') 3rd run; compute a curve of folds; restart

from s.t. Constants changed: IRS vs-
pace0.2cm

sv('lp') save the output-�les as b.lp, s.lp, d.lp

Table 10.2: Commandsfor running demo int.

106

10.3 bvp : A Nonlinear ODE Eigenvalue Problem.

This demoillustrates the location of eigenvaluesof a nonlinear ODE boundary value problem as
bifurcations from the trivial solution branch. The branch of solutions that bifurcates at the �rst
eigenvalue is computed in both directions. The equationsare

u′1 = u2,
u′2 = � (p1π)2u1 + u2

1,
(10.3)

with boundary conditions u1(0) = 0, u1(1) = 0.

AUTO -COMMAND ACTION
! mkdir bvp createan empty work directory
cd bvp changedirectory
demo('bvp') copy the demo�les to the work directory
run(c='bvp.1') compute the trivial solution branch and locate eigenvalues
sv('bvp') save output-�les as b.bvp,s.bvp,d.bvp
run(c='bvp.2',s='bvp') compute the �rst bifurcating branch.

Constants changed : IRS, ISW, NPR,
DSMAX

ap('bvp') append output-�les to b.bvp,s.bvp,d.bvp
run(c='bvp.3',s='bvp') computethe �rst bifurcating branch in op-

positedirection. Constants changed: DS

ap('bvp') append output-�les to b.bvp,s.bvp,d.bvp

Table 10.3: Commandsfor running demo bvp.

107

10.4 lin : A Linear ODE Eigenvalue Problem.

This demo illustrates the location of eigenvalues of a linear ODE boundary value problem as
bifurcations from the trivial solution branch. By meansof branch switching an eigenfunction
is computed, as is illustrated for the �rst eigenvalue. This eigenvalue is then continued in two
parametersby �xing the L2-norm of the �rst solution component. The eigenvalue problem is
given by the equations

u′1 = u2,
u′2 = (p1π)2u1,

(10.4)

with boundary conditions u1(0) � p2 = 0 and u1(1) = 0. We add the integral constraint

∫ 1

0

u1(t)2dt � p3 = 0.

Then p3 is simply the L2-norm of the �rst solution component. In the �rst two runs p2 is �xed,
while p1 and p3 are free. In the third run p3 is �xed, while p1 and p2 are free.

AUTO -COMMAND ACTION
! mkdir lin createan empty work directory
cd lin changedirectory
demo('lin') copy the demo�les to the work directory
run(c='lin.1') 1st run; compute the trivial solution branch and locate eigenvalues
sv('lin') save output-�les as b.lin, s.lin, d.lin
run(c='lin.2',s='lin') 2nd run; compute a few steps along the

bifurcating branch. Constants changed :
IRS, ISW, DSMAX

ap('lin') append output-�les to b.lin, s.lin, d.lin
run(c='lin.3',s='lin') 3rd run; computea two-parametercurveof

eigenvalues. Constants changed: IRS,
ISW, ICP(2)

sv('2p') save the output-�les as b.2p, s.2p,d.2p

Table 10.4: Commandsfor running demo lin.

108

10.5 non : A Non-Autonomous BVP.

This demoillustrates the continuation of solutions to the non-autonomousboundary value prob-
lem

u′1 = u2,

u′2 = � p1e
x3u1 ,

(10.5)

with boundary conditionsu1(0) = 0, u1(1) = 0. Herex is the independent variable. This system
is �rst converted to the following equivalent autonomoussystem:

u′1 = u2,

u′2 = � p1e
u3

3u1 ,
u′3 = 1,

(10.6)

with boundary conditions u1(0) = 0, u1(1) = 0, u3(0) = 0. (For a periodically forced system
seedemo frc).

AUTO -COMMAND ACTION
! mkdir non createan empty work directory
cd non changedirectory
demo('non') copy the demo�les to the work directory
run(c='non.1') compute the solution branch
sv('non') save output-�les as b.non,s.non,d.non

Table 10.5: Commandsfor running demo non.

109

10.6 kar : The Von Karman Swirling Flows.

The steady axi-symmetric
o w of a viscousincompressible
uid above an in�nite rotating disk
is modeled by the following ODE boundary value problem (Equation (11) in Lentini & Keller
(1980) :

u′1 = Tu2,
u′2 = Tu3,
u′3 = T

[

� 2γu4 + u2
2 � 2u1u3 � u2

4

]

,
u′4 = Tu5,
u′5 = T

[

2γu2 + 2u2u4 � 2u1u5

]

,

(10.7)

with left boundary conditions

u1(0) = 0, u2(0) = 0, u4(0) = 1 � γ,

and (asymptotic) right boundary conditions

[

f∞ + a(f∞, γ)
]

u2(1) + u3(1) � γ u4(1)
a(f∞,γ)

= 0,

a(f∞, γ) b2(f∞,γ)
γ

u2(1) +
[

f∞ + a(f∞, γ)
]

u4(1) + u5(1) = 0,
u1(1) = f∞,

(10.8)

where
a(f∞, γ) = 1√

2

[

(f4
∞ + 4γ2)1/2 + f 2

∞

]1/2
,

b(f∞, γ) = 1√
2

[

(f4
∞ + 4γ2)1/2 � f 2

∞

]1/2
.

(10.9)

Note that there are �v e di�eren tial equations and six boundary conditions. Correspondingly,
there are two free parametersin the computation of a solution branch, namely γ and f∞. The
\p eriod" T is �xed; T = 500. The starting solution is ui = 0, i = 1, � � � ,5, at γ = 1, f∞ = 0.

AUTO -COMMAND ACTION
! mkdir kar createan empty work directory
cd kar changedirectory
demo('kar') copy the demo�les to the work directory
run(c='kar.1') computation of the solution branch
sv('kar') save output-�les as b.kar, s.kar, d.kar

Table 10.6: Commandsfor running demo kar.

110

10.7 spb : A Singularly-Perturbed BVP.

This demo illustrates the use of continuation to compute solutions to the singularly perturbed
boundary value problem

u′1 = u2,
u′2 = λ

ε

(

u1u2(u2
1 � 1) + u1

)

,
(10.10)

with boundary conditionsu1(0) = 3/2, u1(1) = γ. The parameterλ hasbeenintroducedinto the
equationsin order to allow a homotopy from a simple equation with known exact solution to the
actual equation. This is done in the �rst run. In the secondrun ε is decreasedby continuation.
In the third run ε is �xed at ε = .001 and the solution is continued in γ. This run takesmore
than 1500continuation steps. For a detailed analysisof the solution behavior seeLorenz (1982).

AUTO -COMMAND ACTION
! mkdir spb createan empty work directory
cd spb changedirectory
demo('spb') copy the demo�les to the work directory
run(c='spb.1') 1st run; homotopy from λ = 0 to λ = 1
sv('1') save output-�les as b.1, s.1,d.1
run(c='spb.2',s='1') 2nd run; let ε tend to zero; restart from

s.1. constants changed: IRS, ICP(1),
NTST, DS

sv('2') save the output-�les as b.2, s.2,d.2
run(c='spb.3',s='2') 3rd run; continuation in γ; ε =

0.001; restart from s.2. Constants
changed : IRS, ICP(1), RL0, ITNW,
EPSL, EPSU,NUZR

sv('3') save the output-�les as b.3, s.3,d.3

Table 10.7: Commandsfor running demo spb.

111

10.8 ezp : Complex Bifurcation in a BVP.

This demo illustrates the computation of a solution branch to the the complex boundary value
problem

u′1 = u2,
u′2 = � p1e

u1 ,
(10.11)

with boundary conditions u1(0) = 0, u1(1) = 0. Hereu1 and u2 are allowed to be complex,while
the parameter p1 can only take real values. In the real case,this is Bratu's equation, whose
solution branch contains a fold; seethe demo exp. It is known (Henderson& Keller (1990))
that a simple quadratic fold givesrise to a pitch fork bifurcation in the complexequation. This
bifurcation is located in the �rst computation below. In the secondand third run, both legsof
the bifurcating solution branch are computed. On it, both solution components u1 and u2 have
nontrivial imaginary part.

AUTO -COMMAND ACTION
! mkdir ezp createan empty work directory
cd ezp changedirectory
demo('ezp') copy the demo�les to the work directory
run(c='ezp.1') 1st run; computesolution branch containing fold
sv('ezp') save output-�les as p.ezp,s.ezp,d.ezp
run(c='ezp.2',s='ezp ') 2nd run; compute bifurcating complex

solution branch. Constants changed :
IRS, ISW

ap('ezp') append output-�les to p.ezp,s.ezp,d.ezp
run(c='ezp.3',s='ezp ') 3rd run; compute 2nd leg of bifurcating

branch. constant changed: DS

ap('ezp') append output-�les to p.ezp,s.ezp,d.ezp

Table 10.8: Commandsfor running demo ezp.

112

Chapter 11

A UTO Demos : Parab olic PDEs.

113

11.1 pd1 : Stationary States (1D Problem).

This demo usesEuler's method to locate a stationary solution of a nonlinear parabolic PDE,
followed by continuation of this stationary state in a free problem parameter. The equation is

∂u

∂t
= D

∂2u

∂x2
+ p1 u (1 � u),

on the spaceinterval [0, L], whereL = PAR(11) = 10 is �xed throughout, as is the di�usion
constant D = PAR(15)= 0.1. The boundary conditions are u(0) = u(L) = 0 for all time.

In the �rst run the continuation parameteris the independent time variable,namely PAR(14),
while p1 = 1 is �xed. The AUTO -constants DS, DSMIN, and DSMAXthen control the step size
in space-time,here consistingof PAR(14)and u(x). Initial data are u(x) = sin(πx/L) at time
zero. Note that in the subroutine stpn t the initial data must be scaledto the unit interval, and
that the scaledderivative must alsobe provided; seethe equations-�le pv1.c. In the secondrun
the continuation parameter is p1.

Euler time integration is only �rst order accurate,so that the time step must be su�cien tly
small to ensurecorrect results. Indeed, this option has beenadded only as a convenience,and
should generallybe usedonly to locate stationary states.

AUTO -COMMAND ACTION
! mkdir pd1 createan empty work directory
cd pd1 changedirectory
demo('pd1') copy the demo�les to the work directory
run(c='pd1.1') time integration towards stationary state
sv('1') save output-�les as b.1, s.1,d.1
run(c='pd1.2',s='1') continuation of stationary states; read

restart data from s.1. constants changed:
IPS, IRS, ICP, etc.

sv('2') save output-�les as b.2, s.2,d.2

Table 11.1: Commandsfor running demo pd1.

114

11.2 pd2 : Stationary States (2D Problem).

This demo usesEuler's method to locate a stationary solution of a nonlinear parabolic PDE,
followed by continuation of this stationary state in a free problem parameter. The equationsare

∂u1/∂t = D1 ∂
2u1/∂x

2 + p1 u (1 � u) � u1u2,
∂u2/∂t = D2 ∂

2u2/∂x
2 � u2 + u1u2,

(11.1)

on the spaceinterval [0, L], whereL = PAR(11) = 1 is �xed throughout, as are the di�usion
constants D1 = PAR(15)= 1 and D2 = PAR(16)= 1. The boundary conditions are u1(0) =
u1(L) = 0 and u2(0) = u2(L) = 1, for all time.

In the �rst run the continuation parameteris the independent time variable,namely PAR(14),
while p1 = 12 is �xed. The AUTO -constants DS, DSMIN, and DSMAXthen control the step
size in space-time,here consistingof PAR(14)and (u1(x), u2(x)). Initial data at time zero are
u1(x) = sin(πx/L) and u2(x) = 1. Note that in the subroutine stpn t the initial data must
be scaledto the unit interval, and that the scaledderivatives must also be provided; seethe
equations-�le pv2.c. In the secondrun the continuation parameter is p1. A branch point is
located during this run.

Euler time integration is only �rst order accurate,so that the time step must be su�cien tly
small to ensurecorrect results. Indeed, this option has beenadded only as a convenience,and
should generallybe usedonly to locate stationary states.

AUTO -COMMAND ACTION
! mkdir pd2 createan empty work directory
cd pd2 changedirectory
demo('pd2') copy the demo�les to the work directory
run(c='pd2.1') time integration towards stationary state
sv('1') save output-�les as b.1, s.1,d.1
run(c='pd2.2',s='1') continuation of stationary states; read

restart data from s.1. constants changed:
IPS, IRS, ICP, etc.

sv('2') save output-�les as b.2, s.2,d.2

Table 11.2: Commandsfor running demo pd2.

115

11.3 wav : Periodic Waves.

This demoillustrates the computation of various periodic wave solutions to a systemof coupled
parabolic partial di�eren tial equationson the spatial interval [0,1]. The equations, that model
an enzymecatalyzedreaction (Doedel& Kern�evez (1986b)) are :

∂u1/∂t = ∂2u1/∂x
2 � p1

[

p4R(u1, u2) � (p2 � u1)
]

,
∂u2/∂t = β∂2u2/∂x

2 � p1

[

p4R(u1, u2) � p7(p3 � u2)
]

.
(11.2)

All equation parameters,exceptp3, are �xed throughout.

AUTO -COMMAND ACTION
! mkdir wav createan empty work directory
cd wav changedirectory
demo('wav') copy the demo�les to the work directory
run(c='wav.1') 1st run; stationary solutions of the systemwithout di�usion
sv('ode') save output-�les as b.ode, s.ode, d.ode
cp c.wav.2 c.wav constants changed: IPS
run(c='wav.2',s='wav ') 2nd run; detect bifurcations to wave train

solutions. Constants changed: IPS

sv('wav') save output-�les as b.wav, s.wav, d.wav
run(c='wav.3',s='wav ') 3rd run; wave train solutionsof �xed wave

speed. Constants changed: IRS, IPS,
NUZR,ILP

ap('wav') append output-�les to b.wav, s.wav, d.wav
run(c='wav.4',s='wav ') 4th run; wave train solutionsof �xed wave

length. Constants changed: IRS, IPS,
NMX,ICP, NUZR

sv('rng') save output-�les as b.rng, s.rng,d.rng
run(c='wav.5',s='wav ') 5th run; time evolution computation. Con-

stants changed: IPS, NMX,NPR, ICP

sv('tim') save output-�les as b.tim, s.tim, d.tim

Table 11.3: Commandsfor running demo wav.

116

11.4 brc : Chebyshev Collocation in Space.

This demoillustrates the computation of stationary solutionsand periodic solutionsto systemsof
parabolic PDEs in onespacevariable, using Chebyshevcollocation in space.More precisely, the
approximate solution is assumedof the form u(x, t) =

∑n+1
k=0 uk(t)`k(x). Here uk(t) corresponds

to u(xk, t) at the Chebyshevpoints
{

xk

}n

k=1
with respect to the interval [0,1]. The polynomials

{

`k(x)
}n+1

k=0
are the Lagrange interpolating coe�cien ts with respect to points

{

xk

}n+1

k=0
, where

x0 = 0 and xn+1 = 1. The number of Chebyshev points in [0,1], as well as the number of
equationsin the PDE system,can be set by the user in the �le brc.inc.

As an illustrativ e application we consider the Brusselator (Holodniok, Knedlik & Kub���cek
(1987))

ut = Dx/L
2uxx + u2v � (B + 1)u + A,

vt = Dy/L
2vxx � u2v + Bu,

(11.3)

with boundary conditions u(0, t) = u(1, t) = A and v(0, t) = v(1, t) = B/A.
Note that, given the non-adaptive spatial discretization, the computational procedurehere is

not appropriate for PDEs with solutions that rapidly vary in space,and care must be taken to
recognizespurioussolutions and bifurcations.

AUTO -COMMAND ACTION
! mkdir brc createan empty work directory
cd brc changedirectory
demo('brc') copy the demo�les to the work directory
run(c='brc.1') compute the stationary solution branch with Hopf bifurcations
sv('brc') save output-�les as b.brc, s.brc, d.brc
run(c='brc.2',s='brc') compute a branch of periodic solutions

from the �rst Hopf point. Constants
changed: IRS, IPS

ap('brc') append the output-�les to b.brc, s.brc, d.brc
run(c='brc.3',s='brc') compute a solution branch from a sec-

ondary periodic bifurcation. Constants
changed: IRS, ISW

ap('brc') append the output-�les to b.brc, s.brc, d.brc

Table 11.4: Commandsfor running demo brc.

117

11.5 brf : Finite Differences in Space.

This demoillustrates the computation of stationary solutionsand periodic solutionsto systemsof
parabolic PDEs in onespacevariable. A fourth order accurate�nite di�erence approximation is
usedto approximate the secondorder spacederivatives. This reducesthe PDE to an autonomous
ODE of �xed dimensionwhich AUTO is capableof treating. The spatial meshis uniform; the
number of meshintervals, as well as the number of equationsin the PDE system,can be set by
the user in the �le brf.inc.

As an illustrativ e application we consider the Brusselator (Holodniok, Knedlik & Kub���cek
(1987))

ut = Dx/L
2uxx + u2v � (B + 1)u + A,

vt = Dy/L
2vxx � u2v + Bu,

(11.4)

with boundary conditions u(0, t) = u(1, t) = A and v(0, t) = v(1, t) = B/A.
Note that, given the non-adaptive spatial discretization, the computational procedurehere is

not appropriate for PDEs with solutions that rapidly vary in space,and care must be taken to
recognizespurioussolutions and bifurcations.

AUTO -COMMAND ACTION
! mkdir brf createan empty work directory
cd brf changedirectory
demo('brf') copy the demo�les to the work directory
run(c='brf.1') compute the stationary solution branch with Hopf bifurcations
sv('brf') save output-�les as b.brf, s.brf, d.brf
run(c='brf.2',s='brf') compute a branch of periodic solutions

from the �rst Hopf point. Constants
changed: IRS, IPS

ap('brf') append the output-�les to b.brf, s.brf, d.brf
run(c='brf.3',s='brf') compute a solution branch from a sec-

ondary periodic bifurcation. Constants
changed: IRS, ISW

ap('brf') append the output-�les to b.brf, s.brf, d.brf

Table 11.5: Commandsfor running demo brf.

118

11.6 bru : Euler Time Integration (the Brusselator).

This demoillustrates the useof Euler's method for time integration of a nonlinearparabolic PDE.
The exampleis the Brusselator(Holodniok, Knedlik & Kub���cek (1987)), given by

ut = Dx/L
2uxx + u2v � (B + 1)u + A,

vt = Dy/L
2vxx � u2v + Bu,

(11.5)

with boundary conditions u(0, t) = u(1, t) = A and v(0, t) = v(1, t) = B/A. All parametersare
given �xed valuesfor which a stable periodic solution is known to exist.

The continuation parameteris the independent time variable, namely PAR(14). The AUTO -
constants DS, DSMIN, and DSMAXthen control the step size in space-time,here consisting of
PAR(14) and (u(x), v(x)). Initial data at time zero are u(x) = A � 0.5sin(πx) and v(x) =
B/A+ 0.7sin(πx). Note that in the subroutine stpn t the spacederivativesof u and v must also
be provided; seethe equations-�le bru.c.

Euler time integration is only �rst order accurate,so that the time step must be su�cien tly
small to ensurecorrect results. This option has beenadded only as a convenience,and should
generallybe usedonly to locate stationary states. Indeed, in the caseof the asymptotic periodic
state of this demo,the number of required stepsis very large and useof a better time integrator
is advisable.

AUTO -COMMAND ACTION
! mkdir bru createan empty work directory
cd bru changedirectory
demo('bru') copy the demo�les to the work directory
run(c='bru.1') time integration
sv('bru') save output-�les as b.bru, s.bru, d.bru

Table 11.6: Commandsfor running demo bru.

119

Chapter 12

A UTO Demos : Optimization.

120

12.1 opt : A Model Algebraic Optimization Problem.

This demoillustrates the method of successivecontinuation for constrainedoptimization problems
by applying it to the following simple problem : Find the maximum sum of coordinates on the
unit spherein R5. Coordinate 1 is treated as the state variable. Coordinates 2-5 are treated as
control parameters. For details on the successive continuation procedureseeDoedel, Keller &
Kern�evez (1991a), Doedel,Keller & Kern�evez (1991b).

AUTO -COMMAND ACTION
! mkdir opt createan empty work directory
cd opt changedirectory
demo('opt') copy the demo�les to the work directory
run(c='opt.1') one free equation parameter
sv('1') save output-�les as b.1, s.1,d.1
run(c='opt.2',s='1') two free equation parameters;read restart

data from s.1. Constants changed: IRS

sv('2') save output-�les as b.2, s.2,d.2
run(c='opt.3',s='2') three free equation parameters; read

restart data from s.2. Constants changed
: IRS

sv('3') save output-�les as b.3, s.3,d.3
run(c='opt.4',s='3') four freeequationparameters;read restart

data from s.3. Constants changed: IRS

sv('4') save output-�les as b.4, s.4,d.4

Table 12.1: Commandsfor running demo opt.

121

12.2 ops : Optimization of Periodic Solutions.

This demo illustrates the method of successive continuation for the optimization of periodic
solutions. For a detailed description of the basicmethod seeDoedel,Keller & Kern�evez(1991b).
The illustrativ e systemof autonomousODEs, taken from Rodr��guez-Luis(1991), is

x′(t) = [� λ4(x3/3 � x) + (z � x)/λ2 � y]/λ1,
y′(t) = x � λ3,
z′(t) = � (z � x)/λ2,

(12.1)

with objective functional

ω =
∫ 1

0

g(x, y, z;λ1, λ2, λ3, λ4) dt,

where g(x, y, z;λ1, λ2, λ3, λ4) � λ3. Thus, in this application, a one-parameterextremum of g
corresponds to a fold with respect to the problem parameter λ3, and multi-parameter extrema
correspond to generalizedfolds. Note that, in general,the objective functional is an integral along
the periodic orbit, so that a variety of optimization problemscan be addressed.

For the caseof periodic solutions, the extendedoptimalit y systemcan be generatedautomat-
ically, i.e., one needonly de�ne the vector �eld and the objective functional, as in done in the
�le ops.c. For referencepurposeit is convenient here to write down the full extendedsystemin
its generalform :

u′(t) = Tf
(

u(t), λ
)

, T 2 R (period), u(�), f (�, �) 2 Rn, λ 2 Rnλ,

w′(t) = � Tfu

(

u(t), λ
)∗
w(t) + κu′0(t) + γgu

(

u(t), λ
)∗
, w(�) 2 Rn, κ, γ 2 R,

u(1) � u(0) = 0, w(1) � w(0) = 0,

∫ 1

0
u(t)∗u′0(t) dt = 0,

∫ 1

0
ω � g

(

u(t), λ
)

dt = 0,

∫ 1

0
w(t)∗w(t) + κ2 + γ2 � α dt = 0, α 2 R,

∫ 1

0
f
(

u(t), λ
)∗
w(t) � γgT

(

u(t), λ
)

� τ0 dt = 0, τ0 2 R,

∫ 1

0
Tfλi

(

u(t), λ
)∗
w(t) � γgλi

(

u(t), λ
)

� τi dt = 0, τi 2 R, i = 1, � � � , nλ.

