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Chapter 1

Installing AUTO .

1.1 Typographical Conventions

This manual uses the following conventions.
command This font is used for commands which you can type in.
PAR This font is used for AUTO parameters.
filename This font is used for file and directory names.
variable This font is used for environment variable.
site This font is used for world wide web and ftp sites.
function This font is used for function names.

1.2 Installation.

The AUTO files are available via HTTP from
http://www.ama.caltech.edu/∼redrod/auto2000/distribution/.

bzipped Postscript manual auto2000-0.9.6.ps.bz2
gzipped Postscript manual auto2000-0.9.6.ps.gz
compressed Postscript manual auto2000-0.9.6.ps.Z
tarred and gzipped source code auto2000-0.9.6.tgz
tarred and bzipped source code auto2000-0.9.6.tbz2
tarred and compressed source code auto2000-0.9.6.tar.Z
zipped source code auto2000-0.9.6.zip

Below it is assumed that you are using the Unix shell csh and that the file auto2000-0.9.6.tar.Z
is in your main directory.

While in your main directory, enter the commands uncompress auto2000-0.9.6.tar.Z,
followed by tar xvfo auto2000-0.9.6.tar. This will result in a directory auto, with one
subdirectory, auto/2000. Type cd auto/2000 to change directory to auto/2000. Then type
configure , to check your system for required compilers and libraries. Once the configure
script has finished you may then type make to compile AUTO and its ancillary software. The
configure script is designed to detect the details of your system which AUTO requires to compile
successfully. If either the configure script or the make command should fail, you may assist the
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configure script by giving it various command line options. Please type configure --help for
more details. Upon compilation, you may type make clean to remove unnecessary files.

There is a new CLUI under development which includes some of the capabilities of the old
GUI and will eventually be the recommend way to run AUTO. More information on the CLUI
may be found in Chapter 4. The new CLUI does not require any additional options to be passed
to the configure script.

To run the new Command Line User Interface (CLUI) and the old command language you
need to set your environment variables correctly. Assuming AUTO is installed in your home
directory, the following commands set your environment variables so that you will be able to run
the AUTO commands, and may be placed into your .login, .profile, or .cshrc file, as appropri-
ate. If you are using a sh compatible shell, such as sh, bash, ksh, or ash enter the command
source $HOME/auto/2000/cmds/auto.env.sh. On the other hand, if you are using a csh com-
patible shell, such as csh or tcsh, enter the command source $HOME/auto/2000/cmds/auto.env.csh.

There is an old and unsupported Graphical User Interface (GUI) which requires the X-Window
system and Motif, and it is not compiled by default. Note that AUTO can be very effectively run
in Command Mode, i.e., the GUI is not strictly necessary. To compile AUTO with the old GUI,
type configure --enable-gui and then make in directory auto/2000.

The PostScript conversion command @ps will be enabled if the configure script detects the
appropriate software, but you may have to enter the correct printer name in auto/2000/cmds/@pr.

To generate the on-line manual, type make in auto/2000/doc.
To prepare AUTO for transfer to another machine, type make superclean in directory

auto/2000 before creating the tar-file. This will remove all executable, object, and other non-
essential files, and thereby reduce the size of the package.

AUTO can be tested by typing make > TEST & in directory auto/2000/test. This will
execute a selection of demos from auto/2000/demos and write a summary of the computations in
the file TEST. The contents of TEST can then be compared to other test result files in directory
auto/2000/test. Note that minor differences are to be expected due to architecture and compiler
differences.

Some EISPACK routines used by AUTO for computing eigenvalues and Floquet multipliers
are included in the package (Smith, Boyle, Dongarra, Garbow, Ikebe, Klema & Moler (1976)).

1.3 Restrictions on Problem Size.

There are size restrictions in the file auto/2000/src/auto c.h on the following AUTO -constants :
the effective number of equation parameters NPAR, and the number of stored branch points
NBIF for algebraic problems. See Chapter 5 for the significance these constants. Their maxima
are denoted by the corresponding constant followed by an X. For example, NPARX in auto c.h
denotes the maximum value of NPAR. If the maxima of NBIF is exceeded in an AUTO -run then
a message will be printed. On the other hand, the maximum value of NPAR, if exceeded, may
lead to unreported errors. Upon installation NPARX=36; it should never be decreased below that
value; see also Section 6.1. Size restrictions can be changed by editing auto c.h. This must be
followed by recompilation by typing make in directory auto/2000/src.

Note that in certain cases the effective dimension may be greater than the user dimension. For
example, for the continuation of folds, the effective dimension is 2 NDIM+1 for algebraic equations,
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and 2 NDIM for ordinary differential equations, respectively. Similarly, for the continuation of Hopf
bifurcations, the effective dimension is 3 NDIM+2.

1.4 Compatibility with Older Versions.

There are two changes compared to early versions of AUTO 94 : The user-supplied equations-
files must contain the subroutine pvls. For an example of use of pvls see the demo pvl in
Section 14.1. There is also a small change in the q.xxx data-file. If necessary, older AUTO 94 files
can be converted using the @94to97 command; see Section A. Data files from AUTO 97 are fully
compatible with AUTO 2000 , but as AUTO 2000 is written in C user defined function files from
AUTO 97 , which are generally in Fortran, must be rewritten.

1.5 Parallel Version.

AUTO 2000 contains code which allows it to run in on various types of parallel computers. Namely,
it can use either the Pthreads library for running on shared-memory multi-processors, or the MPI
message passing library. When the configure script is run it will try to find the above two libraries,
and if it is successful it will include their functionality into AUTO 2000 . To force the configure
script not to use either of the above libraries, one may type configure --without-mpi or
configure --without-pthreads, and then type make. One may even preclude both by typing
configure --without-mpi --without-pthreads and then typing make. On the other hand,
unless there is some particular difficulty, we recommend that that the configure script be used
without arguments, since the parallel version of AUTO 2000 may easily be controlled, and even
run in a serial mode, through the use of command line options at run time. The command line
options are listed in Table 1.1.