(12.2)

Above u0 is a referencesolution, namely, the previoussolution along a solution branch.

122

In the computationsbelow, the two preliminary runs, with IPS=1 and IPS=2, respectively,
locateperiodic solutions. The subsequent runs arewith IPS=15 and henceusethe automatically
generatedextendedsystem.

- Run 1. Locate a Hopf bifurcation. The free systemparameter is λ3.

- Run 2. Compute a branch of periodic solutions from the Hopf bifurcation.

- Run 3. This run retracespart of the periodic solution branch, using the full optimalit y
system,but with all adjoint variables,w(�), κ, γ, and henceα, equalto zero. The optimalit y
parametersτ0 and τ3 are zero throughout. An extremum of the objective functional with
respect to λ3 is located. Such a point corresponds to a branch point of the extended
system. Given the choiceof objective functional in this demo,this extremum is alsoa fold
with respect to λ3.

- Run 4. Branch switching at the above-found branch point yields nonzerovalues of the
adjoint variables. Any point on the bifurcating branch away from the branch point can
serve as starting solution for the next run. In fact, the branch-switching can be viewed
as generatinga nonzeroeigenvector in an eigenvalue-eigenvector relation. Apart from the
adjoint variables,all other variablesremain unchangedalong the bifurcating branch.

- Run 5. The above-foundstarting solution is continued in two systemparameters,hereλ3

and λ2; i.e., a two-parameterbranch of extremawith respect to λ3 is computed. Along this
branch the valueof the optimalit y parameterτ2 is monitored, i.e., the valueof the functional
that vanishesat an extremum with respect to the systemparameterλ2. Such a zeroof τ2 is,
in fact, located,and hencean extremum of the objective functional with respect to both λ2

and λ3 hasbeenfound. Note that, in general,τi is the value of the functional that vanishes
at an extremum with respect to the systemparameterλi.

- Run 6. In the �nal run, the above-found two-parameterextremum is continued in three
systemparameters,hereλ1, λ2, and λ3, toward λ1 = 0. Again, given the particular choice
of objective functional, this �nal continuation has an alternate signi�cance here : it also
represents a three-parameterbranch of transcritical secondaryperiodic bifurcations points.

Although not illustrated here,onecan restart an ordinary continuation of periodic solutions,
using IPS=2 or IPS=3, from a labeledsolution point on a branch computedwith IPS=15.

123

The freescalarvariablesspeci�ed in the AUTO constants-�les for Run 3 and Run 4 areshown
in Table 12.2.

Index 3 11 12 22 -22 -23 -31
Variable λ3 T α τ2 [λ2] [λ3] [T]

Table 12.2: Runs 3 and 4 (�les c.ops.3and c.ops.4).

The parameterα, which is the norm of the adjoint variables,becomesnonzeroafter branch
switching in Run 4. The negative indices(-22, -23, and -31) set the active optimalit y functionals,
namely for λ2, λ3, and T , respectively, with corresponding variables τ2, τ3, and τ0, respectively.
Theseshould be set in the �rst run with IPS=15 and remain unchangedin all subsequent runs.

Index 3 2 11 22 -22 -23 -31
Variable λ3 λ2 T τ2 [λ2] [λ3] [T]

Table 12.3: Run 5 (�le c.ops.5).

In Run 5 the parameterα, which has beenreplacedby λ2, remains �xed and nonzero. The
variable τ2 monitors the value of the optimalit y functional associated with λ2. The zero of τ2
located in this run signalsan extremum with respect to λ2.

Index 3 2 1 11 -22 -23 -31
Variable λ3 λ2 λ1 T [λ2] [λ3] [T]

Table 12.4: Run 6 (�le c.ops.6).

In Run 6 τ2, which hasbeenreplacedby λ1, remainszero.
Note that τ0 and τ3 arenot usedasvariablesin any of the runs; in fact, their valuesremainzero

throughout. Also note that the optimalit y functionalscorresponding to τ0 and τ3 (or, equivalently,
to T and λ3) are active in all runs. This set-up allows the detection of the extremum of the
objective functional, with T and λ3 as scalar equation parameters,as a bifurcation in the third
run.

The parameter λ4, and its corresponding optimalit y variable τ4, are not used in this demo.
Also, λ1 is usedin the last run only, and its corresponding optimalit y variable τ1 is never used.

124

AUTO -COMMAND ACTION
! mkdir ops createan empty work directory
cd ops changedirectory
demo('ops') copy the demo�les to the work directory
run(c='ops.1') locate a Hopf bifurcation
sv('0') save output-�les as b.0, s.0,d.0
run(c='ops.2',s='0') compute a branch of periodic solutions;

restart from s.0. Constants changed :
IPS, IRS, NMX,NUZR

ap('0') append the output-�les to b.0, s.0,d.0
run(c='ops.3',s='0') locate a 1-parameter extremum as a bi-

furcation; restart from s.0. Constants
changed: IPS, IRS, ICP, � � �

sv('1') save the output-�les as b.1, s.1,d.1
run(c='ops.4',s='1') switch branches to generate optimalit y

starting data; restart from s.1. Constants
changed: IRS, ISP, ISW, NMX

ap('1') append the output-�les to b.1, s.1,d.1
run(c='ops.5',s='1') compute 2-parameter branch of 1-

parameter extrema; restart from s.1.
Constants changed : IRS, ISW, ICP,
ISW, � � �

sv('2') save the output-�les as b.2, s.2,d.2
run(c='ops.6',s='2') compute 3-parameter branch of 2-

parameter extrema; restart from s.2.
Constants changed: IRS, ICP, EPSL,
EPSU,NUZR

sv('3') save the output-�les as b.3, s.3,d.3

Table 12.5: Commandsfor running demo ops.

125

12.3 obv : Optimization for a BVP.

This demo illustrates use of the method of successive continuation for a boundary value opti-
mization problem. A detailed description of the basic method, as well as a discussionof the
speci�c application consideredhere, is given in Doedel,Keller & Kern�evez(1991b). The required
extendedsystemis fully programmedherein the user-suppliedsubroutinesin obv.c. For the case
of periodic solutions the optimalit y systemcan be generatedautomatically; seethe demo ops.

Considerthe system
u′1(t) = u2(t),
u′2(t) = � λ1e

p(u1 ,λ2 ,λ3),
(12.3)

wherep(u1, λ2, λ3) � u1 + λ2u
2
1 + λ3u

4
1, with boundary conditions

u1(0) = 0,
u1(1) = 0.

(12.4)

The objective functional is

ω =
∫ 1

0

(u1(t) � 1)2 dt +
1
10

3
∑

k=1

λ2
k.

The successive continuation equationsare given by

u′1(t) = u2(t),
u′2(t) = � λ1e

p(u1 ,λ2 ,λ3),
w′

1(t) = λ1e
p(u1 ,λ2 ,λ3)pu1w2(t) + 2γ(u1(t) � 1),

w′
2(t) = � w1(t),

(12.5)

where

pu1 �
∂p

∂u1

= 1 + 2λ2u1 + 4λ3u
3
1,

with
u1(0) = 0, w1(0) � β1 = 0, w2(0) = 0,
u1(1) = 0, w1(1) + β2 = 0, w2(1) = 0,

(12.6)

∫ 1

0

[

ω � (u1(t) � 1)2 �
1
10

3
∑

k=1

λ2
k

]

dt = 0,

∫ 1

0

[

w2
1(t) � α0

]

dt = 0,

∫ 1

0

[

� ep(u1 ,λ2 ,λ3)w2(t) � 1
5
γλ1

]

dt = 0,
∫ 1

0

[

� λ1e
p(u1 ,λ2 ,λ3)u1(t)2w2(t) � 1

5
γλ2 � τ2

]

dt = 0,
∫ 1

0

[

� λ1e
p(u1 ,λ2 ,λ3)u1(t)4w2(t) � 1

5
γλ3 � τ3

]

dt = 0.
(12.7)

In the �rst run the free equation parameter is λ1. All adjoint variables are zero. Three
extrema of the objective function are located. These correspond to branch points and, in the
secondrun, branch switching is done at one of these. Along the bifurcating branch the adjoint

126

variables becomenonzero,while state variables and λ1 remain constant. Any such non-trivial
solution point can be usedfor continuation in two equation parameters,after �xing the L2-norm
of oneof the adjoint variables. This is done in the third run. Along the resulting branch several
two-parameterextremaare locatedby monotoring certain inner products. Oneof theseis further
continued in three equation parametersin the �nal run, where a three-parameterextremum is
located.

AUTO -COMMAND ACTION
! mkdir obv createan empty work directory
cd obv changedirectory
demo('obv') copy the demo�les to the work directory
run(c='obv.1') locate 1-parameterextrema as branch points
sv('obv') save output-�les as b.obv,s.obv,d.obv
run(c='obv.2',s='obv') computea few step on the �rst bifurcating

branch. Constants changed: IRS, ISW,
NMX

sv('1') save the output-�les as b.1, s.1,d.1
run(c='obv.3',s='1') locate2-parameterextremum; restart from

s.1. Constants changed : IRS, ISW,
NMX,ICP(3)

sv('2') save the output-�les as b.2, s.2,d.2
run(c='obv.4',s='2') locate3-parameterextremum; restart from

s.2. Constants changed: IRS, ICP(4)

sv('3') save the output-�les as b.3, s.3,d.3

Table 12.6: Commandsfor running demo obv.

127

Chapter 13

A UTO Demos : Connecting orbits.

128

13.1 fsh : A Saddle-Node Connection.

This demoillustrates the computation of travelling wave front solutions to the Fisher equation,

wt = wxx + f (w), �1 < x < 1 , t > 0,
f (w) � w(1 � w).

(13.1)

We look for solutions of the form w(x, t) = u(x + ct), wherec is the wave speed. This givesthe
�rst order system

u′1(z) = u2(z),
u′2(z) = cu2(z) � f

(

u1(z)
)

.
(13.2)

Its �xed point (0,0) has two positive eigenvalueswhen c > 2. The other �xed point, (1,0), is a
saddlepoint. A branch of orbits connectingthe two �xed points requiresonefree parameter;see
Friedman & Doedel (1991). Here we take this parameter to be the wave speedc.

In the �rst run a starting connectingorbit is computedby continuation in the period T . This
procedurecan be usedgenerally for time integration of an ODE with AUTO . Starting data in
stpn t correspond to a point on the approximate stable manifold of (1,0), with T small. In this
demo the \free" end point of the orbit necessaryapproaches the unstable �xed point (0,0). A
computedorbit with su�cien tly largeT is then chosenas restart orbit in the secondrun, where,
typically, one replacesT by c as continuation parameter. However, in the secondrun below, we
alsoadd a phasecondition, and both c and T remain free.

AUTO -COMMAND ACTION
! mkdir fsh createan empty work directory
cd fsh changedirectory
demo('fsh') copy the demo�les to the work directory
run(c='fsh.1') continuation in the period T , with c �xed; no phasecondition
sv('0') save output-�les as b.0, s.0,d.0
run(c='fsh.2',s='0') continuation in c and T , with active phase

condition. Constants changed : IRS,
ICP, NINT, DS

sv('fsh') save output-�les as b.fsh,s.fsh,d.fsh

Table 13.1: Commandsfor running demo fsh.

129

13.2 nag : A Saddle-Saddle Connection.

This demoillustrates the computation of traveling wave front solutions to Nagumo'sequation,

wt = wxx + f (w, a), �1 < x < 1 , t > 0,
f (w, a) � w(1 � w)(w � a), 0< a < 1.

(13.3)

We look for solutions of the form w(x, t) = u(x + ct), wherec is the wave speed. This givesthe
�rst order system

u′1(z) = u2(z),
u′2(z) = cu2(z) � f

(

u1(z), a
)

,
(13.4)

where z = x + ct, and ′ = d/dz. If a = 1/2 and c = 0 then there are two analytically known
heteroclinic connections,oneof which is given by

u1(z) =
e

1
2

√
2z

1 + e
1
2

√
2z
, u2(z) = u′1(z), �1 < z < 1 .

The secondheteroclinic connectionis obtained by re
ecting the phaseplanerepresentation of the
�rst with respect to the u1-axis. In fact, the two connectionstogether constitute a heteroclinic
cycle. One of the exact solutions is usedbelow as starting orbit. To start from the secondexact
solution, changeSIGN=-1 in the subroutine stpn t in nag.cand repeat the computationsbelow;
seealsoFriedman & Doedel (1991).

AUTO -COMMAND ACTION
! mkdir nag createan empty work directory
cd nag changedirectory
demo('nag') copy the demo�les to the work directory
run(c='nag.1') computepart of �rst branch of heteroclinic orbits
sv('nag') save output-�les as b.nag,s.nag,d.nag
run(c='nag.2',s='nag ') compute�rst branch in oppositedirection.

Constants changed: DS

ap('nag') append output-�les to b.nag,s.nag,d.nag

Table 13.2: Commandsfor running demo nag.

130

13.3 stw : Continuation of Sharp Traveling Waves.

This demoillustrates the computation of sharptravelingwavefront solutionsto nonlineardi�usion
problemsof the form

wt = A(w)wxx + B(w)w2
x + C(w),

with A(w) = a1w+ a2w
2, B(w) = b0+ b1w+ b2w2, andC(w) = c0+ c1w+ c2w2. Such equationscan

have sharp traveling wave fronts assolutions, i.e., solutionsof the form w(x, t) = u(x+ ct)
for which there is a z0 such that u(z) = 0 for z � z0, u(z) 6= 0 for z < z0, and u(z) ! constant as
z ! �1 . Thesesolutionsare actually generalizedsolutions,sincethey neednot be di�eren tiable
at z0.

Speci�cally, in this demoa homotopy path will be computedfrom an analytically known exact
sharp traveling wave solution of

(1) wt = 2wwxx + 2w2
x + w(1 � w),

to a corresponding sharp traveling wave of

(2) wt = (2w + w2)wxx + ww2
x + w(1 � w).

This problem is alsoconsideredin Doedel,Keller & Kern�evez(1991b). For thesetwo specialcases
the functionsA,B,C are de�ned by the coe�cien ts in Table 13.3.

a1 a2 b0 b1 b2 c0 c1 c2
Case(1) 2 0 2 0 0 0 1 -1
Case(2) 2 1 0 1 0 0 1 -1

Table 13.3: Problem coe�cien ts in demo stw.

With w(x, t) = u(x + ct), z = x + ct, oneobtains the reducedsystem

u′1(z) = u2,
u′2(z) =

[

cu2 � B(u1)u2
2 � C(u1)

]

/A(u1).
(13.5)

To remove the singularity when u1 = 0, we apply a nonlinear transformation of the independent
variable (seeAronson (1980)), viz., d/d~z = A(u1)d/dz, which changesthe above equation into

u′1(~z) = A(u1)u2,
u′2(~z) = cu2 � B(u1)u2

2 � C(u1).
(13.6)

Sharp traveling wavesthen correspond to heteroclinic connectionsin this transformedsystem.

131

Finally, we map [0, T] ! [0,1] by the transformation ξ = ~z/T . With this scaling of the
independent variable, the reducedsystembecomes

u′1(ξ) = TA(u1)u2,
u′2(ξ) = T

[

cu2 � B(u1)u2
2 � C(u1)

]

.
(13.7)

For Case1 this equation hasa known exact solution, namely,

u(ξ) =
1

1 + exp(Tξ)
, v(ξ) =

� 1
2

1 + exp(� Tξ)
.

This solution has wave speedc = 1. In the limit as T ! 1 its phaseplane tra jectory connects
the stationary points (1,0) and (0, � 1

2
).

The sharp traveling wave in Case2 can now be obtained using the following homotopy. Let
(a1, a2, b0, b1, b2) = (1 � λ)(2,0,2,0,0) + λ(2,1,0,1,0). Then as λ varies continuously from 0 to
1, the parameters(a1, a2, b0, b1, b2) vary continously from the valuesfor Case1 to the valuesfor
Case2.

AUTO -COMMAND ACTION
! mkdir stw createan empty work directory
cd stw changedirectory
demo('stw') copy the demo�les to the work directory
run(c='stw.1') continuation of the sharp traveling wave
sv('stw') save output-�les as b.stw, s.stw, d.stw

Table 13.4: Commandsfor running demo stw.

132

Chapter 14

A UTO Demos : Miscellaneous.

133

14.1 pvl : Use of the Subroutine pvls.

ConsiderBratu's equation
u′1 = u2,
u′2 = � p1e

u1 ,
(14.1)

with boundary conditions u1(0) = 0, u1(1) = 0. As in demo exp, a solution curve requiresone
free parameter;herep1.

Note that additional parametersare speci�ed in the user-suppliedsubroutine pvls in �le
pvls.c, namely, p2 (the L2-norm of u1), p3 (the minimum of u2 on the space-interval [0,1]), p4

(the boundary value u2(0)). These additional parametersshould be consideredas \solution
measures"for output purposes;they should not be treated as true continuation parameters.

Note alsothat four freeparametersare speci�ed in the AUTO -constants �le c.pvl.1, namely,
p1, p2, p3, and p4. The �rst onein this list, p1, is the true continuation parameter. The parameters
p2, p3, and p4 are overspecified so that their valueswill appear in the output. However, it is
essential that the true continuation parameter appear first. For example,it would be an error to
specify the parametersin the following order : p2, p1, p3, p4.

In general,true continuation parametersmust appear �rst in the parameter-speci�cation in
the AUTO constants-�le. Overspeci�ed parameterswill be printed, and can be de�ned in pvls ,
but they are not part of the intrinsic continuation procedure.

As this demo also illustrates (seethe UZRvalues in c.pvl.1), labeled solutions can also be
output at selectedvaluesof the overspeci�ed parameters.

AUTO -COMMAND ACTION
! mkdir pvl createan empty work directory
cd pvl changedirectory
demo('pvl') copy the demo�les to the work directory
run(c='pvl.1') computea solution branch
sv('pvl') save output-�les as b.pvl, s.pvl,d.pvl

Table 14.1: Commandsfor running demo pvl.

134

14.2 ext : Spurious Solutions to BVB.

This demoillustrates the computation of spurioussolutions to the boundary value problem

u′1 � u2 = 0,
u′2 + λ2π2 sin(u1 + u2

1 + u3
1) = 0, t 2 [0,1],

u1(0) = 0, u1(1) = 0.
(14.2)

Here the di�eren tial equation is discretizedusing a �xed uniform mesh. This results in spurious
solutions that disappear when an adaptive mesh is used. Seethe AUTO -constant IAD in
Section 5.3. This example is also consideredin Beyn & Doedel (1981) and Doedel, Keller &
Kern�evez (1991b).

AUTO -COMMAND ACTION
! mkdir ext createan empty work directory
cd ext changedirectory
demo('ext') copy the demo�les to the work directory
run(c='ext.1') detect bifurcations from the trivial solution branch
sv('ext') save output-�les as b.ext, s.ext,d.ext
run(c='ext.2',s='ext') compute a bifurcating branch containing

spurious bifurcations. Constants changed
: IRS, ISW, NUZR

ap('ext') append output-�les to b.ext, s.ext,d.ext

Table 14.2: Commandsfor running demo ext.

135

14.3 tim : A Test Problem for Timing AUTO .

This demo is a boundary value problem with variable dimension NDIM. It can be usedto time
the performanceof AUTO for various choicesof NDIM(which must be even), NTST, and NCOL.
The equationsare

u′i = ui,
v′i = � p1 e(ui),

(14.3)

i = 1, � � � , NDIM/2, with boundary conditions ui(0) = 0, ui(1) = 0. Here

e(u) =
n
∑

k=0

uk

k!
,

with n = 25. The computation requires10 full LU -decompositions of the linearizedsystemthat
arisesfrom Newton's method for solving the collocation equations. The commandsfor running
the timing problem for a particular choice of NDIM, NTST, and NCOLare given below. (Note
that if NDIMis changedthen NBCmust be changedaccordingly.)

AUTO -COMMAND ACTION
! mkdir tim createan empty work directory
cd tim changedirectory
demo('tim') copy the demo�les to the work directory
run(c='tim.1') Timing run
sv('tim') save output-�les as b.tim, s.tim, d.tim

Table 14.3: Commandsfor running demo tim.

136

Chapter 15

HomCon t.

15.1 Introduction.

HomCont is a collection of subroutinesfor the continuation of homoclinic solutions to ODEs in
two or more parameters. The accurate detection and multi-parameter continuation of certain
codimension-two singularities is allowed for, including all known casesthat involve a unique
homoclinic orbit at the singular point. Homoclinic connectionsto hyperbolic and non-hyperbolic
equilibria areallowedasarecertain heteroclinic orbits. Homoclinic orbits in reversiblesystemscan
alsobe computed. The theory behind the methods usedis explainedin Champneys& Kuznetsov
(1994),Bai & Champneys(1996),Sandstede(1995b, 1995c), Champneys,Kuznetsov & Sandstede
(1996) and referencestherein. The �nal cited paper contains a concisedescription of the present
version.

The current implementation of HomCont must be consideredas experimental, and updates
are anticipated. The HomCont subroutinesare in the �le auto/2000/src/autlib5.c. Expert users
wishing to modify the routines may look there. Note also that at present, HomCont can be run
only in AUTO CommandMode and not with the GUI.

15.2 HomCont Files and Subroutines.

In order to run HomCont one must prepare an equations�le xxx.c, where xxx is the name of
the example, and two constants-�les c.xxx and h.xxx. The �rst two of these �les are in the
standard AUTO format, whereasthe h.xxx�le contains constants that are speci�c to homoclinic
continuation. The choice IPS=9 in c.xxxspeci�es the problemasbeinghomoclinic continuation,
in which case h.xxx is required.

The equation-�le kpr.c servesasa samplefor newequation�les. It contains the C subroutines
func , stpn t , pvls , bcnd , icnd and fopt . The �nal three are dummy subroutineswhich
are never neededfor homoclinic continuation. Note a minor di�erence in stpn t and pvls with
other AUTO equation-�les, in that the commonblock /BLHOM/is required.