-v Give verbose output.
-m Use the Message Passing Interface library for parallelization.

-t

Use the Pthreads library for parallelization. This option
takes one of three arguments.

conpar parallelizes the condensation of parameters rou-
tine.

setubv parallelizes the Jacobian setup routine.

both parallelizes both routines.

In general the recommended option is ’both’.

-#
The number of processing units to use (currently only
used with the -t option).

Table 1.1: Command line options.

For example, to run the AUTO 2000 executable auto.exe in serial mode you just type auto.exe.
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To run the same command in parallel using the Pthreads library on 4 processors you type auto.exe
-t both -# 4. If you were to try and run the above command on a machine which did not have
the Pthreads library, the command would exit with an error and inform you that the Pthreads
library is not available.

Running the MPI version is somewhat more complex because of the fact that MPI normally
uses some external program for starting the computational processes. The exact name and com-
mand line options of this external program depends on your MPI installation. A common name
for this MPI external program is mpirun, and a common command line option which defines the
number of computational processes is -np. Accordingly, if you wanted to run the MPI version
of AUTO 2000 on four processors, with the above external program, you would type mpirun -np
4 auto.exe -m. Please see your local MPI documentation for more detail. As with the Pthreads
library, if you were to try and run the above command on a machine which did not have MPI,
the command would exit with an error and inform you that MPI is not available.

The commands in the auto/2000/cmds directory and described in Chapter 3 may be used with
the parallel version as well, by setting the AUTO COMMAND PREFIX and AUTO COMMAND ARGS
environment variables. For example, to the run AUTO 2000 in parallel using the Pthreads li-
brary on 4 processors just type setenv AUTO COMMAND ARGS ‘‘-t both -# 4’’ and then use
the commands in auto/2000/cmds normally. To run AUTO 97 in parallel using the MPI library on
4 processors just type setenv AUTO COMMAND ARGS ‘‘-m’’ and setenv AUTO COMMAND PREFIX

‘‘mpirun -np 4’’, and then use the commands in auto/2000/cmds normally. The previous ex-
amples assumed you are using the csh shell or the tcsh shell, for other shells you should modify
the commands appropriately.
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Chapter 2

Overview of Capabilities.

2.1 Summary.

AUTO can do a limited bifurcation analysis of algebraic systems

f(u, p) = 0, f(·, ·), u ∈ Rn, (2.1)

and of systems of ordinary differential equation (ODEs) of the form

u′(t) = f
(

u(t), p
)

, f(·, ·), u(·) ∈ Rn, (2.2)

Here p denotes one or more free parameters.
It can also do certain stationary solution and wave calculations for the partial differential

equation (PDE)
ut = Duxx + f(u, p), f(·, ·), u(·) ∈ Rn, (2.3)

where D denotes a diagonal matrix of diffusion constants. The basic algorithms used in the
package, as well as related algorithms, can be found in Keller (1977), Keller (1986), Doedel,
Keller & Kernévez (1991a), Doedel, Keller & Kernévez (1991b).

Below, the basic capabilities of AUTO are specified in more detail. Some representative demos
are also indicated.

2.2 Algebraic Systems.

Specifically, for (2.1) the program can :

- Compute solution branches.
(Demo ab; Run 1.)

- Locate branch points and automatically compute bifurcating branches.
(Demo pp2; Run 1.)

- Locate Hopf bifurcation points and continue these in two parameters.
(Demo ab; Runs 1 and 5.)
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- Locate folds (limit points) and continue these in two parameters.
(Demo ab; Runs 1,3,4.)

- Do each of the above for fixed points of the discrete dynamical system u(k+1) = f(u(k), p)
(Demo dd2.)

- Find extrema of an objective function along solution branches and successively continue
such extrema in more parameters.
(Demo opt.)

2.3 Ordinary Differential Equations.

For the ODE (2.2) the program can :

- Compute branches of stable and unstable periodic solutions and compute the Floquet mul-
tipliers, that determine stability, along these branches. Starting data for the computation
of periodic orbits are generated automatically at Hopf bifurcation points.
(Demo ab; Run 2.)

- Locate folds, branch points, period doubling bifurcations, and bifurcations to tori, along
branches of periodic solutions. Branch switching is possible at branch points and at period
doubling bifurcations.
(Demos tor, lor.)

- Continue folds and period-doubling bifurcations, in two parameters.
(Demos plp, pp3.) The continuation of orbits of fixed period is also possible. This is the
simplest way to compute curves of homoclinic orbits, if the period is sufficiently large.
(Demo pp2.)

- Do each of the above for rotations, i.e., when some of the solution components are periodic
modulo a phase gain of a multiple of 2π.
(Demo pen.)

- Follow curves of homoclinic orbits and detect and continue various codimension-2 bifur-
cations, using the HomCont algorithms of Champneys & Kuznetsov (1994), Champneys,
Kuznetsov & Sandstede (1996).
(Demos san, mnt, kpr, cir, she, rev.)

- Locate extrema of an integral objective functional along a branch of periodic solutions and
successively continue such extrema in more parameters.
(Demo ops.)

- Compute curves of solutions to (2.2) on [0, 1], subject to general nonlinear boundary and
integral conditions. The boundary conditions need not be separated, i.e., they may involve
both u(0) and u(1) simultaneously. The side conditions may also depend on parameters.
The number of boundary conditions plus the number of integral conditions need not equal
the dimension of the ODE, provided there is a corresponding number of additional parameter
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variables.
(Demos exp, int.)

- Determine folds and branch points along solution branches to the above boundary value
problem. Branch switching is possible at branch points. Curves of folds can be computed
in two parameters.
(Demos bvp, int.)

2.4 Parabolic PDEs.

For (2.3) the program can :

- Trace out branches of spatially homogeneous solutions. This amounts to a bifurcation
analysis of the algebraic system (2.1). However, AUTO uses a related system instead, in
order to enable the detection of bifurcations to wave train solutions of given wave speed.
More precisely, bifurcations to wave trains are detected as Hopf bifurcations along fixed
point branches of the related ODE

u′(z) = v(z),
v′(z) = −D−1

[

c v(z) + f
(

u(z), p
)]

,
(2.4)

where z = x− ct , with the wave speed c specified by the user.
(Demo wav; Run 2.)

- Trace out branches of periodic wave solutions to (2.3) that emanate from a Hopf bifurcation
point of Equation 2.4. The wave speed c is fixed along such a branch, but the wave length
L, i.e., the period of periodic solutions to (2.4), will normally vary. If the wave length L
becomes large, i.e., if a homoclinic orbit of Equation 2.4 is approached, then the wave tends
to a solitary wave solution of (2.3).
(Demo wav; Run 3.)

- Trace out branches of waves of fixed wave length L in two parameters. The wave speed c
may be chosen as one of these parameters. If L is large then such a continuation gives a
branch of approximate solitary wave solutions to (2.3).
(Demo wav; Run 4.)

- Do time evolution calculations for (2.3), given periodic initial data on the interval [0, L].
The initial data must be specified on [0, 1] and L must be set separately because of internal
scaling. The initial data may be given analytically or obtained from a previous computation
of wave trains, solitary waves, or from a previous evolution calculation. Conversely, if an
evolution calculation results in a stationary wave then this wave can be used as starting
data for a wave continuation calculation.
(Demo wav; Run 5.)

- Do time evolution calculations for (2.3) subject to user-specified boundary conditions. As
above, the initial data must be specified on [0, 1] and the space interval length L must be
specified separately. Time evolution computations of (2.3) are adaptive in space and in time.
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Discretization in time is not very accurate : only implicit Euler. Indeed, time integration
of (2.3) has only been included as a convenience and it is not very efficient. (Demos pd1,
pd2.)

- Compute curves of stationary solutions to (2.3) subject to user-specified boundary con-
ditions. The initial data may be given analytically, obtained from a previous stationary
solution computation, or from a time evolution calculation.
(Demos pd1, pd2.)

In connection with periodic waves, note that (2.4) is just a special case of (2.2) and that its
fixed point analysis is a special case of (2.1). One advantage of the built-in capacity of AUTO to
deal with problem (2.3) is that the user need only specify f , D, and c. Another advantage is the
compatibility of output data for restart purposes. This allows switching back and forth between
evolution calculations and wave computations.

2.5 Discretization.

AUTO discretizes ODE boundary value problems (which includes periodic solutions) by the
method of orthogonal collocation using piecewise polynomials with 2-7 collocation points per
mesh interval (de Boor & Swartz (1973)). The mesh automatically adapts to the solution to
equidistribute the local discretization error (Russell & Christiansen (1978)). The number of mesh
intervals and the number of collocation points remain constant during any given run, although
they may be changed at restart points. The implementation is AUTO -specific. In particular, the
choice of local polynomial basis and the algorithm for solving the linearized collocation systems
were specifically designed for use in numerical bifurcation analysis.
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Chapter 3

How to Run AUTO .

3.1 User-Supplied Files.

The user must prepare the two files described below. This can be done with the GUI described
in Chapter 4, or independently.

3.1.1 The equations-file xxx.c

A source file xxx.c containing the C subroutines func, stpnt, bcnd, icnd, fopt, and pvls.
Here xxx stands for a user-selected name. If any of these subroutines is irrelevant to the problem
then its body need not be completed. Examples are in auto/2000/demos, where, e.g., the file
ab/ab.c defines a two-dimensional dynamical system, and the file exp/exp.c defines a boundary
value problem. The simplest way to create a new equations-file is to copy an appropriate demo
file. In GUI mode, this file can be directly loaded with the GUI-button Equations/New; see
Section C.2.

3.1.2 The constants-file c.xxx

AUTO -constants for xxx.c are normally expected in a corresponding file c.xxx. Specific examples
include ab/c.ab and exp/c.exp in auto/2000/demos. See Chapter 5 for the significance of each
constant.
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3.2 User-Supplied Subroutines.

The purpose of each of the user-supplied subroutines in the file xxx.c is described below.

- func : defines the function f(u, p) in (2.1), (2.2), or (2.3).

- stpnt : This subroutine is called only if IRS=0 (see Section 5.8.5 for IRS), which typically
is the case for the first run. It defines a starting solution (u, p) of (2.1) or (2.2). The starting
solution should not be a branch point.
(Demos ab, exp, frc, lor.)

- bcnd : A subroutine bcnd that defines the boundary conditions.
(Demo exp, kar.)

- icnd : A subroutine icnd that defines the integral conditions.
(Demos int, lin.)

- fopt : A subroutine fopt that defines the objective functional.
(Demos opt, ops.)

- pvls : A subroutine pvls for defining “solution measures”.
(Demo pvl.)

3.3 Arguments of stpnt.

Note that the arguments of stpnt depend on the solution type :

- When starting from a fixed point or an analytically or numerically known space-dependent
solution, stpnt must have four arguments, namely, (NDIM,U,PAR,T). Here T is the inde-
pendent space variable which takes values in the interval [0, 1]. T is ignored in the case of
fixed points.
(Demos exp and ab.)

- Similarly, when starting from an analytically known time-periodic solution or rotation, the
arguments of stpnt are (NDIM,U,PAR,T), where T denotes the independent time variable
which takes values in the interval [0, 1]. In this case one must also specify the period in
PAR(11).
(Demos frc, lor, pen.)