The constants-�le c.xxx is identical in format to other AUTO constants-�les. Note that the
values of the constants NBCand NINT are irrelevant, as these are set automatically by the
choice IPS=9. Also, the choice JAC=1is strongly recommended,becausethe Jacobianis used
extensively for calculating the linearization at the equilibria and hencefor evaluating boundary

137

conditions and certain test functions. However, note that JAC=1doesnot necessarilymeanthat
auto will usethe analytically speci�ed Jacobianfor continuation.

15.3 HomCont-Constants.

An examplefor the additional �le h.xxx is listed below:

1 2 1 1 1 NUNSTAB,NSTAB,IEQUIB,ITWIST,ISTART
0 NREV,(/,I,IREV(I)),I= 1, NREV)
1 NFIXED,(/,I,IFIXED(I)), I= 1,NFIXED)

13
1 NPSI,(/,I,IPSI(I)),I= 1, NPSI)

9 10 13

The constants speci�ed in h.xxxhave the following meaning.

15.3.1 NUNSTAB

Number of unstable eigenvaluesof the left-hand equilibrium (the equilibrium approached by the
orbit as t ! �1).

15.3.2 NSTAB

Number of stable eigenvaluesof the right-hand equilibrium (the equilibrium approached by the
orbit as t ! + 1).

15.3.3 IEQUIB

- IEQUIB=0: Homoclinic orbits to hyperbolic equilibria; the equilibrium is speci�ed explicitly
in pvls and stored in PAR(11+I), I=1,NDIM.

- IEQUIB=1: Homoclinic orbits to hyperbolic equilibria; the equilibrium is solved for during
continuation. Initial values for the equilibrium are stored in PAR(11+I), I=1,NDIM in
stpn t .

- IEQUIB=2: Homoclinic orbits to a saddle-node; initial valuesfor the equilibrium are stored
in PAR(11+I), I=1,NDIM in stpn t .

- IEQUIB=-1: Heteroclinic orbits to hyperbolic equilibria; the equilibria are speci�ed explic-
itly in pvls and storedin PAR(11+I), I=1,NDIM(left-hand equilibrium) and PAR(11+I),
I=NDIM+1,2*NDIM(right-hand equilibrium).

- IEQUIB=-2: Heteroclinic orbits to hyperbolic equilibria; the equilibria are solved for during
continuation. Initial valuesare speci�ed in stpn t and stored in PAR(11+I), I=1,NDIM
(left-hand equilibrium), PAR(11+I), I=NDIM+1,2*NDIM(right-hand equilibrium).

138

15.3.4 ITWIST

- ITWIST=0: the orientation of the homoclinic orbit is not computed.

- ITWIST=1: the orientation of the homoclinic orbit is computed. For this purpose, the
adjoint variational equation is solved for the unique bounded solution. If IRS = 0, an
initial solution to the adjoint equation must be speci�ed as well. However, if IRS>0and
ITWIST has just been increasedfrom zero, then AUTO will automatically generatethe
initial solution to the adjoint. In this case,a dummy Newton-stepshouldbe performed,see
Section15.7 for more details.

15.3.5 ISTART

- ISTART=1: This option is obsoletein the current version. It may be usedas a
ag that
a solution is to be restarted from a previously computed point or from numerical data
converted into AUTO format using us. In this case IRS>0.

- ISTART=2: If IRS=0, an explicit solution must be speci�ed in the subroutine stpn t in the
usual format.

- ISTART=3: The \homotopy" approach is usedfor starting, seeSection15.7for moredetails.
Note that this is not available with the choice IEQUIB=2.

- ISTART=4: A phase-shiftis performed for homoclinic orbits to let the equilibrium (either
�xed or non-�xed, dependingon IEQUIB) correspond to t = 0 and t = 1. This is necessary
if a periodic orbit that is closeto a homoclinic orbit is continued into a homoclinic orbit.

- ISTART=-N,N = 1,2,3, . . . : Homoclinic branch switching: this description is for reference
only and we refer to Chapter 22 to seehow this can be used in actual practice and to
Oldeman,Champneys& B. (2001) for theory and background.

The orbit is split into N + 1 parts and AUTO seesit as an (N + 1)� NDIM-dimensional
object. The �rst part u0 goes from the equilibrium to the point x0 that is furthest from
the equilibrium. Then follow N � 1 shifted copiesof the orbit, which travel from the point
x0 back to the point x0. The last part UN goesfrom the point x0 back to the equilibrium.
The derivatives _x0 with respect to time of the point that is furthest from the equilibrium
are stored at the parameterspar[NPARX-NDIM...NPARX-1] .

If ITWIST=1, and this wasalsothe casein the precedingrun, then a copy of the adjoint vector
	 at x0 is storedat the parameterspar[NPARX-NDIM*2...NPARX-NDIM-1] and Lin's method
can be usedto do homoclinic branch switching. To be more precise,the individual parts ui

and ui+1 are at distancesεi away from each other, along the Lin vectorPsi, at the left- and
right-hand end points. Thesegapsεi are at parameterspar[19+2*i] . Moreover, each part
(exceptuN+1) endsat at a Poincar�e sectionwhich goesthrough x0 and is perpendicular to
_x0.

The times Ti that each part ui takesare stored as follows: T0 = par[9] , TN = par[10] and
Ti = par[18+2*i] for i = 1 . . . N � 1. Through a continuation in problem parameters,gaps
εi, and times Ti it is possibleto switch from a 1-homoclinic to an N -homoclinic orbit.

139

If ITWIST=0, the adjoint vector is not computed and Lin's method is not used. Instead,
AUTO producesa gap ε= par[21] at the right-hand end point p of uN+1, measuringthe
distancebetweenthe stable manifold of the equilibrium and p. This technique can alsobe
usedto �nd 2-homoclinic orbits, by varying in ε and T1, similar to the method described
before,but only if the unstable manifold in one-dimensional.Becausethis method is more
limited than the method using Lin vectors,we do not recommendit for normal usage.

To switch back to a normal homoclinic orbit, set ISTARTback to a positive value such as
1. Now HomCont has lost all the information about the adjoint, so if ITWISTis set to 0,
HomCont does a normal continuation without the adjoint, and if ITWISTis set to 1, one
needsto do a Newton dummy step �rst to recalculatethe adhoint.

15.3.6 NREV,IREV

If NREV=1then it is assumedthat the systemis reversibleunder the transformation t ! � t and
U (i) ! � U (i) for all i with IREV(i)>0 . Then only half the homoclinic solution is solved for with
right-hand boundary conditions specifying that the solution is symmetric under the reversibility
(see Champneys& Spence (1993)). The number of free parameters is then reduced by one.
Otherwise IREV=0.

15.3.7 NFIXED, IFIXED

Number and labels of test functions that are held �xed. E.g., with NFIXED=1onecan compute
a locus in oneextra parameterof a singularity de�ned by test function PSI(IFIXED(1))=0 .

15.3.8 NPSI, IPSI

Number and labels of activated test functions for detecting homoclinic bifurcations, seeSec-
tion 15.6for a list. If a test function is activated then the correspondingparameter(IPSI(I)+20)
must be addedto the list of continuation parameters NICP,(ICP(I),I=1 NICP)and zeroof this
parameteraddedto the list of user-de�ned output points NUZR, (/,I,PAR(I)),I=1, NUZRin
c.xxx.

15.4 Restrictions on HomCont Constants.

Note that certain combinations of theseconstants are not allowed in the present implementation.
In particular,

- The computation of orientation ITWIST=1is not implemented for IEQUIB<0(heteroclinic
orbits), IEQUIB=2(saddle-node homoclinics), IREV=1(reversible systems), ISTART=3
(homotopy method for starting), or if the equilibrium contains complex eigenvaluesin its
linearization.

- The homotopy method ISTART=3is not fully implemented for heteroclinic connections
IEQUIB<0, saddle-node homoclinic orbits IEQUIB=2or reversiblesystems IREV=1.

140

- Certain test functions are not valid for certain forms of continuation (see Section 15.6
below); for example PSI(13) and PSI(14) only make senseif ITWIST=1and PSI(15)
and PSI(16) only apply to IEQUIB=2.

15.5 Restrictions on the Use of PAR.

The parameters PAR(1) { PAR(9) can be used freely by the user. The other parametersare
usedas follows :

- PAR(11) : The value of PAR(11) equals the length of the time interval over which a
homoclinic solution is computed. Also referred to as \p eriod". This must be speci�ed in
stpn t .

- PAR(10) : If ITWIST=1then PAR(10) is used internally as a dummy parameter so that
the adjoint equation is well-posed.

- PAR(12)-PAR(20) : These are used for specifying the equilibria and (if ISTART=3) the
arti�cial parametersof the homotopy method (seeSection15.7below).

- PAR(21)-PAR(36) : These parameters are used for storing the test functions (see Sec-
tion 15.6).

The output is in an identical format to AUTO except that additional information at each
computed point is written in fort.9. This information comprisesthe eigenvalues of the (left-
hand) equilibrium, the values of each activated test function and, if ITWIST=1, whether the
saddlehomoclinic loop is orientable or not. Note that the statement about orientabilit y is only
meaningful if the leadingeigenvaluesare not complexand the homoclinic solution is not in a
ip
con�guration, that is, noneof the test functions ψi for i = 11,12,13,14 is zero(or closeto zero),
seeSection15.6. Finally, the valuesof the NPSIactivated test functions are written.

15.6 Test Functions.

Codimension-two homoclinic orbits are detected along branches of codim 1 homoclinics by lo-
cating zeroes of certain test functions ψi. The test functions that are \switc hed on" during
any continuation are given by the choice of the labels i, and are speci�ed by the parameters
NPSI,(/,I,IPSI(I)),I= 1, NPSI) in h.xxx. Here NPSIgivesthe number of activated test func-
tions and IPSI(1), . . .,IPSI(NPSI) give the labelsof the test functions (numbersbetween1 and
16). A zero of each labeled test function de�nes a certain codimension-two homoclinic singular-
it y, speci�ed as follows. The notation usedfor eigenvaluesis the sameas that in Champneys&
Kuznetsov (1994) or Champneyset al. (1996).

- i = 1: Resonant eigenvalues(neutral saddle);µ1 = � λ1.

- i = 2: Double real leading stable eigenvalues(saddleto saddle-focus transition); µ1 = µ2.

141

- i = 3: Double real leading unstableeigenvalues(saddleto saddle-focus transition);
λ1 = λ2.

- i = 4: Neutral saddle,saddle-focusor bi-focus (includes i = 1); Re(µ1) = � Re(λ1).

- i = 5: Neutrally-divergent saddle-focus (stable eigenvaluescomplex);
Re(λ1) = � Re(µ1) � Re(µ2).

- i = 6: Neutrally-divergent saddle-focus (unstable eigenvaluescomplex);
Re(µ1) = � Re(λ1) � Re(λ2).

- i = 7: Three leading eigenvalues(stable); Re(λ1) = � Re(µ1) � Re(µ2).

- i = 8: Three leading eigenvalues(unstable); Re(µ1) = � Re(λ1) � Re(λ2).

- i = 9: Local bifurcation (zero eigenvalue or Hopf): number of stable eigenvaluesdecreases;
Re(µ1) = 0.

- i = 10: Local bifurcation (zero eigenvalue or Hopf): number of unstable eigenvaluesde-
creases;Re(λ1) = 0.

- i = 11: Orbit
ip with respect to leading stable direction (e.g., 1D unstable manifold).

- i = 12: Orbit
ip with respect to leading unstable direction, (e.g., 1D stable manifold).

- i = 13: Inclination
ip with respect to stable manifold (e.g., 1D unstablemanifold).

- i = 14: Inclination
ip with respect to unstable manifold (e.g., 1D stable manifold).

- i = 15: Non-central homoclinic to saddle-node (in stable manifold).

- i = 16: Non-central homoclinic to saddle-node (in unstable manifold).

Expert usersmay wish to add their own test functions by editing the function PSIHOin
autlib5.c.

It is important to remember that, in order to specify activated test functions, it is required
to also add the corresponding label +20 to the list of continuation parameters and a zero of this
parameter to the list of user-defined output points. Having done this, the corresponding parameters
are output to the screen and zeros are accurately located.

15.7 Starting Strategies.

There are four possiblestarting proceduresfor continuation.

(i) Data can be read from a previously-obtainedoutput point from AUTO (e.g., from continu-
ation of a periodic orbit up to large period; note that if the end-point of the data stored is
not closeto the equilibrium, a phaseshift must be performedby setting ISTART=4). These
data can be read from fort.8 (saved to s.xxx) by making IRS correspond to the label of
the data point in question.

142

(ii) Data from numerical integration (e.g.,computation of a stableperiodic orbit, or an approx-
imate homoclinic obtained by shooting) can be read in from a data �le using the general
AUTO utilit y us (seeearlier in the manual). The numerical data shouldbe stored in a �le
xxx.dat, in multi-column format accordingto the read statement

READ(...,*) T(J),(U(I,J),I=1,NDI M)

whereT runs in the interval [0,1]. After running us the restart data is storedin the format
of a previously computedsolution in s.dat. When starting from this solution IRS should
be set to 1 and the value of ISTARTis irrelevant.

(iii) By setting ISTART=2, an explicit homoclinic solution canbe speci�ed in the routine stpn t
in the usual AUTO format, that is U = ...(T) whereT is scaledto lie in the interval[0,1].

(iv) The choice ISTART=3, allows for a homotopy method to be usedto approach a homoclinic
orbit starting from a small approximation to a solution to the linear problemin the unstable
manifold (Doedel,Friedman & Monteiro 1993). For details of implementation, the readeris
referredto Section5.1.2.of Champneys& Kuznetsov (1994), under the simpli�cation that
we do not solve for the adjoint u(t) here. The basic idea is to start with a small solution
in the unstable manifold, and perform continuation in PAR(11)=2T and dummy initial-
condition parametersξi in order to satisfy the correctright-hand boundaryconditions,which
are de�ned by zerosof other dummy parametersωi. More precisely, the left-hand end point
is placed in the tangent spaceto the unstable manifold of the saddleand is characterized
by NUNSTABcoordinates ξi satisfying the condition

ξ2
1 + ξ2

2 + . . . + ξ2
NUNSTAB

= ε20,

where ε0 is a user-de�ned small number. At the right-hand end point, NUNSTUBvaluesωi

measurethe deviation of this point from the tangent spaceto the stable manifold of the
saddle.

Supposethat IEQUIB=0,1and set IP=12+IEQUIB*NDIM. Then

PAR(IP) : ε0
PAR(IP+i) : ξi, i=1,2,...,NUNSTAB
PAR(IP+NUNSTAB+i): ωi, i=1,2,...,NUNSTAB

Note that to avoid interference with the test functions (i.e. PAR(21)-PAR(36)), one must
have IP+2*NUNSTAB< 21.

If an ωi is vanished,it can be frozenwhile another dummy or systemparameter is allowed
to vary in order to make consequently all ωi = 0. The resulting �nal solution gives the
initial homoclinic orbit provided the right-hand end point is su�cien tly closeto the saddle.
SeeChapter 18 for an example, however, we recommendthe homotopy method only for
\expert users".

143

To compute the orientation of a homoclinic orbit (in order to detect inclination-
ip bifur-
cations) it is necessaryto compute, in tandem, a solution to the modi�ed adjoint variational
equation, by setting ITWIST=1. In order to obtain starting data for such a computation when
restarting from a point where just the homoclinic is computed, upon increasing ITWISTto 1,
AUTO generatestrivial data for the adjoint. Becausethe adjoint equationsare linear, only a
singlestep of Newton's method is required to enablethesetrivial data to convergeto the correct
unique boundedsolution. This can be achieved by making a singlecontinuation step in a trivial
parameter (i.e. a parameter that doesnot appear in the problem).

Decreasing ITWISTto 0 automatically deletesthe data for the adjoint from the continuation
problem.

15.8 Notes on Running HomCont Demos.

HomCont demosaregiven in the following chapters. To copy all �les of a demo xxx(for example,
san), move to a cleandirectory and type demo(’xxx’). Simply typing make or make all will then
automatically executeall runs of the demo. At each step, the user is encouragedto plot the data
saved by using the commandplot (e.g., plot(’1’) plots the data saved in b.1 and s.1).

Of course,in a real application, the runs will not have beenpreparedin advance,and AUTO -
commandsmust be used. Such commandscan be found in a table at the end of each chapter. A
sequenceof detailed AUTO -commandswill be given in thesetables as illustrated in Table 15.1
and Table 15.2 for two representativ e runs of HomCont demo san.

The user is encouragedto copy the format of one of these demoswhen constructing new
examples.

The output of the HomCont demosreproducedin the following chaptersis somewhatmachine
dependent, as already noted in Section7.4. In exceptionalcircumstances,AUTO may reach its
maximum number of steps NMXbeforea certain output point, or the label of an output point may
change. In such casethe usermay have to makeappropriate changesin the AUTO constants-�les.

COMMAND ACTION
ld(’san’) load the problem de�tion
run(c=’san.1’,h=’san.1’) get the HomCont constants-�le and run AUTO /HomCont
sv(’6’) save output-�les as b.6, s.6,d.6

Table 15.1: An exampleof AUTO -Commands.

COMMAND ACTION
run(c=’san.9’,h=’san.9’,s=’6’) get the HomCont constants-�le and run

AUTO /HomCont; restart solution read
from s.6

ap(’6’) append output-�les to b.6, s.6,d.6

Table 15.2: Another exampleof AUTO -Commands.

144

Chapter 16

HomCon t Demo : san.

16.1 Sandstede’s Model.

Considerthe system(Sandstede1995a)

_x = a x + b y � a x2 + (~µ � α z) x (2 � 3x)
_y = b x + a y � 3

2
b x2 � 3

2
a x y � (~µ � α z) 2y

_z = c z + µx + γ x y + αβ (x2 (1 � x) � y2)
(16.1)

as given in the �le san.c. Choosing the constants appearing in (16.1) appropriately allows for
computing inclination and orbit
ips as well as non-orientable resonant bifurcations, see(Sand-
stede1995a) for details and proofs. The starting point for all calculations is a = 0, b = 1 where
there exists an explicit solution given by

(x(t), y(t), z(t)) =

(

1 �
(

1 � et

1 + et

)2

,4et 1 � et

(1 + et)3
,0

)

.

This solution is speci�ed in the routine stpn t .

16.2 Inclination Flip.

We start by copying the demoto the current work directory and running the �rst step

@dmsan
make first

This computation starts from the analytic solution above with a = 0, b = 1, c = � 2, α = 0, β = 1
and γ = µ = ~µ = 0. The homoclinic solution is followed in the parameters(a, ~µ) =(PAR(1),
PAR(8)) up to a = 0.25. The output is summarisedon the screenas

BR PT TY LAB PAR(1) L2-NORM PAR(8)
1 1 EP 1 0.000000E+00 4.000000E-01 ... 0.000000E+00
1 5 UZ 2 2.500000E-01 4.030545E-01 ... -3.620329E-11
1 10 EP 3 7.384434E-01 4.339575E-01 ... -9.038826E-09

145

and saved in more detail as b.1, s.1and d.1.
Next we want to add a solution to the adjoint equation to the solution obtained at a = 0.25.

This is achieved by making the change ITWIST = 1 saved in h.san.2, and IRS = 2, NMX=
2 and ICP(1) = 9 saved in c.san.2. We also disableany user-de�ned functions NUZR=0. The
computation so-de�ned is a singlestep in a trivial parameter PAR(9) (namely a parameterthat
does not appear in the problem). The e�ect is to perform a Newton step to enableAUTO to
convergeto a solution of the adjoint equation.

makesecond

The output is stored in b.2, s.2and d.2.
We can now continue the homoclinic plus adjoint in (α, ~µ) =(PAR(4), PAR(8)) by changing

the constants (stored in c.san.3) to read IRS = 4, NMX= 50 and ICP(1) = 4. We also add
PAR(10) to the list of continuation parameters NICP,(ICP(I),I=1 NICP). Here PAR(10) is a
dummy parameterusedin order to makethe continuation of the adjoint well posed.Theoretically,
it should be zero if the computation of the adjoint is successful(Sandstede1995a). The test
functions for detecting resonant bifurcations (ISPI(1)=1) and inclination
ips (ISPI(1)=13)
are alsoactivated. Recall that this shouldbe speci�ed in three ways. First we add PAR(21)and
PAR(33)to the list of continuation parametersin c.san.3, secondwe setup userde�ned output at
zerosof theseparametersin the same�le, and �nally we set NPSI=2 (IPSI(1),IPSI(2))=1,1 3
in h.san.3. We alsoadd to c.san.3another userzero for detecting when PAR(4)=1.0. Running

make third

readsstarting data from s.2and outputs to the screen

BR PT TY LAB PAR(4) ... PAR(8) PAR(10) ... PAR(33)
1 20 5 7.847219E-01 ... -3.001440E-11 -4.268884E-09 ... -1.441124E+01
1 27 UZ 6 1.000000E+00 ... -3.844872E-11 -4.460769E-09 ... -5.701675E+00
1 35 UZ 7 1.230857E+00 ... -5.833977E-11 -4.530541E-09 ... 9.434843E-06
1 40 8 1.383969E+00 ... -8.133899E-11 -4.671817E-09 ... 1.348810E+00
1 50 EP 9 1.695209E+00 ... -1.386324E-10 -5.098460E-09 ... 5.311065E-01

Full output is stored in b.3, s.3and d.3. Note that the arti�cial parameterε = PAR(10)is zero
within the allowed tolerance. At label 7, a zero of test function ψ13 has been detected which
correspondsto an inclination
ip with respect to the stablemanifold. That the orientation of the
homoclinic loop changesasthe branch passesthrough this point canbe readfrom the information
in d.3. However in d.3, the line

ORIENTABLE(0.2982090775D-03)

at PT=35would seemsto contradict the detectionof the inclination
ip at this point. Nonetheless,
the important fact is the zeroof the test function; and note that the valueof the variable indicating
the orientation is small comparedto its value at the other regular points. Data for the adjoint
equation at LAB=5, 7 and 9 at and on either sideof the inclination
ip are presented in Fig.
16.1. The switching of the solution betweencomponents of the leadingunstableleft eigenvector is
apparent. Finally, weremark that the Newton stepin the dummy parameter PAR(20)performed
above is crucial to obtain convergence.Indeed, if insteadwe try to continue the homoclinic orbit
and the solution of the adjoint equation directly by setting

146

ITWIST = 1 IRS = 2 NMX= 50 ICP(1) = 4 NPUSZR= 0

(as saved in c.san.4) and running

make fourth

we obtain a no convergenceerror.