- When using the @fc command (Section A) for conversion of numerical data, stpnt must
have four arguments, namely, (NDIM,U,PAR,T). In this case only the parameter values need
to be defined in stpnt. (Demos lor and pen.)
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3.4 User-Supplied Derivatives.

If AUTO -constant JAC equals 0 then derivatives need not be specified in func, bcnd, icnd,
and fopt; see Section 5.2.4. If JAC=1 then derivatives must be given. This may be necessary for
sensitive problems, and is recommended for computations in which AUTO generates an extended
system. Examples of user-supplied derivatives can be found in demos dd2, int, plp, opt, and
ops.

3.5 Output Files.

AUTO writes four output-files :

- fort.6 : A summary of the computation is written in fort.6, which usually corresponds to
the window in which AUTO is run. Only special, labeled solution points are noted, namely
those listed in Table 3.1. The letter codes in the Table are used in the screen output. The
numerical codes are used internally and in the fort.7 and fort.8 output-files described below.

BP (1) Branch point (algebraic systems)
LP (2) Fold (algebraic systems)
HB (3) Hopf bifurcation

(4) User-specified regular output point
UZ (-4) Output at user-specified parameter value
LP (5) Fold (differential equations)
BP (6) Branch point (differential equations)
PD (7) Period doubling bifurcation
TR (8) Torus bifurcation
EP (9) End point of branch; normal termination
MX (-9) Abnormal termination; no convergence

Table 3.1: Solution Types.

- fort.7 : The fort.7 output-file contains the bifurcation diagram. Its format is the same as
the fort.6 (screen) output, but the fort.7 output is more extensive, as every solution point
has an output line printed.

- fort.8 : The fort.8 output-file contains complete graphics and restart data for selected,
labeled solutions. The information per solution is generally much more extensive than that
in fort.7. The fort.8 output should normally be kept to a minimum.

- fort.9 : Diagnostic messages, convergence history, eigenvalues, and Floquet multipliers are
written in fort.9. It is strongly recommended that this output be habitually inspected. The
amount of diagnostic data can be controlled via the AUTO -constant IID; see Section 5.9.2.

The user has some control over the fort.6 (screen) and fort.7 output via the AUTO -constant
IPLT (Section 5.9.3). Furthermore, the subroutine pvls can be used to define “solution measures”
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which can then be printed by “parameter overspecification”; see Section 5.7.10. For an example
see demo pvl.

The AUTO -commands @sv, @ap, and @df can be used to manipulate the output-files
fort.7, fort.8, and fort.9. Furthermore, the AUTO -command @lb can be used to delete and
relabel solutions simultaneously in fort.7 and fort.8. For details see Section A.

The graphics program PLAUT can be used to graphically inspect the data in fort.7 and fort.8;
see Chapter B.
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Chapter 4

Command Line User Interface.

4.1 Typographical Conventions

This chapter uses the following conventions. All code examples will be in in the following font.

AUTO> copydemo("ab")

Copying demo ab ... done

To distinguish commands which are typed to the Unix shell from those which are typed to
the AUTO 2000 command line user interface (CLUI) we will use the following two prompts.

> Commands which follow this prompt are for the Unix shell.
AUTO> Commands which follow this prompt are for the AUTO 2000 CLUI.

4.2 General Overview.

The AUTO 2000 command line user interface (CLUI) is similar to the command language de-
scribed in Section A in that it facilitates the interactive creating and editing of equations-files
and constants-files. It differs from the other command language in that it is based on the object-
oriented scripting language Python (see Lutz (1996)) and provides extensive programming ca-
pabilities. This chapter will provide documentation for the AUTO 2000 CLUI commands, but
is not intended as a tutorial for the Python language. We will attempt to make this chapter
self contained by describing all Python constructs that we use in the examples, but for more
extensive documentation on the Python language, including tutorials and pointers to further
documentation, please see Lutz (1996) or the web page http://www.python.org which contains
an excellent tutorial at http://www.python.org/doc/current/tut/tut.html.

To use the CLUI for a new equation, change to an empty directory. For an existing equations-
file, change to its directory. (Do not activate the CLUI in the directory auto/2000 or in any of
its subdirectories.) Then type

auto.
If your command search path has been correctly set (see Section 1.2), this command will

start the AUTO 2000 CLUI interactive interpretor and provide you with the AUTO 2000 CLUI
prompt.
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> auto

Initializing

Python 1.5.2 (1, Feb 1 2000, 16:32:16) [GCC egcs-2.91.66 19990314/Linux

Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam

(AUTOInteractiveConsole)

AUTO>

Figure 4.1: Typing auto at the Unix shell prompt starts the AUTO 2000 CLUI.

In addition to the examples in the following sections there are several example scripts which
can be found in auto/2000/demos/python and are listed in Table 4.1. These scripts are fully
annotated and provide good examples of how AUTO 2000 CLUI scripts are written. The scripts
in auto/2000/demos/python/n-body are espcially lucid examples and preform various related parts
of a calculation involving the gravitional N-body problem. Scripts which end in the suffix .auto
are called “basic” scripts and can be run by typing auto scriptname.auto. The scripts show in
Section 4.3 and Section 4.5 are examples of basic scripts. Scripts which end in the suffix .xauto are
called “expert” scripts and can be run by typing autox scriptname.xauto. More information
on expert scripts can be found in Section 4.6. See the README file in that directory for more
information.

4.3 First Example

We begin with a simple example of the AUTO 2000 CLUI. In this example we copy the ab demo
from the AUTO 2000 installation directory and run it. For more information on the ab demo see
Section 7.2. The commands listed in Table 4.2 will copy the demo files to your work directory and
run the first part of the demo. The results of running these commands are shown in Figure 4.2.

Let us examine more closely what action each of the commands performs. First, copydemo(’ab’)
(Section 4.13.7 in the reference) copies the files in $AUTO DIR/demo/ab into the work directory.

Next, load(equation=’ab’) (Section 4.13.33 in the reference) informs the AUTO 2000 CLUI
that the name of the user defined function file is ab.c. The command load is one of the most
commonly used commands in the AUTO 2000 CLUI, since it reads and parses the user files which
are manipulated by other commands. The AUTO 2000 CLUI stores this setting until it is changed
by a command, such as another load command. The idea of storing information is one of the
ideas that sets the CLUI apart from the command language described in Section A.

Next, load(constants=’ab.1’) parses the AUTO constants file c.ab.1 and reads it into
memory. Note that changes to the file c.ab.1 after it has been loaded in will not be used by
AUTO 2000 unless it is loaded in again after the changes are made.

Finally, run() (Section 4.13.31 in the reference) uses the user defined functions loaded by the
load(equation=’ab’) command, and the AUTO constants loaded by the load(constants=’ab.1’)
to run AUTO 2000 .

Figure 4.2 showed two of the file types that the load command can read into memory, namely
the user defined function file and the AUTO constants file (Section 3.1). There are two other
files types that can be read in using the load command, and they are the restart solution file
(Section 3.5) and the HomCont parameter file (Section 15.2).
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Script Description

demo1.auto The demo script from Section 4.3.

demo2.auto The demo script from Section 4.5.

userScript.xauto The expert demo script from Figure 4.11.

userScript.py
The loadable expert demo script from Fig-
ure 4.12.

fullTest.auto
A script which uses the entire
AUTO 2000 command set, except for
the plotting commands.

plotter.auto
A demonstration of some of the plotting
capabilities of AUTO 2000 .

fullTest.auto
A script which implements the tutorial
from Section 7.2.

n-body/compute lagrange points family.auto
A basic script which computes and plots all
of the “Lagrange points” as a function of
the ratio of the masses of the two planets.

n-body/compute lagrange points 0.5.auto

A basic script which computes all of the
“Lagrange points” for the case where the
masses of the two planets are equal, and
saves the data.

n-body/compute periodic family.xauto

An expert script which starts at a
“Lagrange point” computed by com-
pute lagrange points 0.5.auto and contin-
ues in the ratio of the masses until a spec-
ified mass ratio is reached. It then com-
putes a family of periodic orbits for each
pair of purely complex eigenvalues.

n-body/to matlab.xauto

A script which takes a set of
AUTO 2000 data files and creates a
set of files formatted for importing into
Matlab for either plotting or further
calculations.

Table 4.1: The various demonstration scripts for the AUTO 2000 CLUI.
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Unix-COMMAND ACTION
auto start the AUTO 2000 CLUI

AUTO 2000 CLUI COMMAND ACTION
copydemo(’ab’) copy the demo files to the work directory
load(equation=’ab’) load the filename ab.c into memory
load(constants=’ab.1’) load the contents of the file r.ab.1 into memory
run() run AUTO 2000 with the current set of files

Table 4.2: Running the demo ab files.

> auto

Initializing

Python 1.5.2 (#1, Feb 1 2000, 16:32:16) [GCC egcs-2.91.66 19990314/Linux

(egcs- on linux-i386

Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam

(AUTOInteractiveConsole)

AUTO> copydemo(’ab’)

Copying demo ab ... done

AUTO> load(equation=’ab’)

Runner configured

AUTO> load(constants=’ab.1’)

Runner configured

AUTO> run()

gcc -O -DPTHREADS -O -I/home/amavisitors/redrod/src/auto/2000/include -c ab.c

gcc -O ab.o -o ab.exe /home/amavisitors/redrod/src/auto/2000/lib/*.o

-lpthread -L/home/amavisitors/redrod/src/auto/2000/lib -lauto_f2c -lm

Starting ab ...

1 1 EP 1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

1 33 LP 2 1.057390E-01 1.484391E+00 3.110230E-01 1.451441E+00

1 70 LP 3 8.893185E-02 3.288241E+00 6.889822E-01 3.215250E+00

1 90 HB 4 1.308998E-01 4.271867E+00 8.950803E-01 4.177042E+00

1 92 EP 5 1.512417E-01 4.369748E+00 9.155894E-01 4.272750E+00

Total Time 9.502E-02

ab ... done

AUTO>

Figure 4.2: Typing auto at the Unix shell prompt starts the AUTO 2000 CLUI. The rest of the
commands are interpreted by the AUTO 2000 CLUI.
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Note that the name given to the load command is not the same as the filename which is read
in, for example load(constants=’ab.1’) reads in the file c.ab.1. This difference is a result of
the automatic transformation of the filenames by the AUTO 2000 CLUI into the standard names
used by AUTO 2000 . The standard filename transformations are show in Table 4.3.

Long name Short name Name entered Transformed file name
equation e foo foo.c
constants c foo c.foo
solution s foo s.foo
bifurcationDiagram b foo b.foo
diagnostics d foo d.foo
homcont h foo h.foo

Table 4.3: This table shows the standard AUTO 2000 CLUI filename translations. In load and
run commands either the long name or the short name may be used for loading the appropriate
files.

Since the load command is so common, there are various shorthand versions of it. First, there
are short versions of the various arguments as shown in Table 4.3. For example, the command
load(constants=’ab.1’) can be shortened to load(c=’ab.1’). Next, several different files may
be loaded at once using the same load command. For example, the two commands in Figure 4.3
have the same effect as the single command in Figure 4.4.

AUTO> load(e=’ab’)

Runner configured

AUTO> load(c=’ab.1)

Runner configured

Figure 4.3: Loading two files individually.

AUTO> load(e=’ab’,c=’ab.1’)

Runner configured

Figure 4.4: Loading two files at the same time.