16.3 Non-orientable Resonant Eigenvalues.

Inspecting the output saved in the third run, we observe the existenceof a non-orientable homo-
clinic orbit at label 7 corresponding to N=40. Werestart at this label, with the �rst continuation
parameterbeing onceagain a = PAR(1), by changingconstants and storing them in c.san.5ac-
cording to

IRS = 7 DS = -0.05D0 NMX= 20 ICP(1) = 1

Running,

make fifth

the output at label 10

BR PT TY LAB PAR(1) PAR(8) PAR(10) PAR(21)
1 8 UZ 10 -1.304570E-07 ... 3.874816E-12 -1.468457E-09 -2.609139E-07

indicates that AUTO has detecteda zero of PAR(21), implying that a non-orientable resonant
bifurcation occurred at that point.

16.4 Orbit Flip.

In this section we compute an orbit
ip. To this end we restart from the original explicit so-
lution, without computing the orientation. We begin by separatelyperforming continuation in
(α, ~µ), (β, ~µ), (a, ~µ), (b, ~µ) and (µ, ~µ) in order to reach the parameter values (a, b, α, β, µ) =
(0.5,3,1,0,0.25). The sequenceof continuations up to the desiredparametervaluesare run via

make sixth
make seventh
make eighth
make ninth
make tenth

with appropriate continuation parametersand user output valuesset in the corresponding �les
c.san.xx. All the output is saved to s.6.

The �nal saved point LAB=10contains a homoclinic solution at the desiredparametervalues.
From herewe perform continuation in the negative direction of (µ, ~µ) = (PAR(7),PAR(8)) with
the test function ψ11 for orbit
ips with respect to the stable manifold activated.

147

make eleventh

The output detectsan inclination
ip (by a zeroof PAR(31)) at PAR(7)=0

BR PT TY LAB PAR(7) ... PAR(8) PAR(31)
1 5 UZ 12 2.394737E-07 ... 6.434492E-08 -4.133994E-06

at which parametervalue the homoclinic orbit is contained in the (x, y)-plane (seeFig. 16.2).
Finally, we demonstratethat the orbit
ip can be continued as three parameters(PAR(6),

PAR(7), PAR(8)) are varied.

make twelfth

BR PT TY LAB PAR(7) ... PAR(8) PAR(6)
1 5 14 -5.374538E-19 ... -1.831991E-10 -3.250000E-01
1 10 15 -6.145911E-19 ... -2.628607E-10 -8.250001E-01
1 15 16 -4.947133E-19 ... -2.361151E-10 -1.325000E+00
1 20 EP 17 -5.792940E-19 ... -3.075527E-10 -1.825000E+00

The orbit
ip continuesto be de�ned by a planar homoclinic orbit at PAR(7)=PAR(8)=0.

148

16.5 Detailed AUTO -Commands.

AUTO -COMMAND ACTION
! mkdir san createan empty work directory
cd san changedirectory
demo('san') copy the demo�les to the work directory
run(c='san.1',h='san. 1') continuation in PAR(1)
sv('1') save output-�les as b.1, s.1,d.1
run(c='san.2',h='san. 2' ,s =' 1') generateadjoint variables;restart from s.1
sv('2') save output-�les as b.2, s.2,d.2
run(c='san.3',h='san. 3' ,s =' 2') continue homoclinic orbit and adjoint; restart from s.2
sv('3') save output-�les as b.3, s.3,d.3
run(c='san.4',h='san. 4' ,s =' 1') no convergencewithout dummy step; restart from s.1
sv('4') save output-�les as b.4, s.4,d.4
run(c='san.5',h='san. 5' ,s =' 3') continue non-orientable orbit; restart from s.3
sv('5') save output-�les as b.5, s.5,d.5

Table 16.1: Detailed AUTO -Commandsfor running demo san.

149

AUTO -COMMAND ACTION
run(c='san.6',h='san. 6' ,s =' san') restart and homotopy to PAR(4)=1.0
sv('6') save output-�les as b.6, s.6,d.6
run(c='san.7',h='san. 7' ,s =' 6') homotopy to PAR(5)=0.0; restart from s.6
ap('6') append output-�les to b.6, s.6,d.6
run(c='san.8',h='san. 8' ,s =' 6') homotopy to PAR(1)=0.5; restart from s.6
ap('6') append output-�les to b.6, s.6,d.6
run(c='san.9',h='san. 9' ,s =' 6') homotopy to PAR(2)=3.0; restart from s.6
ap('6') append output-�les to b.6, s.6,d.6
run(c='san.10',h='san .1 0' ,s ='6 ') homotopy to PAR(7)=0.25; restart from s.6
ap('6') append output-�les to b.6, s.6,d.6
run(c='san.11',h='san .1 1' ,s ='6 ') continue in PAR(7) to detect orbit
ip; restart from s.6
sv('11') save output-�les as b.11,s.11,d.11
run(c='san.12',h='san .1 2' ,s ='1 1') three-parametercontinuation of orbit
ip; restart from s.11
sv('12') save output-�les as b.12,s.12,d.12

Table 16.2: Detailed AUTO -Commandsfor running demosan.

u5

u6

-5.0 -2.5 0.0 2.5 5.0 7.5 10.0

-6.

-5.

-4.

-3.

-2.

-1.

0.

1.

Figure 16.1: Secondversusthird component of the solution to the adjoint equation at labels5, 7
and 9

150

z

y

x

Figure 16.2: Orbits on either side of the orbit
ip bifurcation. The critical orbit is contained in
the (x, y)-plane

151

Chapter 17

HomCon t Demo : mtn.

17.1 A Predator-Prey Model with Immigration.

Considerthe following systemof two equations(Sche�er 1995)

_X = RX

(

1 �
X

K

)

�
A1XY

B1 + X
+ D0K

_Y = E1
A1XY

B1 + X
� D1Y �

A2ZY
2

B2
2 + Y 2

.
(17.1)

The valuesof all parametersexcept (K,Z) are set as follows :

R = 0.5, A1 = 0.4, B1 = 0.6, D0 = 0.01, E1 = 0.6, A2 = 1.0, B2 = 0.5, D1 = 0.15.

The parametric portrait of the system(17.1) on the (Z,K)-plane is presented in Figure 17.1. It
contains fold (t1,2) and Hopf (H) bifurcation curves, as well as a homoclinic bifurcation curve
P . The fold curvesmeet at a cusp singular point C, while the Hopf and the homoclinic curves
originate at a Bogdanov-Takens point BT . Only the homoclinic curve P will be considered
here, the other bifurcation curvescan be computedusing AUTOor, for example,locbif (Khibnik,
Kuznetsov, Levitin & Nikolaev1993).

17.2 Continuation of Central Saddle-Node Homoclinics.

Local bifurcation analysisshows that at K = 6.0, Z = 0.06729762. . ., the systemhas a saddle-
node equilibrium

(X0, Y 0) = (5.738626. . . ,0.5108401. . .),

with one zero and one negative eigenvalue. Direct simulations reveal a homoclinic orbit to this
saddle-node, departing and returning along its central direction (i.e., tangent to the null-vector).

Starting from this solution, stored in the �le mtn.dat , we continue the saddle-node central
homoclinic orbit with respect to the parametersK and Z by copying the demoand running it

@dm mtn
make first

152

The �le mtn.c contains approximate parametervalues

K = PAR(1) = 6.0, Z = PAR(2) = 0.06729762,

as well as the coordinatesof the saddle-node

X0 = PAR(12) = 5.738626, Y 0 = PAR(13) = 0.5108401,

and the length of the truncated time-interval

T0 = PAR(11) = 1046.178.

Sincea homoclinic orbit to a saddle-node is being followed, we have alsomadethe choices

IEQUIB= 2 NUNSTAB= 0 NSTAB= 1

in h.mtn.1 . The two test-functions, ψ15 and ψ16, to detect non-central saddle-node homoclinic
orbits are also activated, which must be speci�ed in three ways. Firstly, in h.mtn.1 , NPSI is
set to 2 and the active test functions IPSI(I),I=1,2 are chosenas 15 and 16. This setsup the
monitoring of thesetest functions. Secondly, in c.mtn.1 user-de�ned functions (NUZR=2) are set
up to look for zerosof the parameterscorresponding to these test functions. Recall that the
parameters to be zeroed are always the test functions plus 20. Finally, these parametersare
included in the list of continuation parameters(NICP,(ICP(I),I=1 NICP)).

Among the output there is a line

BR PT TY LAB PAR(1) ... PAR(2) PAR(35) PAR(36)
1 27 UZ 5 6.10437E+00 ... 6.932475E-02 -6.782898E-07 8.203437E-02

indicating that a zeroof the test function IPSI(1)=15 This meansthat at

D1 = (K1, Z1) = (6.6104. . . ,0.069325. . .)

the homoclinic orbit to the saddle-nodebecomesnon-central, namely, it returns to the equilibrium
along the stable eigenvector, forming a non-smooth loop. The output is saved in b.1 , s.1 and
d.1 . Repeating computations in the opposite direction along the curve, IRS=1, DS=-0.01 in
c.mtn.2 ,

make second

oneobtains

BR PT TY LAB PAR(1) ... PAR(2) PAR(35) PAR(36)
1 34 UZ 9 5.180323E+00 ... 6.385506E-02 3.349720E-09 9.361957E-02

which meansanother non-central saddle-node homoclinic bifurcation occursat

D2 = (K2, Z2) = (5.1803. . . ,0.063855. . .).

Note that thesedata wereobtained using a smaller value of NTSTthan the original computation
(compare c.mtn.1 with c.mtn.2). The high original value of NTSTwas only necessaryfor the
�rst few stepsbecausethe original solution is speci�ed on a uniform mesh.

153

17.3 Switching between Saddle-Node and Saddle Homo-

clinic Orbits.

Now we can switch to continuation of saddlehomoclinic orbits at the located codim 2 points D1

and D2.

make third

starts from D1. Note that now

NUNSTAB= 1 IEQUIB = 1

has beenspeci�ed in h.mtn.3 . Also, test functions ψ9 and ψ10 have beenactivated in order to
monitor for non-hyperbolic equilibria along the homoclinic locus. We get the following output

BR PT TY LAB PAR(1) ... PAR(2) PAR(29) PAR(30)
1 10 11 7.114523E+00 ... 7.081751E-02 -4.649861E-01 3.183429E-03
1 20 12 9.176810E+00 ... 7.678731E-02 -4.684912E-01 1.609294E-02
1 30 13 1.210834E+01 ... 8.543468E-02 -4.718871E-01 3.069638E-02
1 40 EP 14 1.503788E+01 ... 9.428036E-02 -4.743794E-01 4.144558E-02

The fact that PAR(29) and PAR(30) do not change sign indicates that there are no further
non-hyperbolic equilibria along this branch. Note that restarting in the opposite direction with
IRS=11, DS=-0.02

make fourth

will detect the samecodim 2 point D1 but now as a zeroof the test-function ψ10

BR PT TY LAB PAR(1) ... PAR(2) PAR(29) PAR(30)
1 10 UZ 15 6.610459E+00 ... 6.932482E-02 -4.636603E-01 1.725013E-09

Note that the valuesof PAR(1)and PAR(2)di�er from that at label 4 only in the sixth signi�cant
�gure.

Actually, the programruns further and eventually computesthe point D2 and the whole lower
branch of P emanatingfrom it, however, the solutions betweenD1 and D2 should be considered
asspurious1, thereforewe do not save thesedata. The reliable way to compute the lower branch
of P is to restart computation of saddlehomoclinic orbits in the other direction from the point
D2

make fifth

This givesthe lower branch of P approaching the BT point (seeFigure 17.1)

1 The program actually computes the saddle-saddle heteroclinic orbit bifurcating from the non-central saddle-
node homoclinic at the point D1, see Champneys et al. (1996, Fig. 2), and continues it to the one emanating from
D2.

154

BR PT TY LAB PAR(1) ... PAR(2) PAR(29) PAR(30)
1 10 15 4.966429E+00 ... 6.298418E-02 -4.382426E-01 4.946824E-03
1 20 16 4.925379E+00 ... 7.961214E-02 -3.399102E-01 3.288447E-02
1 30 17 7.092267E+00 ... 1.587114E-01 -1.692842E-01 3.876291E-02
1 40 EP 18 1.101819E+01 ... 2.809825E-01 -3.482651E-02 2.104384E-02

The data are appendedto the storedresults in b.1 , s.1 and d.1 . One could now display all data
using the AUTO command@p 1 to reproducethe curve P shown in Figure 17.1.

It is worthwhile to comparethe homoclinic curvescomputed above with a curve T0 = const
along which the system has a limit cycle of constant large period T0 = 1046.178, which can
easily be computed using AUTO or locbif. Such a curve is plotted in Figure 17.2. It obviously
approximates well the saddlehomoclinic loci of P , but demonstratesmuch biggerdeviation from
the saddle-node homoclinic segment D1D2. This happensbecausethe period of the limit cycle
growsto in�nit y while approaching both typesof homoclinic orbit, but with different asymptotics:
as � ln kα � α∗k, in the saddlehomoclinic case,and as kα � α∗k−1 in the saddle-node case.

17.4 Three-Parameter Continuation.

Finally, we can follow the curve of non-central saddle-node homoclinic orbits in three parame-
ters. The extra continuation parameter is D0= PAR(3). To achieve this we restart at label 4,
corresponding to the codim 2 point D1. We return to continuation of saddle-node homoclinics,
NUNSTAB=0,IEQUIB=2, but append the de�ning equationψ15 = 0 to the continuation problem (via
NFIXED=1, IFIXED(1)=15). The new continuation problem is speci�ed in c.mtn.6 and h.mtn.6 .

make sixth

Notice that wesetILP=1 andchoosePAR(3)asthe �rst continuation parametersothat AUTO can
detect limit points with respect to this parameter. We alsomakea user-de�nedfunction (NUZR=1)
to detect intersectionswith the planeD0 = 0.01. We get amongother output

BR PT TY LAB PAR(3) L2-NORM ... PAR(1) PAR(2)
1 22 LP 19 1.081212E-02 5.325894E+00 ... 5.673631E+00 6.608184E-02
1 31 UZ 20 1.000000E-02 4.819681E+00 ... 5.180317E+00 6.385503E-02

the �rst line of which represents the D0 value at which the homoclinic curve P has a tangency
with the branch t2 of fold bifurcations. Beyond this value of D0, P consistsentirely of saddle
homoclinic orbits. The data at label 20 reproducethe coordinatesof the point D2. The resultsof
this computation and a similar one starting from D1 in the opposite direction (with DS=-0.01)
are displayed in Figure 17.3.

155

17.5 Detailed AUTO -Commands.

AUTO -COMMAND ACTION
! mkdir mtn createan empty work directory
cd mtn changedirectory
demo(’mtn’) copy the demo�les to the work directory
us(’mtn’) usethe starting data in mtn.dat to creates.dat
run(c=’mtn.1’,h=’mtn.1’,s=’dat’) continue saddle-node homoclinic orbit
sv(’1’) save output-�les as b.1, s.1, d.1
run(c=’mtn.2’,h=’mtn.2’,s=’1’) continue in opposite direction; restart from s.1
ap(’1’) append output-�les to b.1, s.1, d.1
run(c=’mtn.3’,h=’mtn.3’,s=’1’) switch to saddlehomoclinic orbit ; restart from s.1
ap(’1’) append output-�les to b.1, s.1, d.1
run(c=’mtn.4’,h=’mtn.4’,s=’1’) continue in reversedirection; restart from s.1
sv(’4’) save output-�les as b.4, s.4, d.4
run(c=’mtn.5’,h=’mtn.5’,s=’1’) other saddlehomoclinic orbit branch; restart from s.1
ap(’1’) append output-�les to b., s.1, d.1
run(c=’mtn.6’,h=’mtn.6’,s=’1’) 3-parameternon-central saddle-node homoclinic.
sv(’6’) save output-�les as b.6, s.6, d.6

Table 17.1: Detailed AUTO -Commandsfor running demomtn.

156

Figure 17.1: Parametric portrait of the predator-prey system

Figure 17.2: Approximation by a large-period cycle

157

 K

 d_0

2.5 5.0 7.5 10.0 12.5 15.0

0.000

0.003

0.005

0.008

0.010

0.012

Figure 17.3: Projection onto the (K,D0)-planeof the three-parametercurveof non-central saddle-
node homoclinic orbit

158

Chapter 18

HomCon t Demo : kpr.

18.1 Koper’s Extended Van der Pol Model.

The equation-�le kpr.c contains the equations

_x = ε−1
1 (k y � x3 + 3x � λ)

_y = x � 2 y + z
_z = ε2(y � z),

(18.1)

with ε1 = 0.1 and ε2 = 1 (Koper 1995).
To copy acrossthe demo kpr and compile we type

@dmkpr

18.2 The Primary Branch of Homoclinics.

First, we locate a homoclinic orbit using the homotopy method. The �le kpr.c already con-
tains approximate parametervaluesfor a homoclinic orbit, namelyλ = PAR(1)=-1.851185, k =
PAR(2)=-0.15. The �les c.kpr.1 and h.kpr.1 specify the appropriate constants for continuation
in 2T =PAR(11)(also referredto as PERIOD) and the dummy parameterω1= PAR(17)starting
from a small solution in the local unstable manifold;

make first

Among the output there is the line

BR PT TY LAB PERIOD L2-NORM ... PAR(17) ...
1 29 UZ 2 1.900184E+01 1.693817E+00 ... 4.433433E-09 ...

which indicates that a zeroof the arti�cial parameterω1 hasbeenlocated. This meansthat the
right-hand end point of the solution belongsto the plane that is tangent to the stable manifold
at the saddle. The output is stored in �les b.1, s.1, d.1. Upon plotting the data at label 2
(seeFigure 18.1) it can be noted that although the right-hand projection boundary condition is
satis�ed, the solution is still quite away from the equilibrium.

159

x

y

-1.020

-1.010

-1.000

-0.990

-0.980

-0.970

-0.960

-0.950

-0.940

-1.000

-0.990

-0.980

-0.970

-0.960

-0.950

Figure 18.1: Projection on the (x, y)-plane of solutions of the boundary value problem with
2T = 19.08778.

x

y

-1.020

-1.010

-1.000

-0.990

-0.980

-0.970

-0.960

-0.950

-0.940

-1.000

-0.990

-0.980

-0.970

-0.960

-0.950

Figure 18.2: Projection on the (x, y)-plane of solutions of the boundary value problem with
2T = 60.0.

160

The right-hand endpoint can be made to approach the equilibrium by performing a further
continuation in T with the right-hand projection condition satis�ed (PAR(17)�xed) but with λ
allowed to vary.

makesecond

the output at label 4, stored in kpr.2,

BR PT TY LAB PERIOD L2-NORM ... PAR(1) ...
1 35 UZ 4 6.000000E+01 1.672806E+00 ... -1.851185E+00 ...

provides a good approximation to a homoclinic solution (seeFigure 18.2).
The secondstage to obtain a starting solution is to add a solution to the modi�ed adjoint

variational equation. This is achieved by setting both ITWISTand ISTARTto 1 (in h.kpr.3),
which generatesa trivial guessfor the adjoint equations.Becausethe adjoint equationsare linear,
only a singleNewtonstep(by continuation in a trivial parameter)is requiredto provide a solution.
Rather than choosea parameterthat might be usedinternally by AUTO , in c.kpr.3 we take the
continuation parameter to be PAR(11), which is not quite a trivial parameterbut whosea�ect
upon the solution is mild.

make third

The output at the secondpoint (label 6) contains the convergedhomoclinic solution (variables
(U(1), U(2), U(3)) and the adjoint (U(4), U(5), U(6))). We now have a starting solution
and are ready to perform two-parametercontinuation.

The fourth run

make fourth

continues the homoclinic orbit in PAR(1) and PAR(2). Note that several other parameters
appear in the output. PAR(10) is a dummy parameter that should be zero when the adjoint
is being computed correctly; PAR(29), PAR(30), PAR(33) correspond to the test functions
ψ9,ψ10 and ψ13. That thesetest functions were activated is speci�ed in three placesin c.kpr.4
and h.kpr.4 as described in Section15.6.

Note that at the end-point of the branch (reached when after NMX=50steps) PAR(29) is
approximately zero which corresponds to a zero of ψ9, a non-central saddle-node homoclinic
orbit. We shall return to the computation of this codimension-two point later. Before reaching
this point, amongthe output we �nd two zeroesof PAR(33)(test function ψ13) which givesthe
accuratelocation of two inclination-
ip bifurcations,

BR PT TY LAB PAR(1) ... PAR(2) PAR(10) ... PAR(33)
1 6 UZ 10 -1.801662E+00 ... -2.002660E-01 -7.255434E-07 ... -1.425714E-04
1 12 UZ 11 -1.568756E+00 ... -4.395468E-01 -2.156353E-07 ... 4.514073E-07

That the test function really does have a regular zero at this point can be checked from the
data saved in b.3, plotting PAR(33)asa function of PAR(1)or PAR(2). Figure 18.3presents
solutionsφ(t) of the modi�ed adjoint variational equation(for detailsseeChampneyset al. (1996))
at parameter values on the homoclinic branch before and after the �rst detected inclination

161

x

y

-4. -3. -2. -1. 0. 1. 2. 3.

-2.

-1.

0.

1.

2.

3.

4.

5.

6.

7.

1

2

Figure 18.3: Projection on the (x, y)-plane of solutions φ(t) at 1 (λ = � 1.825470, k =
� 0.1760749)and 2 (λ = � 1.686154, k = � 0.3183548).

’1’

-0.5
0

0.5
-0.5

0

0.5-5

0

5

x

y

z

’2’

Figure 18.4: Three-dimensionalblow-up of the solution curvesφ(t) at labels 1 (dotted) and 2
(solid line) from Figure 3.8.

162

x

y

-1.030

-1.020

-1.010

-1.000

-0.990

-0.980

-0.970

-0.960

-0.950

-0.940

-0.930

-1.000

-0.990

-0.980

-0.970

-0.960

-0.950

-0.940

-0.930

Figure 18.5: Computed homoclinic orbits approaching the BT point

ip. Note that thesesolutions were obtained by choosing a smaller step DSand more output
(smaller NPR) in c.kpr.4. A blow-up of the region closeto the origin of this �gure is shown in
Figure 18.4. It illustrates the
ip of the solutions of the adjoint equation while moving through
the bifurcation point. Note that the data in this �gure were plotted after �rst performing an
additional continuation of the solutions with respect to PAR(11).