Also, since it is common that several files will be loaded that have the same base name
load(’ab’) performs the same action as load(e=’ab’,c=’ab’,s=’ab’,h=’ab’). Note, for the
command load(’ab’) it is only required that ab.c and c.ab exist; s.ab and h.ab are optional, and
if they do not exist, no error message will be given.

4.4 Scripting

Section 4.3 showed commands being interactively entered at the AUTO 2000 CLUI prompt, but
since the AUTO 2000 CLUI is based on Python one has the ability to write scripts for performing
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sequences of commands automatically. A Python script is very similar to the interactive mode
shown in Section 4.3 except that the commands are placed in a file and read all at once. For
example, if the commands from Figure 4.2 where placed into the file demo1.auto, in the format
shown in Figure 4.5, then the commands could be run all at once by typing auto demo1.auto.
See Figure 4.6 for the full output.

copydemo(’ab’)

load(equation=’ab’)

load(constants=’ab.1’)

run()

Figure 4.5: The commands from Figure 4.2 and they would appear in a AUTO 2000 CLUI script
file. The source for this script can be found in $AUTO DIR/demos/python/demo1.auto.

4.5 Second Example

In Section 4.3 we showed a very simple AUTO 2000 CLUI script, in this Section we will describe
a more complex example, which introduces several new AUTO 2000 CLUI commands as well as
some basic Python constructs for conditionals and looping. We will not provide an exhaustive
reference for the Python language, but only the very basics. For more extensive documentation
we refer the reader to Lutz (1996) or the web page http://www.python.org. In this section we
will describe each line of the script in detail, and the full text of the script is in Figure 4.7.

The script begins with a section, extracted into Figure 4.8, which performs a task identical
to that shown in Figure 4.2 except that the shorthand discussed in Section 4.3 is used for the ld

command.
The next section of the script, extracted into Figure 4.9, introduces three new AUTO 2000 CLUI

commands. First, sv(’bvp’) (Section 4.13.6 in the reference) saves the results of the AUTO 2000 run
into files using the base name bvp and the filename extensions in Table 4.3. For example, in this
case the bifurcation diagram file fort.7 will be saved as b.bvp, the solution file fort.8 will be saved
as s.bvp, and the diagnostics file fort.9 will be saved as d.bvp. Next, ld(s=’bvp’) loads the
solution file s.bvp into memory so that it can be used by AUTO 2000 for further calculations.

Up to this point all of the commands presented have had analogs in the command language
discussed in Section A, and the AUTO 2000 CLUI has been designed in this way to make it
easy for users to migrate from the old command language to the AUTO 2000 CLUI. The next
command, namely data = sl(’bvp’) (Section 4.13.19 in the reference) is the first command
which has no analog in the old command language. The command sl(’bvp’) parses the file
s.bvp and returns a python object which encapsulates the information contained in the file and
presents it to the user in an easy to use format. Accordingly, the command data = sl(’bvp’)

stores this easy to use representation of the object in the Python variable data. Note, variables
in Python are different from those in languages such as C in that their type does not have to
be declared before they are created. Finally, ch("NTST",50) (Section 4.13.32 in the reference)
changes the NTST value to 50 (see Section 5.2.1). To be precise, the command ch("NTST",50)
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> cat demo1.auto

copydemo(’ab’)

load(equation=’ab’)

load(constants=’ab.1’)

run()

> auto demo1.auto

Initializing

Copying demo ab ... done

Runner configured

Runner configured

gcc -O -DPTHREADS -O -I/home/amavisitors/redrod/src/auto/2000/include -c ab.c

gcc -O ab.o -o ab.exe /home/amavisitors/redrod/src/auto/2000/lib/*.o -lpthread

-L/home/amavisitors/redrod/src/auto/2000/lib -lauto_f2c -lm

Starting ab ...

1 1 EP 1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

1 33 LP 2 1.057390E-01 1.484391E+00 3.110230E-01 1.451441E+00

1 70 LP 3 8.893185E-02 3.288241E+00 6.889822E-01 3.215250E+00

1 90 HB 4 1.308998E-01 4.271867E+00 8.950803E-01 4.177042E+00

1 92 EP 5 1.512417E-01 4.369748E+00 9.155894E-01 4.272750E+00

Total Time 8.740E-02

ab ... done

>

Figure 4.6: This Figure starts by listing the contents of the demo1.auto file using the Unix cat

command. The file is then run through the AUTO 2000 CLUI by typing auto demo1.auto and
the output is shown.

only modifies the “in memory” version of the AUTO 2000 constants created by the ld(’bvp’)

command. The original file c.bvp is not modified.
The next section of the script, extracted into Figure 4.10, shows as example of looping and

conditionals in an AUTO 2000 CLUI script. The first line for solution in data: is the
Python syntax for loops. The data variable was defined in Figure 4.9 to be the parsed ver-
sion of an AUTO 2000 fort.8 file, and accordingly contains a list of the solutions from the fort.8
file. The command for solution in data: is used to loop over all solutions in the data variable
by setting the variable solution to be one of the solutions in data and then calling the rest of
the code in the block.

Python differs from most other computer languages in that blocks of code are not defined by
some delimiter, such as {} in C, but by indentation. In Figure 4.7 the commands plot(’bvp’)

and wait() are not part of the loop, because they are indented differently. This can be confusing
first time users of Python , but it has the advantage that the code is forced to have a consistent
indentation style.