Continuing in the other direction

make fifth

we approach a Bogdanov-Takenspoint

BR PT TY LAB PAR(1) ... PAR(10) ... PAR(33)
1 50 EP 13 -1.938276E+00 ... -7.523344E+00 ... 6.310810E+01

Note that the numerical approximation has ceasedto becomereliable, since PAR(10)has now
becomelarge. Phaseportraits of homoclinic orbits betweenthe BT point and the �rst inclination

ip are depicted in Figure 18.5. Note how the computed homoclinic orbits approaching the BT
point have their endpoints well away from the equilibrium. To follow the homoclinic orbit to the
BT point with more precision,we would needto �rst perform continuation in T (PAR(11)) to
obtain a more accuratehomoclinic solution.

18.3 More Accuracy and Saddle-Node Homoclinic Orbits.

Continuation in T in order to obtain an approximation of the homoclinic orbit over a longer
interval is necessaryfor parametervaluesneara non-hyperbolic equilibrium (either a saddle-node

163

or BT) where the convergenceto the equilibrium is slower. First, we start from the original
homoclinic orbit computedvia the homotopy method, label 4, which is well away from the non-
hyperbolic equilibrium. Also, we shall no longer be interested in in inclination
ips so we set
ITWIST=0in c.kpr.6, and in order to compute up to PAR(11)=1000, we set up a user-de�ned
function for this. Running AUTO with PAR(11)and PAR(2)as free parameters

makesixth

we obtain amongthe output

BR PT TY LAB PERIOD L2-NORM ... PAR(2)
1 35 UZ 6 1.000000E+03 1.661910E+00 ... -1.500000E-01

We cannow repeat the computation of the branch of saddlehomoclinic orbits in PAR(1)and
PAR(2)from this point with the test functionsψ9 and ψ10 for non-central saddle-node homoclinic
orbits activated

makeseventh

The saddle-node point is now detectedat

BR PT TY LAB PAR(1) ... PAR(2) PAR(29) PAR(30)
1 30 UZ 8 1.765003E-01 ... -2.405345E+00 2.743361E-06 2.309317E+01

which is stored in s.7. That PAR(29)(ψ9) is zeroed shows that this is a non-central saddle-node
connectingthe centre manifold to the strong stable manifold. Note that all output beyond this
point, although a well-posedsolution to the boundary-value problem, is spurious in that it no
longer represents a homoclinic orbit to a saddleequilibrium (seeChampneyset al. (1996)). If we
had chosento, we could continue in the other direction in order to approach the BT point more
accurately by reversingthe sign of DSin c.kpr.7.

The �les c.kpr.9 and h.kpr.9 contain the constants necessaryfor switching to continuation of
the central saddle-node homoclinic curve in two parametersstarting from the non-central saddle-
node homoclinic orbit stored as label 8 in s.7.

makeeighth

In this run we have activated the test functions for saddleto saddle-node transition points along
curvesof saddlehomoclinic orbits (ψ15 and ψ16). Among the output we �nd

BR PT TY LAB PAR(1) ... PAR(2) PAR(35) PAR(36)
1 38 UZ 13 1.765274E-01 ... -2.405284E+00 9.705426E-03 -5.464784E-07

which correspondsto the branch of homoclinic orbits leaving the locusof saddle-nodesin a second
non-central saddle-node homoclinic bifurcation (a zeroof ψ16).

Note that the parameter values do not vary much between the two codimension-two non-
central saddle-node points (labels 8 and 13). However, Figure 18.6shows clearly that between
the two codimension-two points the homoclinic orbit rotates betweenthe two components of the
1D stable manifold, i.e. betweenthe two boundariesof the center-stable manifold of the saddle
node. The overall e�ect of this processis the transformation of a nearby \small" saddlehomoclinic
orbit to a \big" saddlehomoclinic orbit (i.e. with two extra turning points in phasespace).

Finally, we can switch to continuation of the big saddlehomoclinic orbit from the new codim
2 point at label 13.

164

x

y

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

1

2

3

Figure 18.6: Two non-central saddle-node homoclinic orbits, 1 and 3; and, 2, a central saddle-
node homoclinic orbit betweenthesetwo points

x

y

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

1

2
3

4

5

6

7

8
9

10

Figure 18.7: The big homoclinic orbit approaching a �gure-of-eight

165

makeninth

Note that AUTO takesa largenumber of stepsnearthe line PAR(1)=0, while PAR(2)approaches
� 2.189. . . (which is why we chosesuch a large value NMX=500in c.kpr.9). This particular
computation endsat

BR PT TY LAB PAR(1) L2-NORM ... PAR(2)
1 500 EP 24 -1.218988E-05 2.181205E-01 ... -2.189666E+00

By plotting phaseportraits of orbits approaching this endpoint (seeFigure 18.7)weseea \canard-
like" like transformation of the big homoclinic orbit to a pair of homoclinic orbits in a �gure-of-
eight con�guration. That weget a �gure-of-eight is not a surprisebecause PAR(1)=0corresponds
to a symmetry in the di�eren tial equations(Koper 1994);note alsothat the equilibrium, storedas
(PAR(12), PAR(13), PAR(14)) in d.9, approachesthe origin aswe approach the �gure-of-eight
homoclinic.

18.4 Three-Parameter Continuation.

We now considercurves in three parametersof each of the codimension-two points encountered
in this model, by freeing the parameter ε = PAR(3). First we continue the �rst inclination
ip
stored at label 7 in s.3

make tenth

Note that ITWIST=1in h.kpr.10, so that the adjoint is also continued, and there is one �xed
condition IFIXED(1)=13 so that test function ψ13 has beenfrozen. Among the output there is
a codimension-threepoint (zero of ψ9) wherethe neutrally twisted homoclinic orbit collideswith
the saddle-node curve

BR PT TY LAB PAR(1) ... PAR(2) PAR(3) PAR(29) ...
1 28 UZ 14 1.282702E-01 ... -2.519325E+00 5.744770E-01 -4.347113E-09 ...

The other detectedinclination
ip (at label 8 in s.3) is continued similarly

make eleventh

giving amongits output another codim 3 saddle-node inclination-
ip point

BR PT TY LAB PAR(1) ... PAR(2) PAR(3) PAR(29) ...
1 27 UZ 14 1.535420E-01 ... -2.458100E+00 1.171705E+00 -1.933188E-07 ...

Output beyond both of thesecodim 3 points is spuriousand both computations end in an MX
point (no convergence).

To continue the non-central saddle-node homoclinic orbits it is necessaryto work on the data
without the solution φ(t). We restart from the data saved at LAB=8and LAB=13in s.7 and
s.8 respectively. We could continue thesecodim 2 points in two ways, either by appending the
de�ning condition ψ16 = 0 to the continuation of saddle-node homoclinic orbits (with IEQUIB=2,
etc.), or by appendingψ9 = 0 to the continuation of a saddlehomoclinic orbit (with IEQUIB=1.
The �rst approach is usedin the example mtn, for contrast we shall adopt the secondapproach
here.

166

maketwelfth
make thirteenth

The projection onto the (ε, k)-plane of all four of thesecodimension-two curvesis given in Figure
18.8. The intersectionof the inclination-
ip lines with oneof the non-central saddle-node homo-
clinic lines is apparent. Note that the two non-central saddle-node homoclinic orbit curves are
almost overlaid, but that as in Figure 18.6 the orbits look quite distinct in phasespace.

18.5 Detailed AUTO -Commands.

AUTO -COMMAND ACTION
! mkdir kpr createan empty work directory
cd kpr changedirectory
demo('kpr') copy the demo�les to the work directory
run(c='kpr.1',h='kpr .1 ') continuation in the time-length parameter PAR(11)
sv('1') save output-�les as b.1, s.1,d.1
run(c='kpr.2',h='kpr .2 ', s=' 1') locate the homoclinic orbit; restart from s.1
sv('2') save output-�les as b.2, s.2,d.2
run(c='kpr.3',h='kpr .3 ', s=' 2') generateadjoint variables; restart from s.2
sv('3') save output-�les as b.3, s.3,d.3
run(c='kpr.4',h='kpr .4 ', s=' 3') continue the homoclinic orbit; restart from s.3
ap('3') append output-�les to b.3, s.3,d.3
run(c='kpr.5',h='kpr .5 ', s=' 3') continue in reversedirection; restart from s.3
ap('3') append output-�les to b.3, s.3,d.3
run(c='kpr.6',h='kpr .6 ', s=' 2') increasethe period; restart from s.2
sv('6') save output-�les as b.6, s.6,d.6

Table 18.1: Detailed AUTO -Commandsfor running demo kpr.

167

eps_1

 k

0.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

1 2

3
4

.

Figure 18.8: Projection onto the (PAR(3),PAR(2)) -planeof the non-central saddle-node homo-
clinic orbit curves(labeled 1 and 2) and the inclination-
ip curves(labeled 3 and 4)

AUTO -COMMAND ACTION
run(c='kpr.7',h='kpr. 7' ,s =' 6') recomputethe branch of homoclinic orbits; restart from s.6
sv('7') save output-�les as b.7, s.7,d.7
run(c='kpr.8',h='kpr. 8' ,s =' 7') continue central saddle-node homoclinics; restart from s.7
sv('8') save output-�les as b.8, s.8,d.8
run(c='kpr.9',h='kpr. 9' ,s =' 8') continue homoclinics from codim-2 point; restart from s.8
sv('9') save output-�les as b.9, s.9,d.9
run(c='kpr.10',h='kpr .1 0' ,s ='3 ') 3-parametercurve of inclination-
ips; restart from s.3
sv('10') save output-�les as b.10,s.10,d.10
run(c='kpr.11',h='kpr .1 1' ,s ='3 ') another curve of inclination-
ips; restart from s.3
sv('11') save output-�les as b.11,s.11,d.11
run(c='kpr.12',h='kpr .1 2' ,s ='7 ') continue non-central saddle-node homoclinics; restart from s.7
sv('12') save output-�les as b.12,s.12,d.12
run(c='kpr.13',h='kpr .1 3' ,s ='8 ') continue non-central saddle-node homoclinics; restart from s.8
ap('12') append output-�les to b.12,s.12,d.12

Table 18.2: Detailed AUTO -Commandsfor running demo kpr.

168

Chapter 19

HomCon t Demo : cir.

19.1 Electronic Circuit of Freire et al.

Considerthe following model of a three-variableelectroniccircuit (Freire, Rodr��guez-Luis,Gamero
& Ponce1993)







_x = [� (β + ν)x + βy � a3x
3 + b3(y � x)3] /r,

_y = βx � (β + γ)y � z � b3(y � x)3,
_z = y.

(19.1)

Theseautonomousequationsare alsoconsideredin the AUTO demo tor.
First, we copy the demointo a new directory and compile

@dmcir

The systemis contained in the equation-�le cir.c and the initial run-time constants are stored in
c.cir.1and h.cir.1. We begin by starting from the data from cir.dat for a saddle-focushomoclinic
orbit at ν = � 0.721309,β = 0.6, γ = 0, r = 0.6, A3 = 0.328578and B3 = 0.933578,which was
obtained by shooting over the time interval 2T = PAR(11)= 36.13. We wish to follow the branch
in the (β, ν)-plane, but �rst we perform continuation in (T, ν) to obtain a better approximation
to a homoclinic orbit.

make first

yields the output

BR PT TY LAB PERIOD L2-NORM ... PAR(1)
1 21 UZ 2 1.000000E+02 1.286637E-01 ... -7.213093E-01
1 42 UZ 3 2.000000E+02 9.097899E-02 ... -7.213093E-01
1 50 EP 4 2.400000E+02 8.305208E-02 ... -7.213093E-01

Note that ν = PAR(1) remainsconstant during the continuation as the parametervaluesdo not
change, only the the length of the interval over which the approximate homoclinic solution is
computed. Note from the eigenvalues,stored in d.1 that this is a homoclinic orbit to a saddle-
focuswith a one-dimensionalunstable manifold.

Wenow restart at LAB=3, correspondingto a time interval 2T = 200,and changethe principal
continuation parametersto be (ν, β). The new constants de�ning the continuation are given in

169

c.cir.2and h.cir.2. We alsoactivate the test functions pertinent to codimension-two singularities
which may be encountered along a branch of saddle-focus homoclinic orbits, viz. ψ2, ψ4, ψ5, ψ9

and ψ10. This must be speci�ed in three ways: by choosing NPSI=5and appropriate IPSI(I)
in h.cir.2, by adding the corresponding parameter labels to the list of continuation parameters
ICP(I) in c.cir.2 (recall that these parameter indices are 20 more than the corresponding ψ
indices),and �nally addingUSZRfunctions de�ning zerosof theseparametersin c.cir.2. Running

makesecond

results in

BR PT TY LAB PAR(1) ... PAR(2) ... PAR(25) PAR(29)
1 17 UZ 5 -7.256925E-01 ... 4.535645E-01 ... -1.765251E-05 -2.888436E-01
1 75 UZ 6 -1.014704E+00 ... 9.998966E-03 ... 1.664509E+00 -5.035997E-03
1 78 UZ 7 -1.026445E+00 ... -2.330391E-05 ... 1.710804E+00 1.165176E-05
1 81 UZ 8 -1.038012E+00 ... -1.000144E-02 ... 1.756690E+00 4.964621E-03
1 100 EP 9 -1.164160E+00 ... -1.087732E-01 ... 2.230329E+00 5.042736E-02

with results saved in b.2, s.2, d.2. Upon inspection of the output, note that label 5, where
PAR(25)� 0, correspondsto a neutrally-divergent saddle-focus,ψ5 = 0. Label 7, where PAR(29)�
0 corresponds to a local bifurcation, ψ9 = 0, which we note from the eigenvaluesstored in d.2
corresponds to a Shil’nikov-Hopf bifurcation. Note that PAR(2) is also approximately zero at
label 7, which accordswith the analytical observation that the origin of (19.1) undergoesa Hopf
bifurcation whenβ = 0. Labels6 and 8 are the user-de�nedoutput points, the solutionsat which
are plotted in Fig. 19.1. Note that solutionsbeyond label 7 (e.g., the plotted solution at label 8)
do not correspond to homoclinic orbits, but to point-to-cycle heteroclinic orbits (c.f. Section2.2.1
of Champneyset al. (1996)).

We now continue in the other direction along the branch. It turns out that starting from the
initial point in the other direction results in missinga codim 2 point which is closeto the starting
point. Instead we start from the �rst saved point from the previouscomputation (label 5 in s.2):

make third

The output

BR PT TY LAB PAR(1) ... PAR(2) PAR(22) PAR(24)
1 9 UZ 10 -7.204001E-01 ... 5.912315E-01 -1.725669E+00 -3.295862E-05
1 18 UZ 11 -7.590583E-01 ... 7.428734E-01 3.432139E-05 -2.822988E-01
1 26 UZ 12 -7.746686E-01 ... 7.746147E-01 5.833163E-01 1.637611E-07
1 28 EP 13 -7.746628E-01 ... 7.746453E-01 5.908902E-01 1.426214E-04

contains a neutral saddle-focus (a Belyakov transition) at LAB=10(ψ4 = 0), a double real
leading eigenvalue (saddle-focus to saddletransition) at LAB =11 (ψ2 = 0) and a neutral saddle
at LAB=12(ψ4 = 0). Data at several points on the completebranch are plotted in Fig. 19.2. If
we had continued further (by increasing NMX), the computation would end at a no convergence
error TY=MXowing to the homoclinic branch approaching a Bogdanov-Takenssingularity at small
amplitude. To computefurther towards the BT point we would �rst needto continue to a higher
value of PAR(11).

170

Time

y

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

6

8

Figure 19.1: Solutions of the boundary value problem at labels 6 and 8, either side of the
Shil'nikov-Hopf bifurcation

x

z

y

Figure 19.2: Phaseportraits of three homoclinic orbits on the branch, showing the saddle-focus
to saddletransition

171

19.2 Detailed AUTO -Commands.

AUTO -COMMAND ACTION
! mkdir cir createan empty work directory
cd cir changedirectory
demo('cir') copy the demo�les to the work directory
us('cir') usethe starting data in cir.dat to create s.dat
run(c='cir.1',h='cir. 1' ,s =' dat ') increasethe truncation interval; restart from s.dat
sv('1') save output-�les as b.1, s.1,d.1
run(c='cir.2',h='cir. 2' ,s =' 1') continue saddle-focushomoclinic orbit; restart from s.1
sv('2') save output-�les as b.2, s.2,d.2
run(c='cir.3',h='cir. 3' ,s =' 2') generateadjoint variables; restart from s.2
ap('2') append output-�les as b.2, s.2,d.2

Table 19.1: Detailed AUTO -Commandsfor running demo cir.

172

Chapter 20

HomCon t Demo : she.

20.1 A Heteroclinic Example.

The following systemof �v e equationsRucklidge & Mathews (1995)

_x = µx + x y � z u,
_y = � y � x2,
_z = (4σ xu + 4σ µ z � 9σ z + 4xu + 4µ z)/4(1+ σ)
_u = � σu/4 � σQv/4π2 + 3(1+ σ)xz/4σ
_v = ζu/4 � ζv/4

(20.1)

hasbeenusedto describe shearinginstabilities in
uid convection. The equationspossessa rich
structure of local and global bifurcations. Here we shall reproduce a single curve in the (σ, µ)-
plane of codimension-oneheteroclinic orbits connecting a non-trivial equilibrium to the origin
for Q = 0 and ζ = 4. The de�ning problem is contained in equation-�le she.c1, and starting
data for the orbit at (σ, µ) = (0.5,0.163875)are stored in she.dat, with a truncation interval of
PAR(11)=85.07.

We begin by computing towards µ = 0 with the option IEQUIB=-2which meansthat both
equilibria are solved for as part of the continuation process.

@dmshe
make first

This yields the output

BR PT TY LAB PAR(3) L2-NORM ... PAR(1)
1 5 2 4.528332E-01 3.726787E-01 ... 1.364973E-01
1 10 3 3.943370E-01 3.303798E-01 ... 1.044119E-01
1 15 4 3.358942E-01 2.873213E-01 ... 7.515570E-02
1 20 5 2.772726E-01 2.433403E-01 ... 4.952636E-02
1 25 6 2.181955E-01 1.981358E-01 ... 2.845849E-02
1 30 EP 7 1.581633E-01 1.512340E-01 ... 1.292975E-02

1The last parameter used to store the equilibria (PAR(21)) is overlaped here with the first test-function. In
this example, it is harmless since the test functions are irrelevant for heteroclinic continuation.

173

Alternativ ely, for this problem there exists an analytic expressionfor the two equilibria. This is
speci�ed in the subroutine pvls of she.c. Re-running with IEQUIB=-1

make second

we obtain the output

BR PT TY LAB PAR(3) L2-NORM ... PAR(1)
1 5 2 4.432015E-01 3.657716E-01 ... 1.310559E-01
1 10 3 3.723085E-01 3.142439E-01 ... 9.300982E-02
1 15 4 3.008842E-01 2.611556E-01 ... 5.933966E-02
1 20 5 2.286652E-01 2.062194E-01 ... 3.179939E-02
1 25 6 1.555409E-01 1.491652E-01 ... 1.239897E-02
1 30 EP 7 8.107462E-02 9.143108E-02 ... 2.386616E-03

This output is similar to that above, but note that it is obtained slightly more e�cien tly because
the extra parameters PAR(12-21) representing the coordinates of the equilibria are no longer
part of the continuation problem. Also note that AUTO has chosento take slightly larger steps
along the branch. Finally, we can continue in the opposite direction along the branch from the
original starting point (again with IEQUIB=-1).

make third

BR PT TY LAB PAR(3) L2-NORM ... PAR(1)
1 5 8 4.997590E-01 4.060153E-01 ... 1.637322E-01
1 10 9 5.705299E-01 4.551872E-01 ... 2.065264E-01
1 15 10 6.416439E-01 5.031844E-01 ... 2.507829E-01
1 20 11 7.133301E-01 5.500668E-01 ... 2.959336E-01
1 25 12 7.857688E-01 5.958712E-01 ... 3.415492E-01
1 30 13 8.590970E-01 6.406182E-01 ... 3.872997E-01
1 35 EP 14 9.334159E-01 6.843173E-01 ... 4.329270E-01

The results of both computations are presented in Figure 20.1, from which we seethat the orbit
shrinks to zeroas PAR(1)=µ ! 0.

174

20.2 Detailed AUTO -Commands.

AUTO -COMMAND ACTION
! mkdir she createan empty work directory
cd she changedirectory
demo('she') copy the demo�les to the work directory
us('she') usethe starting data in she.datto create s.dat
run(c='she.1',h='she .1 ', s='d at ') continue heteroclinic orbit; restart from s.dat
sv('1') save output-�les as b.1, s.1,d.1
run(c='she.2',h='she .2 ', s='d at ') repeat with IEQUIB=-1
sv('2') save output-�les as b.2, s.2,d.2
run(c='she.3',h='she .3 ', s='2 ') continue in reversedirection ; restart from s.2
ap('2') append output-�les to b.2, s.2,d.2

Table 20.1: Detailed AUTO -Commandsfor running demo she.

175

X

Y

Z

Figure 20.1: Projections into (x, y, z)-spaceof the family of heteroclinic orbits.

176

Chapter 21

HomCon t Demo : rev.

21.1 A Reversible System.

The fourth-order di�eren tial equation

u′′′′ + Pu′′ + u � u3 = 0

arisesin a number of contexts, e.g., as the travelling-wave equation for a nonlinear-Schr•odinger
equationwith fourth-order dissipation (Buryak & Akhmediev 1995)and asa model of a strut on
a symmetric nonlinear elastic foundation (Hunt, Bolt & Thompson 1989). It may be expressed
as a system















_u1 = u2

_u2 = u3

_u3 = u4

_u4 = � Pu3 � u1 + u3
1

(21.1)

Note that (21.1) is invariant under two separatereversibilities

R1 : (u1, u2, u3, u4, t) 7! (u1, � u2, u3, � u4, � t) (21.2)

and
R2 : (u1, u2, u3, u4, t) 7! (� u1, u2, � u3, u4, � t) (21.3)

First, we copy the demointo a new directory

@dmrev

For this example,we shall make two separatestarts from data stored in equation and data �les
rev.c.1,rev.dat.1and rev.c.3,rev.dat.3respectively. The �rst of thesecontains initial data for a
solution that is reversibleunderR1 and the secondfor data that is reversibleunderR2.

21.2 An R1-Reversible Homoclinic Solution.

The �rst run

make first

177

starts by copying the �les rev.c.1and rev.dat.1to rev.cand rev.dat. The orbit contained in the
data �le is a \primary" homoclinic solution for P = 1.6, with truncation (half-)interval PAR(11)
= 39.0448429. which is reversibleunderR1. Note that this reversibility is speci�ed in h.rev.1via
NREV=1, (IREV(I), I=1,NDIM) = 0 1 0 1. Note also,from c.rev.1that we only have onefree
parameter PAR(1)becausesymmetric homoclinic orbits in reversiblesystemsare genericrather
than of codimensionone. The �rst run results in the output

BR PT TY LAB PAR(1) L2-NORM MAXU(1) ...
1 7 UZ 2 1.700002E+00 2.633353E-01 4.179794E-01
1 12 UZ 3 1.800000E+00 2.682659E-01 4.806063E-01
1 15 UZ 4 1.900006E+00 2.493415E-01 4.429364E-01
1 20 EP 5 1.996247E+00 1.111306E-01 1.007111E-01

which is consistent with the theoretical result that the solution tendsuniformly to zeroasP ! 0.
Note, by plotting the data saved in s.1 that only \half " of the homoclinic orbit is computedup
to its point of symmetry. SeeFigure 21.1.

The secondrun continuesin the other direction of PAR(1), with the test function ψ2 activated
for the detection of saddleto saddle-focus transition points

make second

The output

BR PT TY LAB PAR(1) L2-NORM MAXU(1) ... PAR(22)
1 11 UZ 6 1.000005E+00 2.555446E-01 1.767149E-01 ... -3.000005E+00
1 22 UZ 7 -1.198325E-07 2.625491E-01 4.697314E-02 ... -2.000000E+00
1 33 UZ 8 -1.000000E+00 2.741483E-01 4.316007E-03 ... -1.000000E+00
1 44 UZ 9 -2.000000E+00 2.873838E-01 1.245735E-11 ... 2.318248E-08
1 55 EP 10 -3.099341E+00 3.020172E-01 -2.749454E-11 ... 1.099341E+00

shows a saddle to saddle-focus transition (indicated by a zero of PAR(22)) at PAR(1)=-2.
Beyond that label the �rst component of the solution is negativeand (up to the point of symmetry)
monotonedecreasing.SeeFigure 21.2.

21.3 An R2-Reversible Homoclinic Solution.

makethird

Copiesthe �les rev.c.3and rev.dat.3to rev.cand rev.dat, and runs them with the constants
stored in c.rev.3and h.rev.3. The orbit contained in the data �le is a \m ulti-pulse" homoclinic
solution for P = 1.6, with truncation (half-)interval PAR(11) = 47.4464189. which is reversible
underR2. This reversibility is speci�ed in h.rev.1via NREV=1, (IREV(I), I=1,NDIM) = 1 0
1 0. The output

BR PT TY LAB PAR(1) L2-NORM MAXU(1) ...
1 15 UZ 2 1.700000E+00 3.836401E-01 4.890015E-01
1 16 LP 3 1.711574E+00 3.922135E-01 5.442385E-01

178

x/T

u

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

Figure 21.1: R1-Reversible homoclinic solutions on the half-interval x/T 2 [0,1] where T =
39.0448429for P approaching 2 (solutions with labels 1-5 respectively have decreasingampli-
tude)

x/T

u

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

-1.50

-1.25

-1.00

-0.75

-0.50

-0.25

0.00

0.25

Figure 21.2: R1-reversible homoclinic orbits with oscillatory decay as x ! �1 (corresponding
to label 6) and monotonedecay (at label 10)

179

1 19 UZ 4 1.600000E+00 4.329404E-01 7.769491E-01
1 31 UZ 5 1.000000E+00 4.808488E-01 1.083298E+00
1 86 UZ 6 -9.664802E-10 5.158463E-01 1.258650E+00

contains the label of a limit point (ILP was set to 1 in c.rev.3, which corresponds to a \coa-
lescence"of two reversiblehomoclinic orbits. The two solutions on either sideof this limit point
are displayed in Figure 21.3. The computation endsin a no-convergencepoint. The solution here
is depicted in Figure 21.4. The lack of convergenceis due to the large peak and trough of the
solution rapidly moving to the left asP ! � 2 (cf. Champneys& Spence(1993)).

Continuing from the initial solution in the other parameterdirection

make fourth

we obtain the output

BR PT TY LAB PAR(1) L2-NORM MAXU(1) ...
1 7 UZ 8 1.600000E+00 3.701709E-01 3.836833E-01
1 33 UZ 9 9.999980E-01 3.614405E-01 1.775035E-01
1 93 UZ 10 -7.819855E-06 3.713007E-01 4.698309E-02

which again endsat a no convergenceerror for similar reasons.

180

x/T

u

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

Figure 21.3: Two R2-reversiblehomoclinic orbits at P = 1.6 corresponding to labels 1 (smaller
amplitude) and 5 (larger amplitude)

x/T

u

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Figure 21.4: An R2-reversiblehomoclinic orbit at label 8

181

21.4 Detailed AUTO -Commands.

AUTO -COMMAND ACTION
! mkdir rev createan empty work directory
cd rev changedirectory
demo('rev') copy the demo�les to the work directory
cp rev.c.1 rev.c get equations�le to rev.c
cp rev.dat.1 rev.dat get the starting data to rev.dat
us('rev') usethe starting data in rev.datto create s.dat
run(c='rev.1',h='rev. 1' ,s ='d at ') increase PAR(1)
sv('1') save output-�les as b.1, s.1,d.1
run(c='rev.2',h='rev. 2' ,s ='1 ') continue in reversedirection; restart from s.1
ap('1') append output-�les to b.1, s.1,d.1
cp rev.c.3 rev.c get equations�le with new value of PAR(11)
cp rev.dat.3 rev.dat get starting data with di�eren t reversibility
us('rev') usethe starting data in rev.datto create s.dat
run(c='rev.3',h='rev. 3' ,s ='d at ') restart with di�eren t reversibility
sv('3') save output-�les as b.3, s.3,d.3
run(c='rev.4',h='rev. 4' ,s ='3 ') continue in reversedirection; restart from s.3
ap('3') append output-�les to b.3, s.3,d.3

Table 21.1: Detailed AUTO -Commandsfor running demo rev.

182

Chapter 22

HomCon t Demo : Homo clinic branc h
switc hing.

This demo illustrates homoclinic branch switching, which is an implementation of Lin's method
(Lin 1990, Sandstede1993, C. 2001) as described in Oldeman et al. (2001). We use a direct
branch switching method to switch from 1- to 2- and 3-homoclinic orbits near an inclination
ip
bifurcation in a model dueto Sandstede,which wasintroducedin Chapter 16. This alsoshowshow
to obtain a homoclinic orbit through continuation of a periodic orbit born at a Hopf bifurcation.
Thereafter, we illustrate homoclinic branch switching for the FitzHugh-Nagumoequationsand a
5th-order Korteweg-DeVries model.

22.1 Branch switching at an inclination flip in Sand-

stede’s model.

Considerthe system(Sandstede1995a)

_x = ax + by � ax2 � αzx(2 � 3x),
_y = bx + ay � 3

2
x(bx + ay) + αz2y,

_z = cz + µx + 3xz + α(x2(1 � x) � y2).
(22.1)

as given in the �le sib.c, wherefor simplicity we have set ~µ = 0, β = 1 and γ = 3.
We study an inclination
ip that exists for a = 0.375, b = 0.625 and c = � 0.75. This

correspondsto the situation wherethe eigenvaluesof the equilibrium at the origin are a + b = 1,
a � b = � 0.25 and c = � 0.75. Hence, the corresponding bifurcation diagram consistsof a
complicated structure involving a fan of in�nitely many n-periodic and n-homoclinic orbits for
arbitrary n and a region with horseshoe dynamics; seealso Homburg & Krauskopf (2000) and
the referencestherein.

This computation starts from an equilibrium at (2/3,0,0), which exists for a = µ = α = 0.
Also, b is set to 0.625(the value we would like it to be) and c is set to � 2.5 in stpn t . Choosing
c = � 2 at this stageleadsto convergenceproblems. This equilibrium is not the onecorresponding
to the homoclinic orbit, but it is an equilibrium with complex eigenvalues, that we can follow
until it reachesa Hopf bifurcation. A periodic orbit emanatesfrom this Hopf bifurcation and can
be followed to the homoclinic orbit. However, �rst we needto changea from 0 to 0.375.

183

All the following commands,exceptfor demo('sib') arecontained within the �le 'sib.auto'
which you can either executein a batch mode by entering
> auto sib.auto
or step by step using
AUTO>demofile('sib.auto') .

We start by copying the demoto the current work directory and running the �rst step

demo('sib')
ld('sib')

rn()
sv('1')

The equilibrium is followed in a until a (or PAR(1)) is at our desiredvalue, 0.375.

BR PT TY LAB PAR(1) ... U(1) U(2) U(3)
1 1 EP 1 0.000000E+00 ... 6.666667E-01 0.000000E+00 0.000000E+00
1 6 EP 2 3.750000E-01 ... 6.666667E-01 -1.333333E-01 0.000000E+00

The output is saved in the �les b.1, s.1and d.1. Next we continue in α (PAR(4)) until a Hopf
bifurcation is found:

rn(c='sib.2',s='1')
sv('2')

or, alternatively,

cc("IRS",2)
cc("ICP",[4])

rn(s='1')
sv('2')

BR PT TY LAB PAR(4) ... U(1) U(2) U(3)
1 18 HB 3 3.184290E-01 ... 6.543750E-01 -1.347543E-01 7.701025E-02

The output is saved in the �les b.2, s.2 and d.2. This Hopf bifurcation can then be continued
into a periodic orbit. The periodic orbit eventually reachesa homoclinic bifurcation. We continue
in µ= PAR(5) and PAR(10), which corresponds to the period, and stop when the period is equal
to 35.

rn(c='sib.3',s='2')
sv('3')

BR PT TY LAB PAR(5) L2-NORM ... PERIOD
3 5 5 -2.418809E-03 6.705689E-01 ... 1.089749E+01

...
3 40 8 -1.294950E-02 6.145469E-01 ... 1.412970E+01

...
3 81 EP 13 -1.046566E-04 4.018291E-01 ... 3.499999E+01

184

The output is saved in the �les b.3, s.3and d.3. Note that µ �rst decreasesand then increases
towards0, which is preciselywhat we expect in this model, ashomoclinic orbits occur on the line
µ = 0 in the (α, µ)-plane. It is now instructive to look at a phasespacediagram to seewhat is
going on.

plot('3')

Selecting'solution' for Type, [5,6,7,8,9,10,11,12,13]for Label, [0] for X and [1] for Y, we obtain
the diagram depictedin Figure 22.1(a),wherethe periodic orbit grows from the Hopf equilibrium
to a homoclinic orbit.

(a)

0.00e+00
2.00e-01

4.00e-01
6.00e−01

8.00e-01
1.00e+00

4.00e−01

2.00e−01

0.00e+00

-2.00e-01

-4.00e-01

Columns 1

Columns 0

(b)

0.00e+00
2.00e-01

4.00e-01
6.00e−01

8.00e-01
1.00e+00

1.00e+00

8.00e−01

6.00e−01

4.00e-01

2.00e−01

0.00e+00

Columns 0

Columns ’t’

Figure 22.1: Periodic orbit growing from a Hopf bifurcation to a homoclinic orbit (a). The
unshifted homoclinic orbit (b).

Note however, that the homoclinic orbit has the wrong left-hand and right-hand end points.
This can be seenby plotting the solution corresponding to Label [13] using 't' vs. 'x' (coordinate
[0]), as depicted in Figure 22.1(b).

Hence,in order to continue this asa real homoclinic we have to give HomCont special instruc-
tions, to do a phase-shift in time. This can be done by setting ISTART=4. Moreover, sincewe
have not speci�ed the value of the equilibrium at the origin in sib.c, we needto set IEQUIB=1to
let HomCont detect the equilibrium. Note that in this casethis is not strictly necessary;however,
we do this for instructional purposes.

Now we useHomCont to continue the homoclinic orbit in c and µ (PAR(3), PAR(5)), to get
the desiredvalue c = � 2.0.

rn(c='sib.4',h='sib.s hi ft ',s =' 3')
sv('4')

BR PT TY LAB PAR(3) L2-NORM ... PAR(5)
3 15 EP 14 -2.000000E+00 4.018899E-01 ... 2.661459E-09

The output is saved in the �les b.4, s.4 and d.4. Note that PAR(5)= µ remainszero, which is
exactly what we expect.

185

Next we want to add a solution to the adjoint equation to this solution. This is achieved by
making the change ITWIST = 1 saved in h.sib.twist. Also, we set ISTARTto 1 to tell HomCont
that it is should not try to shift the orbit anymore.

rn(c='sib.5',h='sib.t wist ',s =' 4')
sv('5')

or, alternatively,

cc("IRS",14)
cc("ICP",[5,8])

cc("NMX",2)
chc("ITWIST",1)
chc("ISTART",1)

rn(s='4')
sv('5')

wherechc means\changeHomCont constant". The output is stored in b.5, s.5and d.5.

BR PT TY LAB PAR(5) L2-NORM ... PAR(8)
3 2 EP 15 2.550843E-09 4.018898E-01 ... -1.000000E-02

Here PAR(8) is a dummy (unused) parameter and µ just stays where it is. Now that we have
obtained the solution of the adjoint equation, we are able to detect inclination
ips. This can be
achieved by setting NPSIto 1, IPSI(1) to 13, and monitoring PAR(32).

rn(c='sib.6',h='sib.i f' ,s =' 5')
sv('6')

BR PT TY LAB PAR(4) L2-NORM ... PAR(5) PAR(32)
3 11 UZ 16 7.117745E-02 4.018899E-01 ... 1.243774E-11 -2.366987E-07

The output is stored in b.6, s.6and d.6. Hencean inclination
ip was found at α = 0.7117745.
Now we are ready to perform homoclinic branch switching, using the techniquesdescribed in

(Oldeman et al. 2001). Our �rst aim is to �nd a 2-homoclinic orbit. The ingredients we need
are: a homoclinic orbit wheren-homoclinic orbits are closeby, and the solution to the adjoint
equation to obtain the Lin vector. Sinceboth ingredients are there, we can now continue in µ, ε1

and T1, to obtain the initial Lin gap. Recall from Chapter 15 that the Lin gapsεi correspond to
PAR(19+i*2) and the time intervals Ti correspond to PAR(20+i*2). We stop when ε1 = 0.2. We
needto specify ITWIST=2, to tell HomCont we aim to �nd a 2-homoclinic orbit, so that it will
split it up in three parts with two potential Lin gaps. We e�ectiv ely have a 9-dimensionalsystem
at this point.

rn(c='sib.7',h='sib.hb s2', s='6 ')
sv('7')

186

BR PT TY LAB PAR(20) L2-NORM ... PAR(21) PAR(5)
3 10 18 3.458968E+01 4.468176E-01 ... 7.877123E-07 -1.558861E-11
3 20 19 2.736992E+01 4.468176E-01 ... 2.911187E-05 -1.639739E-09
3 30 20 1.737196E+01 4.468171E-01 ... 4.422734E-03 -3.101671E-05
3 38 EP 21 1.014512E+01 4.467963E-01 ... 2.000000E-01 -1.486151E-02

The output is stored in b.7, s.7and d.7. Herewe seethat T1, the time it takesto make the �rst
loop with respect to the Poincar�e section,decreases.This is illustrated in Figure 22.2. Next we
are ready to closethis gap, by continuing in α, µ, and ε1, while keepingT1 at a constant value.

(a)

0.00e+00
2.00e−01

4.00e−01
6.00e-01

8.00e−01
1.00e+00

1.00e+00

8.00e-01

6.00e−01

4.00e−01

2.00e-01

0.00e+00

Columns 3

Columns 't'

(b)

0.00e+00
2.00e−01

4.00e−01
6.00e-01

8.00e−01
1.00e+00

4.00e-01

3.00e-01

2.00e-01

1.00e−01

0.00e+00

-1.00e-01

−2.00e−01

−3.00e−01

−4.00e−01

Columns 1 4 7

Columns 0 3 6

Figure 22.2: Behaviour of the secondpieceof the `broken homoclinic orbit' when creating a Lin
gap (a). Projection of the \brok en homoclinic orbit" onto the (x, y)-plane, where ε1 = 0.2. To
include all the piecesnecessaryto obtain this �gure, the \X" box must contain [0,3,6] and the
\Y" box must contain [1,4,7](b).

rn(c='sib.8',h='sib.hb s2', s='7 ')
ap('6')

BR PT TY LAB PAR(4) L2-NORM ... PAR(5) PAR(21)
3 3 UZ 22 7.399999E-02 4.467807E-01 ... -1.431624E-02 1.937464E-01
3 32 EP 23 1.992281E-01 4.465901E-01 ... -6.054949E-03 2.292996E-06

The output is appendedto b.6, s.6and d.6. Now we have obtained a 2-homoclinic orbit at label
24. However, the homoclinic orbit is still split in three parts. We can switch back to a normal
orbit by setting ITWISTback to 0 and continuing in the usual way. Herewe continue back to the
inclination
ip point in α and µ.

rn(c='sib.8',h='sib. hom',s= '6 ')
ap('6')

BR PT TY LAB PAR(4) L2-NORM ... PAR(5)
3 7 UZ 24 1.499999E-01 4.944903E-01 ... -3.602482E-03
3 30 EP 25 7.614033E-02 4.987463E-01 ... -2.648395E-06

187

So the 2-homoclinic orbit convergesback to the 1-homoclinic orbit at the inclination
ip bifur-
cation. The output is appendedto b.6, s.6 and d.6. The resulting 2-homoclinic orbits can be
seenusing

plot('6')

and is depicted in Figure 22.3(a).

(a)

0.00e+00
2.00e-01

4.00e−01
6.00e-01

8.00e-01
1.00e+00

1.00e+00

8.00e-01

6.00e−01

4.00e-01

2.00e-01

0.00e+00

Columns 0

Columns ’t’

(b)

0.00e+00
2.00e-01

4.00e−01
6.00e-01

8.00e-01
1.00e+00

1.00e+00

8.00e-01

6.00e−01

4.00e−01

2.00e-01

0.00e+00

Columns 0

Columns 't'

Figure 22.3: The 2-homoclinic orbit as a is changed(a). The two di�eren t 3-homoclinic orbits
(b).

Next, we aim to �nd a 3-homoclinic orbit. To do so, we restart at the inclination
ip point
at label 16 and set ITWIST=3. Moreover, we needto continue in onemore gap, ε2= PAR(23)and,
onceagain, stop when ε1= PAR(21)=0.2. Note that the dimensionof the boundary value problem
we continue is now equal to 12. This is not to be confusedwith the setting of NDIM=3in the
parameter �le, becauseHomCont handlesthis internally.

rn(c='sib.10',h='sib. hbs3',s =' 6')
sv('10')

BR PT TY LAB PAR(20) ... PAR(21) PAR(23) PAR(5)
3 10 26 3.458963E+01 ... 7.878940E-07 6.421573E-07 -1.062630E-11
3 20 27 2.736987E+01 ... 2.911260E-05 6.515911E-07 -1.636554E-09
3 30 28 1.737189E+01 ... 4.422894E-03 1.440898E-04 -3.101882E-05
3 38 EP 29 1.014512E+01 ... 2.000000E-01 6.974453E-02 -1.486151E-02

The output is stored in b.10, s.10and d.10. Now we needto subsequently closethe Lin gaps.
Our strategy is to keepT1 �xed. We �rst continue in α, µ, ε1 and ε2 until ε1 = 0.

rn(c='sib.11',h='sib. hbs3', s='1 0')
ap('6')

188

BR PT TY LAB PAR(4) ... PAR(5) PAR(21) PAR(23)
3 6 UZ 30 8.199998E-02 ... -1.297904E-02 1.769949E-01 6.371836E-02
3 32 EP 31 1.984145E-01 ... -6.054949E-03 2.307164E-06 3.624489E-02

The output is appended to b.6, s.6 and d.6. Note that this continuation is very similar to
the one where we found a 2-homoclinic orbit. In fact we have now found a 2-homoclinic orbit
(numerically) followed by a `broken' 1-homoclinic orbit; only the meshis not aligned.

The next step is to closethe gap corresponding to ε2 to obtain a 3-homoclinic orbit. We
replacethe continuation parameterε1 by T2, becauseT2 (PAR(22)) still hasto be decreasedfrom
its high value (35) and ε1 needsto stay at 0.

rn(c='sib.12',h='sib. hbs3',s =' 6')
ap('6')

BR PT TY LAB PAR(4) ... PAR(5) PAR(22) PAR(23)
3 16 UZ 32 1.983953E-01 ... -6.055361E-03 2.013107E+01 1.824909E-08
3 24 UZ 33 1.800000E-01 ... -6.502928E-03 1.275539E+01 -3.142935E-02
3 30 UZ 34 1.669900E-01 ... -6.892692E-03 9.417449E+00 -1.031790E-06
3 32 EP 35 1.781716E-01 ... -6.553641E-03 9.502999E+00 -7.203666E-02

The output is appendedto b.6, s.6 and d.6. Note that we have found two zerosof PAR(23),
at labels 32 and 34, respectively. The two zeroscorrespond to two di�eren t 3-homoclinic orbits,
which, when followed from periodic orbits, both emanatefrom from the samesaddle-node bifur-
cation. Thesetwo 3-homoclinic orbits aredepictedin Figure 22.3(b). We can follow both of these
back to the inclination
ip point, by setting ITWISTback to 0:

rn(c='sib.13',h='sib.h om', s='6 ')
ap('6')

BR PT TY LAB PAR(4) L2-NORM ... PAR(5)
3 13 UZ 36 1.299993E-01 5.048071E-01 ... -2.339037E-03
3 30 EP 37 9.272363E-02 5.065599E-01 ... -2.767140E-04

rn(c='sib.14',h='sib.h om', s='6 ')
ap('6')

BR PT TY LAB PAR(4) L2-NORM ... PAR(5)
3 4 UZ 37 1.449997E-01 5.473471E-01 ... -4.794005E-03
3 30 EP 39 8.394009E-02 5.526047E-01 ... -7.367526E-05

All the output is appended to b.6, s.6 and d.6. The bifurcation diagram and the paths we
followed whenclosingthe Lin gapsare depictedin Figure 22.4. It is possibleand straightforward
to obtain 4,5,6, . . . -homoclinic orbits by extending the above strategy.