The next command in the script, if solution["Type name"] == "BP": is a Python condi-
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copydemo(’bvp’)

ld(’bvp’)

run()

sv(’bvp’)

ld(s=’bvp’)

data = sl(’bvp’)

ch("NTST",50)

for solution in data:

if solution["Type name"] == "BP":

ch("IRS", solution["Label"])

ch("ISW", -1)

# Compute forward

run()

ap(’bvp’)

# Compute back

ch("DS",-pr("DS"))

run()

ap(’bvp’)

plot(’bvp’)

wait()

Figure 4.7: This Figure shows a more complex AUTO 2000 CLUI script. The source for this
script can be found in $AUTO DIR/demos/python/demo2.auto.

copydemo(’bvp’)

ld(’bvp’)

run()

Figure 4.8: The first part of the complex AUTO 2000 CLUI script.

sv(’bvp’)

ld(s=’bvp’)

data = sl(’bvp’)

ch("NTST",50)

Figure 4.9: The second part of the complex AUTO 2000 CLUI script.
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tional. It examines the contents of the variable solution (which is one of the entries in the array
of solutions data) and checks to see if the condition solution["Type name"] == "BP" holds.
For parsed fort.8 files Type name BP corresponds to a bifurcation point. Accordingly, the function
of this loop and conditional is to examine every solution in the fort.8 file and run the following
commands if the solution is a bifurcation point.

The next line is ch("IRS", solution["Label"]) which changes the “in memory” version of
the AUTO 2000 constants file to set IRS (see Section 5.8.5) equal to the label of the bifurcation
point. We then use ch("ISW", -1) to change the AUTO 2000 constant ISW to -1, which indicates
a branch switch (see Section 5.8.3).

We then use a run() command to perform the calculation of the bifurcating branch and then
append the data to the s.bvp, b.bvp, and d.bvp files with the ap(’bvp’) command (Section 4.13.1
in the reference). In addition, as can be seen in Figure 4.10, the # character is the Python com-
ment character. When the Python interpretor encounters a # character it ignores everything
from that character to the end of the line.

Finally, we us ch("DS",-pr("DS")) to change the AUTO 2000 initial step size from positive
to negative, which allows us to compute the bifurcating branch in the other direction (see Sec-
tion 5.5.1). Running the AUTO 2000 calculation with the run() command and appending the
data the appropriate files with the ap(’bvp’) command completes the body of the loop.

for solution in data:

if solution["Type name"] == "BP":

ch("IRS", solution["Label"])

ch("ISW", -1)

# Compute forward

run()

ap(’bvp’)

# Compute back

ch("DS",-pr("DS"))

run()

ap(’bvp’)

Figure 4.10: The second part of the complex AUTO 2000 CLUI script.

Now that the section of script shown in Figure 4.10 has finished computing the bifurcation
diagram, the command plot(’bvp’) brings up a plotting window (Section 4.13.20 in the ref-
erence), and the command wait() causes the AUTO 2000 CLUI to wait for input. You may
now exit the AUTO 2000 CLUI by pressing any key in the window in which you started the
AUTO 2000 CLUI.

4.6 Extending the AUTO 2000 CLUI

The code in Figure 4.7 performed a very useful and common procedure, it started an AUTO 2000 cal-
culation and performed additional continuations at every point which AUTO 2000 detected as a
bifurcation. Unfortunately, the script as written can only be used for the bvp demo. In this sec-
tion we will generalize the script in Figure 4.7 for use with any demo, and demonstrate how it can
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be imported back into the interactive mode to create a new command for the AUTO 2000 CLUI.
Several examples of such “expert” scripts can be found in auto/2000/demos/python/n-body.

Just as loops and conditionals can be used in Python , one can also define functions. For ex-
ample, Figure 4.11 is a functional version of script from Figure 4.7. The changes are actually quite
minor. The first line, from AUTOclui import *, includes the definitions of the AUTO 2000 CLUI
commands, and must be included in all AUTO 2000 CLUI scripts which define functions. The
next line, def myRun(demo):, begins the function definition, and creates a function named myRun

which takes one argument demo. The rest of the script is the same except that it has been in-
dented to indicate that it is part of the function definition, and all occurrences of string ’bvp’

have been replaced with the variable demo. Finally we have added a line myRun(’bvp’) which
actually calls the function we have created and runs the same computation as the original script.

from AUTOclui import *

def myRun(demo):

copydemo(demo)

ld(demo)

run()

sv(demo)

ld(s=demo)

data = sl(demo)

ch("NTST",50)

for solution in data:

if solution["Type name"] == "BP":

ch("IRS", solution["Label"])

ch("ISW", -1)

# Compute forward

run()

ap(demo)

# Compute back

ch("DS",-pr("DS"))

run()

ap(demo)

plot(demo)

wait()

myRun(’bvp’)

Figure 4.11: This Figure shows a complex AUTO 2000 CLUI script written as a function. The
source for this script can be found in $AUTO DIR/demos/python/userScript.xauto.

While the script in Figure 4.11 is only slightly different then the one showed in Figure 4.7 it
is much more powerful. Not only can it be used as a script for running any demo by modifying
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the last line, it can be read back into the interactive mode of the AUTO 2000 CLUI and used
to create a new command, as in Figure 4.12. First, we create a file called userScript.py which
contains the script from Figure 4.11, with one minor modification. We want the function only
to run when we use it interactively, not when the file userScript.py is read in, so we remove the
last line where the function is called. We start the AUTO 2000 CLUI with the Unix command
auto, and once the AUTO 2000 CLUI is running we use the command from userScript import

*, to import the file userScript.py into the AUTO 2000 CLUI. The import command makes all
functions in that file available for our use (in this case myRun is the only one). It is important
to note that from userScript import * does not use the .py extension on the file name. After
importing our new function, we may use it just like any other function in the AUTO 2000 CLUI,
for example by typing myRun(’bvp’).

4.7 Bifurcation Diagram Files

Using the commandParseDiagramFile command (Section 4.13.18 in the reference) the user can
parse and read into memory an AUTO 2000 bifurcation diagram file. For example, the com-
mand commandParseDiagramFile(’ab’) would parse the file b.ab (if you are using the standard
filename translations from Table 4.3) and return an object which encapsulates the bifurcation
diagram in an easy to use form.