189

1617

23

24

25

26

30

3132
33

34

35

36

37

38

−1.00e−01
0.00e+00

1.00e-01
2.00e−01

3.00e−01
4.00e−01

1.00e−02

0.00e+00

-1.00e-02

-2.00e-02

mu

alpha

U

U

U

U

U
U

X

U

U

Figure 22.4: Parameter spacediagram near an inclination
ip. The curve through label 17
corresponds to a 1-homoclinic orbit. The opening of the Lin gaps occurs along the vertical
line from label 16 to label 23. The curves through labels 23 and 30 denote the path that is
followed when closing the Lin gaps. The (approximately overlaid) curves though labels 25 and
35 correspond to the 2- and one of the 3-homoclinic orbits. Finally, the curve through label 37
correspondsto the other 3-homoclinic orbit, which was obtained for PAR(22)= T2 = 12.03201.

22.2 Branch switching for a Shil’nikov type homoclinic

orbit in the FitzHugh-Nagumo equations.

The FitzHugh-Nagumo(FHN) equations(FitzHugh 1961,Nagumo,Arimoto & Yoshizawa 1962)
are a simpli�ed versionof the Hodgkin-Huxley equations(Hodgkin & Huxley 1952). They model
nerve axon dynamicsand are given by

ut = uxx � fa(u) � w,

wt = ε(u � γw),
(22.2)

where
fa(u) = u(u � a)(u � 1).

Travelling wave solutions of the form (u,w)(x, t) = (u,w)(ξ), where ξ = x + ct are solutions
of the following ODE system:

_u = v,

_v = cv + fa(u) + w,

_w =
ε

c
(u � γw).

(22.3)

In particular we considersolitary wave solutionsof (22.2). Thesecorrespond to orbits homoclinic
to (u, v, w) = 0 in system(22.3). In our numerical examplewe keepγ = 0.

190

We aim to �nd a 2-homoclinic orbit at a Shil'nikov bifurcation. All the commandsgiven
hereare in the �le fnb.auto. First we obtain a homoclinic orbit using a homotopy technique (see
Friedman, Doedel & Monteiro (1994)), using ISTART=3, for the parameter valuesc = 0.21, a =
0.2, ε = 0.0025.

demo('sib')
ld('fnb')

rn()
sv('1')

Among the output we see:

BR PT TY LAB PERIOD L2-NORM ... PAR(16)
1 20 UZ 3 2.922565E+01 2.379162E-01 ... -1.680003E-09

and a zero of PAR(16) meansthat a zero of an arti�cial parameter has been located and the
right-hand end point of the corresponding solution belongsto the plane that is tangent to the
stable manifold at the saddle. This point still needsto comecloserto the equilibrium, which we
can achieve by further increasingthe period to 300,while keepingPAR(16)at 0:

rn(c='fnb.2',h='fnb.1 ', s=' 1')
sv('2')

BR PT TY LAB PERIOD L2-NORM ... PAR(1)
1 190 UZ 10 3.000000E+02 7.379317E-02 ... 1.792864E-01

Next we stop using the homotopy technique and increasethe period even further, to 1000.

rn(c='fnb.3',h='fnb.3 ', s=' 2')
sv('3')

BR PT TY LAB PERIOD L2-NORM ... PAR(1)
1 80 UZ 13 1.000000E+03 4.041827E-02 ... 1.792865E-01

A continuation in PAR(1)= a and PAR(0)= c needsto be performedto arriveat the placewhere
we wish to �nd a 2-homoclinic orbit: a = 0. At the sametime we monitor PAR(21) to locate
Belyakov points.

rn(c='fnb.4',h='fnb.4 ', s=' 3')
sv('4')

BR PT TY LAB PAR(1) L2-NORM ... PAR(0) PAR(21)
1 6 UZ 15 1.318124E-01 3.287104E-02 ... 2.171656E-01 -6.312189E-06
1 23 UZ 19 -8.545741E-08 1.561579E-02 ... 2.742181E-01 -9.887718E-02

Hence,there existsa Belyakov point at (a, c) = (0.1318124,0.217656).At label 19wehavea lower
value of a than at the Belyakov point, and by inspection of the �le d.4 we can observe that the
equilibrium hasonepositive eigenvalueand a complexconjugatepair of eigenvalueswith negative
real part, and concludethat this orbit is of Shil'nikov type. Beforestarting the homoclinic branch
switching, we calculate the adjoint to obtain a `Lin vector':

191

rn(c='fnb.5',h='fnb.5 ', s=' 4')
sv('5')

BR PT TY LAB PAR(8) L2-NORM ... PAR(2)
1 2 EP 28 -1.000000E+00 1.561579E-02 ... 2.500000E-03

Next, we continue in the time T1 (PAR(20)), the gapε1 (PAR(21)) and c (PAR(0)), and by setting
ISTART=-2 we try to locate a 2-homoclinic orbit:

rn(c='fnb.6',h='fnb.6 ', s=' 5')
sv('6')

In fact we �nd many of them, exactly as is predicted by the theory:

BR PT TY LAB PAR(20) ... PAR(0) PAR(21)
...

1 175 UZ 45 1.647952E+02 ... 2.742181E-01 -2.313522E-11
1 179 UZ 46 1.448063E+02 ... 2.742181E-01 1.481383E-11
1 183 UZ 47 1.248379E+02 ... 2.742181E-01 2.171338E-16
1 188 UZ 48 1.048192E+02 ... 2.742181E-01 5.215295E-11
1 192 UZ 49 8.487422E+01 ... 2.742181E-01 3.106887E-15
1 197 UZ 50 6.463349E+01 ... 2.742181E-01 -1.803730E-10

Each of thesehomoclinic orbits di�er by about 20 in the valueT1. This is about the time it takes
to make onehalf-turn closeto and around the equilibrium, so that orbits di�er by the number of
half turns around the equilibrium beforea big excursionin phasespace.Note that the variation
of c is so small that it doesnot appear.

A plot of T1 vs. ε1 gives insight into how the gap is openedand closedin the continuation
process.This is depictedin Figure 22.5. We arenow in a position to continue each of theseorbits

42

43

44

454647484950

51

52

0.00e+00
1.00e+02

2.00e+02

4.00e-03

3.00e-03

2.00e−03

1.00e-03

0.00e+00

-1.00e-03

−2.00e−03

−3.00e−03

Column 6

Column 0

UUUUUUUU

X

Figure 22.5: A plot of ε1 as a function of T1 during our computation of Shil'nikov-type two-
homoclinic orbits. Each zerocorrespondsto a di�eren t orbit.

asa normal homoclinic orbit by setting ISTART=1and ITWIST=0. We leave this asan exerciseto
the reader.

192

22.3 Branch switching to a 3-homoclinic orbit in a

5th-order Korteweg-De Vries model

In Champneys& Groves(1997) the following water wave model was considered:

2
15
r′′′′ � br′′ + ar +

3
2
r2 �

1
2

(r′)2 + [rr′]′ = 0. (22.4)

It represents solitary-wave solutions r(x + at), r ! 0 asx ! �1 of the 5th-order PDE

rt +
2
15
rxxxx � brxxx + 3rrx + 2rxrxx + rrxxx=0,

wherea is the wave speed. The ODE correspondsto a Hamiltonian systemwith Hamiltonian

H = �
1
2
q3
1 �

1
2
aq2

1 + p1q2 �
1
2
bq2

2 +
15
4
p2

2 +
1
2
q2
2q1

and
q1 = r, q2 = r′, p1 = �

2
15
r′′′ + br′ � rr′, p2 =

2
15
r′′.

System(22.4) is also reversibleunder the transformation

t 7! � t, (q1, q2, p1, p2) 7! (q1, � q2, � p1, p2),

but we do not exploit the reversible structure (IREV=0), and instead use it as an example of
Hamiltonian system. This systemexhibits an orbit
ip for a reversibleHamiltonian system. In
Hamiltonian systems,homoclinic orbits are codimension-zerophenomena,and we have to add
an additional parameterλ that breaksthe Hamiltonian structure in this system,by introducing
arti�cial friction. Thus, the actual systemof equationsthat is usedfor continuation is

_x = (λI + J)r H(x),

wherex = (q1, q2, p1, p2) and J is the usual skew symmetric matrix in R4. It is now possibleto
continue a homoclinic orbit in HomCont in two parameters(λ and either a or b); seealso Beyn
(1990).

An explicit solution exists for a = 3/5(2b + 1)(b � 2), b � � 1/2, and it is given by

r(t) = 3(b +
1
2

)sech2

(

[
3
4

(2b + 1)]1/2t

)

.

It corresponds to a reversible orbit
ip for b > 2 (a > 0) We start from this explicit solution,
using ISTART=2, for a = 3 and b = (

p
65+ 3)/4:

demo('kdv')
ld('kdv')

rn()
sv('1')

193

BR PT TY LAB PAR(0) L2-NORM ... PAR(2)
1 1 EP 1 3.000000E+00 5.565438E+00 ... 0.000000E+00
1 2 EP 2 3.049592E+00 5.491407E+00 ... 1.807155E-17

Here PAR(0)= a, PAR(1)= b, and PAR(2)= λ. We have only done a very small continuation to
give AUTO a chanceto createa good meshand avoid convergenceproblemslater. Next, we set
ITWIST=1and calculate the adjoint:

rn(c='kdv.2',h='kdv.2 ', s=' 1')
sv('2')

BR PT TY LAB PAR(1) L2-NORM ... PAR(8)
1 2 EP 3 2.765575E+00 5.491418E+00 ... -6.250114E-04

We now needto move back to the orbit
ip at a = 3:

rn(c='kdv.3',h='kdv.3 ', s=' 2')
sv('3')

BR PT TY LAB PAR(0) L2-NORM ... PAR(2)
1 14 UZ 5 3.000000E+00 5.476133E+00 ... 1.483821E-09

Now all preparationsare done to start homoclinic branch switching. This is very similar to the
technique usedin Sandstede'smodel in Section22.1; to �nd a 3-homoclinic orbit, we open 2 Lin
gaps,until T1 = 3.5, while alsovarying λ= PAR(2).

rn(c='kdv.4',h='kdv.4 ', s=' 3')
sv('4')

BR PT TY LAB PAR(2) ... PAR(20) PAR(21) PAR(23)
1 10 8 5.797610E-10 ... 1.672717E+01 -8.381610E-08 -6.988443E-07
1 19 UZ 9 1.399137E-09 ... 1.012493E+01 6.452744E-12 1.379764E-07
1 20 10 2.122922E-09 ... 9.001030E+00 1.032750E-07 4.022729E-07
1 29 EP 11 2.154196E-06 ... 3.499999E+00 7.959776E-04 3.999453E-04

We then look for an orbit with a < 3 and close the gap corresponding to ε1= PAR(21), for
decreasinga.

rn(c='kdv.5',h='kdv.5 ', s=' 4')
sv('5')

BR PT TY LAB PAR(1) ... PAR(2) PAR(21) PAR(23)
1 10 12 2.579042E+00 ... 2.154861E-06 7.659464E-04 3.829183E-04
1 13 UZ 13 2.320452E+00 ... 3.933752E-11 1.088379E-10 1.552594E-08
1 20 EP 14 -1.906119E-01 ... -1.022044E-03 -7.600151E-01 -3.446967E-01

and �nally closethe gap corresponding to ε2= PAR(23),

194

rn(c='kdv.6',h='kdv.6 ', s=' 5')
sv('6')

BR PT TY LAB PAR(1) ... PAR(2) PAR(22) PAR(23)
1 23 UZ 15 2.320450E+00 ... 2.198310E-12 1.487623E+01 -4.392295E-10
1 30 16 2.320380E+00 ... -1.004669E-09 1.027163E+01 -5.060989E-07
1 51 UZ 17 2.336952E+00 ... 2.374866E-07 3.482932E+00 1.195914E-04
1 58 UZ 18 3.080847E+00 ... 2.673602E-12 3.500044E+00 -1.934478E-10
1 60 EP 19 3.134237E+00 ... -5.614124E-07 3.778288E+00 -3.398845E-04

so that a three-homoclinic orbit is found. Here the zero at label 17 is the one we are looking
for. Label 15 is a false positive sinceT2= PAR(22) is still too high. At label 18, a= PAR(1) has
changedconsiderablyto the extend that a > 3 and a second3-homoclinic orbit is found. Note
that for all zerosof PAR(23)= ε2, the parameterλ= PAR(2) is alsozero(within AUTO accuracy),
which it hasto be to remain within the original Hamiltonian system. Setting ISTART=1, a normal
\trivial" continuation (with NMX=1) of the orbit corresponding to label 17 lets HomCont produce
a proper concatenated3-homoclinic orbit:

rn(c='kdv.7',h='kdv.7 ', s=' 6')
sv('7')

BR PT TY LAB PAR(1) L2-NORM ... PAR(2)
1 2 EP 20 2.336952E+00 7.505830E+00 ... 2.374866E-07

This 3-homoclinic orbit is depicted in Figure 22.6.

0.00e+00
2.00e-01

4.00e−01
6.00e-01

8.00e-01
1.00e+00

1.00e+01

8.00e+00

6.00e+00

4.00e+00

2.00e+00

0.00e+00

−2.00e+00

Columns 0

Columns ’t’

Figure 22.6: A 3-homoclinic orbit in a 5th-order Hamiltonian Korteweg-DeVries model.

195

App endix A

Running A UTO using Command Mo de.

AUTO can be run with the interface described in Chapter 4 or with the commandsdescribed
below. The AUTO aliasesmust have beenactivated; seeSection1.2; and an equations-�le xxx.c
and a corresponding constants-�le c.xxx(seeSection3.1) must be in the current userdirectory.
Do not run AUTO in the directory auto/2000 or in any of its subdirectories.

A.0.1 Basic commands.

@r : Type @r xxx to run AUTO . Restart data, if needed,areexpectedin s.xxx, and AUTO -
constants in c.xxx. This is the simplest way to run AUTO .

- Type @r xxx yyy to run AUTO with equations-�le xxx.c and restart data-�le s.yyy.
AUTO -constants must be in c.xxx.

- Type @r xxx yyy zzz to run AUTO with equations-�le xxx.c, restart data-�le s.yyyand
constants-�le c.zzz.

@R: The command @Rxxx is equivalent to the command @r xxx above.

- Type @Rxxx i to run AUTO with equations-�le xxx.c, constants-�le c.xxx.i and, if
needed,restart data-�le s.xxx.

- Type @Rxxx i yyy to run AUTO with equations-�le xxx.c, constants-�le c.xxx.i and
restart data-�le s.yyy.

@sv : Type @svxxx to save the output-�les fort.7, fort.8, fort.9, as b.xxx, s.xxx, d.xxx,
respectively. Existing �les by thesenameswill be deleted.

@ap : Type @apxxx to append the output-�les fort.7, fort.8, fort.9, to existing data-�les
b.xxx, s.xxx, d.xxx, resp.

- Type @apxxx yyy to append b.xxx, s.xxx, d.xxx, to b.yyy, s.yyy, d.yyy, resp.

196

A.0.2 Plotting commands.

@p : Type @pxxx to run the graphicsprogram PLAUT (SeeChapter B) for the graphical
inspection of the data-�les b.xxxand s.xxx.

- Type @pto run the graphicsprogram PLAUT for the graphical inspection of the output-
�les fort.7 and fort.8.

@ps : Type @psfig.x to convert a saved PLAUT �gure �g.x from compactPLOT10 format
to PostScript format. The converted �le is called �g.x.ps. The original �le is left unchanged.

@pr : Type @pr fig.x to convert a saved PLAUT �gure �g.x from compactPLOT10 format
to PostScript format and sendit to the printer. The converted �le is called �g.x.ps. The
original �le is left unchanged.

A.0.3 File-manipulation.

@cp : Type @cpxxx yyy to copy the data-�les b.xxx, s.xxx, d.xxx, c.xxx to b.yyy, s.yyy,
d.yyy, c.yyy, respectively.

@mv: Type @mvxxx yyy to move the data-�les b.xxx, s.xxx, d.xxx, c.xxx, to b.yyy, s.yyy,
d.yyy, c.yyy, respectively.

@df : Type @dfto deletethe output-�les fort.7, fort.8, fort.9.

@cl : Type @cl to cleanthe current directory. This commandwill deleteall �les of the form
fort.* , *.o, and *.exe.

@dl : Type @dl xxx to deletethe data-�les b.xxx, s.xxx, d.xxx.

A.0.4 Diagnostics.

@lp : Type @lpto list the value of the \limit point function" in the output-�le fort.9. This
function vanishesat a limit point (fold).

- Type @lp xxx to list the value of the \limit point function" in the data-�le d.xxx. This
function vanishesat a limit point (fold).

@bp : Type @bpto list the value of the \branch-point function" in the output-�le fort.9. This
function vanishesat a branch point.

- Type @bpxxx to list the value of the \branch-point function" in the data-�le d.xxx. This
function vanishesat a branch point.

@hb : Type @hbto list the valueof the \Hopf function" in the output-�le fort.9. This function
vanishesat a Hopf bifurcation point.

- Type @hbxxx to list the valueof the \Hopf function" in the data-�le d.xxx. This function
vanishesat a Hopf bifurcation point.

197

@sp : Type @spto list the valueof the \secondary-periodic bifurcation function" in the output-
�le fort.9. This function vanishesat period-doubling and torus bifurcations.

- Type @spxxx to list the value of the \secondary-periodic bifurcation function" in the
data-�le d.xxx. This function vanishesat period-doubling and torus bifurcations.

@it : Type @it to list the number of Newton iterations per continuation step in fort.9.

- Type @it xxx to list the number of Newton iterations per continuation step in d.xxx.

@st : Type @stto list the continuation step sizefor each continuation step in fort.9.

- Type @st xxx to list the continuation step sizefor each continuation step in d.xxx.

@ev : Type @evto list the eigenvaluesof the Jacobianin fort.9. (Algebraic problems.)

- Type @evxxx to list the eigenvaluesof the Jacobianin d.xxx. (Algebraic problems.)

@fl : Type @fl to list the Floquet multipliers in the output-�le fort.9. (Di�eren tial equations.)

- Type @fl xxx to list the Floquet multipliers in the data-�le d.xxx. (Di�eren tial equations.)

A.0.5 File-editing.

@e7 : To usethe vi editor to edit the output-�le fort.7.

@e8 : To usethe vi editor to edit the output-�le fort.8.

@e9 : To usethe vi editor to edit the output-�le fort.9.

@j7 : To usethe SGI jot editor to edit the output-�le fort.7.

@j8 : To usethe SGI jot editor to edit the output-�le fort.8.

@j9 : To usethe SGI jot editor to edit the output-�le fort.9.

A.0.6 File-maintenance.

@lb : Type @lb to run an interactive utilit y program for listing, deleting and relabeling
solutions in the output-�les fort.7 and fort.8. The original �les are backed up as � fort.7
and � fort.8.

- Type @lb xxx to list, deleteand relabel solutions in the data-�les b.xxxand s.xxx. The
original �les are backed up as � b.xxxand � s.xxx.

- Type @lb xxx yyy to list, deleteand relabel solutions in the data-�les b.xxxand s.xxx.
The modi�ed �les are written as b.yyyand s.yyy.

198

@fc : Type @fc xxx to convert a user-supplieddata �le xxx.dat to AUTO format. The
converted �le is called s.dat. The original �le is left unchanged.AUTO automatically sets
the period in PAR(11). Other parameter valuesmust be set in stpnt. (When necessary,
PAR(11) may alsobe rede�ned there.) The constants-�le �le c.xxxmust be present, as the
AUTO -constants NTST and NCOL(Sections5.3.1and 5.3.2) are usedto de�ne the new
mesh. For examplesof using the @fccommandseedemos lor and pen.

@94to97 : Type @94to97xxx to convert an old AUTO 94 data-�le s.xxxto newAUTO 97 format.
The original �le is backed up as � s.xxx. This conversion is only necessaryfor �les from
early versionsof AUTO 94 .

A.0.7 HomCont commands.

@h : Use @hinstead of @r when using HomCont, i.e., when IPS=9 (see Chapter 15).
Type @hxxx to run AUTO /HomCont. Restart data, if needed,are expected in s.xxx,
AUTO -constants in c.xxxand HomCont-constants in h.xxx.

- Type @hxxx yyy to run AUTO /HomCont with equations-�le xxx.cand restart data-�le
s.yyy. AUTO -constants must be in c.xxxand HomCont-constants in h.xxx.

- Type @hxxx yyy zzz to run AUTO /HomCont with equations-�le xxx.c, restart data-�le
s.yyyand constants-�les c.zzzand h.zzz.

@H: The command @Hxxx is equivalent to the command @hxxx above.

- Type @Hxxx i in order to run AUTO /HomCont with equations-�le xxx.cand constants-
�les c.xxx.iand h.xxx.iand, if needed,restart data-�le s.xxx.

- Type @Hxxx i yyy to run AUTO /HomCont with equations-�le xxx.c, constants-�les
c.xxx.iand h.xxx.i, and restart data-�le s.yyy.

A.0.8 Copying a demo.

@dm: Type @dmxxx to copy all �les from auto/2000/demos/xxxto the current userdirectory.
Here xxx denotesa demo name; e.g., abc. Note that the @dmcommand also copiesa
Make�le to the current userdirectory. To avoid the overwriting of existing �les, always run
demosin a cleanwork directory.

A.0.9 Pendula animation.

@pn : Type @pnxxx to run the pendula animation program with data-�le s.xxx. (On SGI
machine only; seedemo pen in Section9.10and the �le auto/2000/pendula/README.)

A.0.10 Viewing the manual.

@mn: UseGhostview to view the PostScript versionof this manual.

199

App endix B

The Graphics Program PLA UT.

PLAUT can be used to extract graphical information from the AUTO output-�les fort.7 and
fort.8, or from the corresponding data-�les b.xxxand s.xxx. To invoke PLAUT, usethe the @p
commandde�ned in SectionA. The PLAUT window (a Tektronix window) will appear, in which
PLAUT commandscan be entered. FIXME: This is not correct anymore For examplesof using
PLAUT seethe tutorial demo ab, in particular, Sections7.7 and 7.10. Seealso demo pp2 in
Section9.3.

B.1 Basic PLAUT-Commands.

The principal PLAUT-commandsare

bd0 : This command is useful for an initial overview of the bifurcation diagram as stored in
fort.7. If you have not previously selectedone of the default options d0, d1, d2, d3, or d4
described below then you will be asked whether you want solution labels, grid lines, titles,
or labeledaxes.

bd : This commandis the sameasthe bd0 command,exceptthat you will beaskedto enter the
minimum and the maximum of the horizontal and vertical axes. This is useful for blowing
up portions of a previously displayed bifurcation diagram.

ax : With the ax commandyou can selectany pair of columnsof real numbers from fort.7
as horizontal and vertical axis in the bifurcation diagram. (The default is columns 1 and
2). To determine what thesecolumns represent, one can look at the screenouput of the
corresponding AUTO run, or onecan inspect the column headingsin fort.7.

2d : Upon entering the 2d command,the labels of all solutions stored in fort.8 will be listed
and you can selectoneor more of thesefor display. The number of solution components is
also listed and you will be prompted to select two of theseas horizontal and vertical axis
in the display. Note that the �rst component is typically the independent time or space
variable scaledto the interval [0,1].

sav : To save the displayed plot in a �le. You will be asked to enter a �le name. Each plot
must be stored in a separatenew �le. The plot is stored in compact PLOT10 format,

200

which can be converted to PostScript format with the AUTO -commands @psand @pr;
seeSectionB.4.

cl : To clear the graphicswindow.

lab : To list the labels of all solutions stored in fort.8. Note that PLAUT requiresall labels
to be distinct. In caseof multiple labels you can use the AUTO command@lb to relabel
solutions in fort.7 and fort.8.

end : To end executionof PLAUT.

B.2 Default Options.

After entering the commandsbd0, bd, or 2d, you will be asked whether you want solution labels,
grid lines, titles, or axes labels. For quick plotting it is convenient to bypass these selections.
This can be done by the default commandsd0, d1, d2, d3, or d4 below. Thesecan be entered
as a singlecommandor they can be entered as pre�xes in the bd0 and bd commands.Thus, for
example,onecan enter the commandd1bd0.

d0 : Usesolid curves,showing solution labels and symbols.

d1 : Use solid curves, except use dashedcurves for unstable solutions and for solutions of
unknown stabilit y. Show solution labels and symbols.

d2 : As d1, but with grid lines.

d3 : As d1, except for periodic solutionsusesolid circlesif stable,and open circlesif unstable
or if the stabilit y is unknown.

d4 : Usesolid curves,without labels and symbols.

If no default option d0, d1, d2, d3, or d4 hasbeenselectedor if you want to override a default
feature, then the the following commandscan be used. These can be entered as individual
commandsor as pre�xes. For example,onecan enter the commandsydpbd0.

sy : Usesymbols for special solution points, for example,open square= branch point, solid
square= Hopf bifurcation.

dp : \Di�eren tial Plot", i.e., show stabilit y of the solutions. Solid curves represent stable
solutions. Dashed curves are used for unstable solutions and for solutions of unknown
stabilit y. For periodic solutions use solid/open circles to indicate stabilit y/instabilit y (or
unknown stabilit y).

st : Set up titles and axeslabels.

nu : Normal usage(reset special options).

201

B.3 Other PLAUT-Commands.

The full PLAUT program hasseveral other capabilities, for example,

scr : To changethe diagram size.

rss : To changethe sizeof special solution point symbols.

B.4 Printing PLAUT Files.

@ps : Type @ps fig.1 to convert a saved PLAUT �le �g.1 to PostScript format in �g.1.ps.

@pr : Type @pr fig.1 to convert a PLAUT �le �g.1 to PostScript format and to print the
resulting �le �g.1.ps.

202

App endix C

Graphical User In terface.

C.1 General Overview.

Please note: asof July 30, 2002the GUI is being updated, so the documentation is this chapter
is not being actively maintained. The old GUI is provided with this releaseof AUTO , but it is
unsupported and may not be included in future releases.

The AUTO 97 graphical user interface(GUI) is a tool for creating and editing equations-�les
and constants-�les; seeSection3.1 for a description of these�les. The GUI can also be usedto
run AUTO and to manipulate and plot output-�les and data-�les; seeSectionA for corresponding
commands.To usethe GUI for a newequation,changeto an empty work directory. For an existing
equations-�le, changeto its directory. (Do not activate the GUI in the directory auto/2000 or
in any of its subdirectories.) Then type

@ auto ,
or its abbreviation @ a. Here we assumethat the AUTO aliaseshave been activated; see

Section1.2. The GUI includesa window for editing the equations-�le, and four groupsof buttons,
namely, the MenuBar at the top of the GUI, the Define Constants -buttons at the center-left,
the Load Constants -buttons at the lower left, and the Stop- and Exit -buttons.

Note : Most GUI buttons are activated by point-and-click action with the left mouse
button. If a beepsoundresults then the right mousebutton must be used.

C.1.1 The Menu bar.

It contains the main buttons for running AUTO and for manipulating the equations-�le, the
constants-�le, the output-�les, and the data-�les. In a typical application, thesebuttons are used
from left to right. First the Equations are de�ned and, if necessary, Edited , before being
Written . Then the AUTO -constants are Defined . This is followed by the actual Run of
AUTO . The resulting output-�les can be Saved as data-�les, or they can be Appendedto
existing data-�les. Data-�les can be Plotted with the graphicsprogram PLAUT, and various
�le operations can be done with the Files -button. Auxiliary functions are provided by the
Demos-, Misc- , and Help-buttons. The Menu Bar buttons are described in more detail in
SectionC.2.

203

C.1.2 The Define-Constants-buttons.

Thesehave the samefunction asthe Define -button on the Menu Bar, namely to set and change
AUTO -constants. However, for the Define -button all constants appear in onepanel, while for
the De�ne Constants-buttons they are grouped by function, as in Chapter 5, namely Problem
de�nition constants, Discretization constants, convergence Tolerances , continuation Step
Size , diagram Limits , designationof free Parameters, constants de�ning the Computation,
and constants that specify Output options.

C.1.3 The Load-Constants-buttons.

The Previous -button can be usedto load an existing AUTO -constants �le. Such a �le is also
loaded, if it exists, by the Equations -button on the MenuBar. The Default -button can be
usedto load default valuesof all AUTO -constants. Custom editing is normally necessary.

C.1.4 The Stop- and Exit-buttons.

The Stop-button can be usedto abort executionof an AUTO -run. This should be done only
in exceptional circumstances. Output-�les, if any, will normally be incomplete and should be
deleted. Usethe Exit -button to end a session.

C.2 The Menu Bar.

C.2.1 Equations-button.

This pull-down menu contains the items Old, to load an existing equations-�le, New, to load a
model equations-�le, and Demo, to load a selecteddemoequations-�le. Equations-�le namesare
of the form xxx.c. The corresponding constants-�le c.xxxis alsoloadedif it exists. The equation
name xxx remainsactive until rede�ned.

C.2.2 Edit-button.

This pull-down menu contains the items Cut and Copy, to be performed on text in the GUI
window highlighted by click-and-drag action of the mouse,and the item Paste, which places
editor bu�er text at the location of the cursor.

C.2.3 Write-button.

This pull-down menu contains the item Write , to write the loaded�les xxx.cand c.xxx, by the
active equationname,and the item Write As to write these�les by a selectednewname,which
then becomesthe active name.

204

C.2.4 Define-button.

Clicking this button will display the full AUTO -constants panel. Most of its text �elds can be
edited, but somehave restricted input valuesthat can be selectedwith the right mousebutton.
Sometext �elds will display a subpanelfor entering data. To actually apply changesmadein the
panel, click the OK-or Apply-button at the bottom of the panel.

C.2.5 Run-button.

Clicking this button will write the constants-�le c.xxxand run AUTO . If the equations-�le has
beenedited then it should �rst be rewritten with the Write -button.

C.2.6 Save-button.

This pull-down menu contains the item Save, to save the output-�les fort.7, fort.8, fort.9, as
b.xxx, s.xxx, d.xxx, respectively. Here xxx is the active equation name. It alsocontains the item
Save As, to save the output-�les under another name. Existing data-�les with the selectedname,
if any, will be overwritten.

C.2.7 Append-button.

This pull-down menu contains the item Append, to append the output-�les fort.7, fort.8, fort.9,
to existing data-�les b.xxx, s.xxx, d.xxx, respectively. Here xxx is the active equation name. It
alsocontains the item Append To, to append the output-�les to other existing data-�les.

C.2.8 Plot-button.

This pull-down menu contains the items Plot , to run the plotting program PLAUT for the
data-�les b.xxxand s.xxx, where xxx is the active equation name, and the item Name, to run
PLAUT with other data-�les.

C.2.9 Files-button.

This pull-down menu contains the item Restart , to rede�ne the restart �le. Normally, when
restarting from a previouslycomputedsolution, the restart data is expectedin the �le s.xxx, where
xxx is the active equation name. Usethe Restart -button to read the restart data from another
data-�le in the immediately following run. The pull-down menu alsocontains the following items :

- Copy, to copy b.xxx, s.xxx, d.xxx, c.xxx, to b.yyy, s.yyy, d.yyy, c.yyy, resp.;

- Append, to append data-�les b.xxx, s.xxx, d.xxx, to b.yyy, s.yyy, d.yyy, resp.;

- Move, to move b.xxx, s.xxx, d.xxx, c.xxx, to b.yyy, s.yyy, d.yyy, c.yyy, resp.;

- Delete , to deletedata-�les b.xxx, s.xxx, d.xxx;

- Clean, to deleteall �les of the form fort.* , *.o, and *.exe.

205

C.2.10 Demos-button.

This pulldown menu contains the items Select , to view and run a selectedAUTO demoin the
demodirectory, and Reset, to restorethe demodirectory to its original state. Note that demo
�les can be copiedto the userwork directory with the Equations/Demo-button.

C.2.11 Misc.-button.

This pulldown menu contains the items Tek Windowand VT102Window, for opening windows;
Emacsand Xedit , for editing �les, and Print , for printing the active equations-�le xxx.c.

C.2.12 Help-button.

This pulldown menu contains the items AUTO-constants , for help on AUTO -constants, and
User Manual, for viewing the usermanual; i.e., this document.

C.3 Using the GUI.

AUTO -commandsare described in SectionA and illustrated in the demos.In Table C.1 we list
the main AUTO -commandstogether with the corresponding GUI button.

@r Run
@sv Save
@ap Append
@p Plot
@cp Files/Copy
@mv Files/Move
@cl Files/Clean
@dl Files/Delete
@dm Equations/Demo

Table C.1: CommandMode - GUI correspondences.

The AUTO -command @r xxx yyy is given in the GUI as follows : click Files/Restart
and enter yyy as data. Then click Run. As noted in SectionA, this will run AUTO with the
current equations-�le xxx.cand the current constants-�le c.xxx, while expecting restart data in
s.yyy. The AUTO -command @apxxx yyy is given in the GUI by clicking Files/Append .

C.4 Customizing the GUI.

C.4.1 Print-button.

The Misc/Print -button on the Menu Bar can be customizedby editing the �le GuiConsts.hin
directory auto/2000/include.

206

C.4.2 GUI colors.

GUI colors can be customizedby creating an X resource�le. Two model �les can be found in
directory auto/2000/gui, namely, Xdefaults.1and Xdefaults.2. To becomee�ectiv e, edit one of
these, if desired,and copy it to .Xdefaultsin your home directory. Color namescan often be
found in the system�le /usr/lib/X11/rgb.txt .

C.4.3 On-line help.

The �le auto/2000/include/GuiGlobal.hcontains on-line help on AUTO -constants and demos.
The text can be updated, subject to a modi�able maximum length. On SGI machines this is
10240bytes, which can be increased,for example, to 20480bytes, by replacing the line CC=
cc -Wf, -XNl10240 -O in auto/2000/gui/Make�le by CC= cc -Wf, -XNl20480 -O On other
machines, the maximum messagelength is the systemde�ned maximum string literal length.

207

Bibliograph y

Alexander, J. C., Doedel,E. J. & Othmer, H. G. (1990), `On the resonancestructure in a forced
excitable system',SIAM J. Appl. Math. 50, No. 5, 1373{1418.

Aronson,D. G. (1980),Density dependent reaction-di�usion systems,in `Dynamicsand Modelling
of Reactive Systems',AcademicPress,pp. 161{176.

Bai, F. & Champneys,A. (1996),`Numericaldetectionandcontinuation of saddle-nodehomoclinic
orbits of codimensiononeand codimensiontwo', J. Dyn. Stab. Sys. 11, 327{348.

Beyn, W.-J. (1990),`The numericalcomputation of connectingorbits in dynamicalsystems',IMA
J. Num. Anal. 9, 379{405.

Beyn, W.-J. & Doedel, E. J. (1981), `Stability and multiplicit y of solutions to discretizationsof
nonlinear ordinary di�eren tial equations',SIAM J. Sci. Stat. Comput. 2(1), 107{120.

Buryak, A. & Akhmediev, N. (1995), `Stability criterion for stationary bound states of solitons
with radiationlessoscillating tails', Physical Review E 51, 3572{3578.

C., Y. A. (2001), `Multipulses of nonlinearly-coupledSchr•odinger equations',JOURNAL of Dif-
ferential Equations 173(1), 92{137.

Champneys,A. & Kuznetsov, Y. (1994), `Numerical detection and continuation of codimension-
two homoclinic bifurcations', Int. J. Bifurcation & Chaos 4, 795{822.

Champneys,A. & Spence, A. (1993), `Hunting for homoclinic orbits in reversible systems: a
shooting technique', Adv. Comp. Math. 1, 81{108.

Champneys,A., Kuznetsov, Y. & Sandstede,B. (1996), `A numerical toolbox for homoclinic
bifurcation analysis'.

Champneys,A. R. & Groves,M. D. (1997), `A global investigation of a solitary wave solutionsto
a �fth-order two-parametermodel equation for water waves.',J. Fluid Mechanics 342, 199{
229.

deBoor, C. & Swartz, B. (1973),`Collocation at gaussianpoints', SIAM J. Numer. Anal. 10, 582{
606.

Doedel, E. J. (1981), `AUTO, a program for the automatic bifurcation analysisof autonomous
systems',Cong. Numer. 30, 265{384.

208

Doedel,E. J. (1984),`The computer-aidedbifurcation analysisof predator-preymodels', J. Math.
Biol. 20, 1{14.

Doedel,E. J. & Heinemann,R. F. (1983), `Numerical computation of periodic solution branches
and oscillatory dynamicsof the stirred tank reactor with a ! b ! c reactions',Chem. Eng.
Sci. 38, No. 9, 1493{1499.

Doedel,E. J. & Kern�evez,J. P. (1986a), AUTO: Software for continuation problemsin ordinary
di�eren tial equationswith applications,Technical report, California Institute of Technology.
Applied Mathematics.

Doedel, E. J. & Kern�evez, J. P. (1986b), A numerical analysisof wave phenomenain a reaction
di�usion model, in H. G. Othmer, ed., `Nonlinear Oscillations in Biology and Chemistry',
Vol. 66, SpringerVerlag, pp. 261{273.

Doedel,E. J. & Wang, X. J. (1995), AUTO94 : Software for continuation and bifurcation prob-
lems in ordinary di�eren tial equations, Technical report, Center for Research on Parallel
Computing, California Institute of Technology, PasadenaCA 91125.CRPC-95-2.

Doedel,E. J., Aronson, D. G. & Othmer, H. G. (1991), `The dynamicsof coupledcurrent-biased
Josephsonjunctions II', Int. J. Bifurcation and Chaos 1, No. 1, 51{66.

Doedel, E. J., Friedman, M. & Monteiro, A. (1993), On locating homoclinic and heteroclinic
orbits, Technical report, Cornell Theory Center; Center for Applied Mathematics, Cornell
University.

Doedel,E. J., Keller, H. B. & Kern�evez,J. P. (1991a), `Numericalanalysisand control of bifurca-
tion problems: (I) Bifurcation in �nite dimensions',Int. J. Bifurcation and Chaos 1(3), 493{
520.

Doedel, E. J., Keller, H. B. & Kern�evez, J. P. (1991b), `Numerical analysis and control of bi-
furcation problems: (I I) Bifurcation in in�nite dimensions', Int. J. Bifurcation and Chaos
1(4), 745{772.

Fairgrieve, T. F. (1994),The computation and useof Floquet multipliers for bifurcation analysis,
PhD thesis,University of Toronto.

Fairgrieve, T. F. & Jepson,A. D. (1991), `O.K. Floquet multipliers', SIAM J. Numer. Anal. 28,
No. 5, 1446{1462.

FitzHugh, R. (1961),`Impulsesand physiologicalstatesin theoretical modelsof nervemembrane',
Biophys. J. 1, 445{446.

Freire, E., Rodr��guez-Luis, A., Gamero, E. & Ponce, E. (1993), `A casestudy for homoclinic
chaosin an autonomouselectroniccircuit: A trip from Takens{Bogdanov to Hopf{Shilnikov',
Physica D 62, 230{253.

Friedman, M., Doedel, E. J. & Monteiro, A. C. (1994), `On locating connectingorbits', Applied
Math. And Comp. 65(1{3), 231{239.

209

Friedman, M. J. & Doedel, E. J. (1991), `Numerical computation and continuation of invariant
manifolds connecting�xed points', SIAM J. Numer. Anal. 28, 789{808.

Henderson,M. E. & Keller, H. B. (1990), `Complexbifurcation from real paths', SIAM J. Appl.
Math. 50, No. 2, 460{482.

Hodgkin, A. L. & Huxley, A. F. (1952), `A quantitativ e description of membrane current and its
applications to conduction and excitation in nerve', J. Physiol. 117, 500{544.

Holodniok, M., Knedlik, P. & Kub���cek,M. (1987),Continuation of periodic solutionsin parabolic
di�eren tial equations, in T. K•upper, R. Seydel& H. Troger, eds, `Bifurcation: Analysis,
Algorithms, Applications', Vol. INSM 79, Birkh•auser,Basel,pp. 122{130.

Homburg, A. & Krauskopf, B. (2000), `Resonant homoclinic
ip bifurcations', J. Dyn. Diff. Eqns.
12(4), 807{850.

Hunt, G. W., Bolt, H. M. & Thompson,J. M. T. (1989), `Structural localization phenomenaand
the dynamical phase-spaceanalogy', Proc. Roy. Soc. Lond. A 425, 245{267.

Keller, H. B. (1977), Numerical solution of bifurcation and nonlinear eigenvalue problems, in
P. H. Rabinowitz, ed., `Applications of Bifurcation Theory', AcademicPress,pp. 359{384.

Keller, H. B. (1986), Lectures on Numerical Methods in Bifurcation Problems, Springer Verlag.
Notesby A. K. Nandakumaranand Mythily Ramaswamy, Indian Institute of Science,Ban-
galore.

Kern�evez,J. P. (1980),Enzyme Mathematics, North-Holland Press,Amsterdam.

Khibnik, A. I., Roose,D. & Chua, L. O. (1993),`On periodic orbits and homoclinic bifurcations in
Chua's circuit with a smooth nonlinearity', Int. J. Bifurcation and Chaos 3, No. 2, 363{384.

Khibnik, A., Kuznetsov, Y., Levitin, V. & Nikolaev, E. (1993), `Continuation techniques and
interactive software for bifurcation analysisof ODEs and iterated maps',Physica D 62, 360{
371.

Koper, M. (1994),Far-from-equilibrium phenomenain electrochemicalsystems,PhD thesis,Uni-
versiteit Utrecht, The Netherlands.

Koper, M. (1995), `Bifurcations of mixed-mode oscillations in a three-variable autonomousVan
der Pol-Du�ng model with a cross-shaped phasediagram', Physica D 80, 72{94.

Lentini, M. & Keller, H. B. (1980), `The Von Karman swirling
o ws', SIAM J. Appl. Math.
38, 52{64.

Lin, X.-B. (1990), `Using Melnikov's method to solve Silnikov's problems', Proc. Royal Soc. Ed-
inburgh 116A , 295{325.

Lorenz, J. (1982), Nonlinear boundary value problems with turning points and properties of
di�erence schemes,in W. Eckhaus & E. M. de Jager, eds, `Singular Perturbation Theory
and Applications', SpringerVerlag.

210

Lutz, M. (1996),Programming Python, O'Reilly and Associates.

Nagumo, J., Arimoto, S. & Yoshizawa, S. (1962), `An active pulse transmissionline simulating
nerve axon', Proc. IRE 50, 2061{2070.

Oldeman,B. E., Champneys,A. R. & B., K. (2001),Homoclinic branch switching: a numerical im-
plementation of Lin's method, http://www.enm.bris. ac. uk/r esearc h/ reports /2 001r11.
ps.gz , Applied Nonlinear Mathematics Research Report 2001.11,University of Bristol; ac-
cepted by Int. J. Bifurcation and Chaos.

Rodr��guez-Luis, A. J. (1991), Bifurcacionesmultiparam�etricas en osciladoresaut�onomos,PhD
thesis,Department of Applied Mathematics, University of Seville,Spain.

Rucklidge, A. & Mathews,P. (1995), `Analysisof the shearinginstabilit y in nonlinear convection
and magnetoconvection'. Submitted to Nonlinearity.

Russell,R. D. & Christiansen,J. (1978),`Adaptive meshselectionstrategiesfor solvingboundary
value problems',SIAM J. Numer. Anal. 15, 59{80.

Sandstede,B. (1993), Verzweigungstheoriehomokliner Verdopplungen,PhD thesis, Universit•at
Stuttgart.

Sandstede,B. (1995a), Constructing dynamical systemspossessinghomoclinic bifurcation points
of codimensiontwo, In preparation.

Sandstede,B. (1995b), Convergenceestimates for the numerical approximation of homoclinic
solutions, In preparation.

Sandstede,B. (1995c), Numerical computation of homoclinic
ip-bifurcations, In preparation.

Sche�er, M. (1995), `Personalcommunication'.

Smith, B., Boyle, J., Dongarra, J., Garbow, B., Ikebe, Y., Klema, X. & Moler, C. (1976),Matrix
Eigensystem Routines : EISPACK Guide, Vol. 6, SpringerVerlag.

Taylor, M. A. & Kevrekidis, I. G. (1989), Interactive AUTO : A graphical interfacefor AUTO86,
Technical report, Department of ChemicalEngineering,Princeton University.

Uppal, A., Ray, W. H. & Poore, A. B. (1974), `On the dynamic behaviour of continuous stirred
tank reactors', Chem. Eng. Sci. 29, 967{985.

Wang, X. J. (1994), `Parallelization and graphical user interface of AUTO94'. M. Comp. Sci.
Thesis,ConcordiaUniversity, Montreal, Canada.

Wang,X. J. & Doedel,E. J. (1995),AUTO94P : An experimental parallel versionof AUTO, Tech-
nical report, Center for Research on Parallel Computing, California Institute of Technology,
PasadenaCA 91125.CRPC-95-3.

211