The object returned by the commandParseDiagramFile is a list of all of the solutions in the
appropriate bifurcation diagram file, and each solution is a Python dictionary with entries for
each piece of data for the solution. For example, the sequence of commands in Figure 4.13, prints
out the label of the first solution in a bifurcation diagram. The queriable parts of the object are
listed in Table 4.4.

The individual elements of the array may be accessed in two ways, either by index of the
solution using the [] syntax or by label number using the () syntax. For example, assume
that the parsed object is contained in a variable data. The first solution may be accessed using
the command data[0], while the solution with label 57 may be accessed using the command
data(57).

This class has two methods that are particularily useful for creating data which can be used
in other programs. First, there is a method called toArray which takes a bifurcation diagram
and returns a standard Python array. Second, there is a method called writeRawFilename

which will create a standard ASCII file which contains the bifurcation diagram. For example,
we again assume that the parsed object is contained in a variable data. If one wanted to have
the bifurcation diagram returned as a Python array one would type data.toArray(). Similar-
ily, if one wanted to write out the bifurcation diagram to the file outputfile one would type
data.writeRawFilename(’outputfile’).

4.8 Solution Files

Using the commandParseSolutionFile command (Section 4.13.19 in the reference) the user can
parse and read into memory an AUTO 2000 bifurcation solution file. For example, the command
commandParseSolutionFile(’ab’) would parse the file b.ab (if you are using the standard file-
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> cp \$AUTO\_DIR/python/demo/userScript.py .

> ls

userScript.py

> cat userScript.py

# This is an example script for the AUTO2000 command line user

# interface. See the "Command Line User Interface" chapter in the

# manual for more details.

from AUTOclui import *

def myRun(demo):

copydemo(demo)

ld(demo)

run()

sv(demo)

ld(s=demo)

data = sl(demo)

ch("NTST",50)

for solution in data:

if solution["Type name"] == "BP":

ch("IRS", solution["Label"])

ch("ISW", -1)

# Compute forward

run()

ap(demo)

# Compute back

ch("DS",-pr("DS"))

run()

ap(demo)

plot(demo)

wait()

> auto

Initializing

Python 1.5.2 (#1, Feb 1 2000, 16:32:16) [GCC egcs-2.91.66 19990314/Linux

(egcs- on linux-i386

Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam

(AUTOInteractiveConsole)

AUTO> from userScript import *

AUTO> myRun(’bvp’)

...

Figure 4.12: This Figure shows the functional version of the AUTO 2000 CLUI from Figure 4.11
being used as an extension to the AUTO 2000 CLUI. The source code for this script can be found
in $AUTO DIR/python/demo/userScript.py
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AUTO> data=dg(’ab’)

Parsed file: b.ab

AUTO> print data[0]

{’LAB’: 6, ’TY name’: ’EP’, ’data’: [0.0, 0.0, 0.0, 0.0], ’section’: 12,

’BR’: 2, ’PT’: 1, ’TY number’: 9}

AUTO> print data[0][’LAB’]

6

AUTO>

Figure 4.13: This figure shows an example of parsing a bifurcation diagram. The first command,
data=dg(’ab’), reads in the bifurcation diagram and puts it into the variable data. The second
command, print data[0] prints out all of the data about the first solution in the list. The third
command, print data[0][’LAB’], prints out the label of the first point.

Query string Meaning
TY name The short name for the solution type (see Table 4.5).
TY number The number of the solution type (see Table 4.5).
BR The branch number.
PT The point number.
LAB The solution label, if any.
section A unique identifier for each branch in a file with multiple branches.
data An array which contains the AUTO 2000 output.

Table 4.4: This table shows the strings that can be used to query a bifurcation diagram object
and their meanings.

Type Short Name Number
No Label No Label
Branch point (algebraic problem) BP 1
Fold (algebraic problem) LP 2
Hopf bifurcation (algebraic problem) HB 3
Regular point (every NPR steps) RG 4
User requested point UZ -4
Fold (ODE) LP 5
Bifurcation point (ODE) BP 6
Period doubling bifurcation (ODE) PD 7
Bifurcation to invarient torus (ODE) TR 8
Normal begin or end EP 9
Abnormal termination MX -9

Table 4.5: This table shows the the various types of points that can be in solution and bifurcation
diagram files, with their short names and numbers.

33



name translations from Table 4.3) and return an object which encapsulates the bifurcation solution
in a easy to use form.

The object returned by the commandParseSolutionFile is a list of all of the solutions in the
appropriate bifurcation solution file, and each solution is a Python dictionary with entries for
each piece of data for the solution. For example, the sequence of commands in Figure 4.14, prints
out the label of the first solution in a bifurcation solution. The queriable parts of the object are
listed in Table 4.6.

AUTO> data=sl()

Parsed file: fort.8

AUTO> print data[0]

’Branch number’: 2

’ISW’: 1

’Label’: 6

’NCOL’: 0

’NTST’: 0

’Parameters’: [0.0, 14.0, 2.0, 0.0, 0.0, 0.0]

’Point number’: 1

’Type name’: ’EP’

’Type number’: 9

’p’: [0.0, 14.0, 2.0, 0.0, 0.0, 0.0]

’parameters’: [0.0, 14.0, 2.0, 0.0, 0.0, 0.0]

AUTO> print data[0][’Label’]

6

AUTO> data[0]["data"][0]

{’t’: 0.0, ’u’: [0.0, 0.0]}

Figure 4.14: This figure shows an example of parsing a bifurcation solution. The first command,
data=dg(’ab’), reads in the bifurcation solution and puts it into the variable data. The second
command, print data[0] prints out all of the data about the first solution in the list. The third
command, print data[0][’Label’], prints out the label of the first point. The last command
prints the value of the solution at the first point of the first solution.

The individual elements of the array may be accessed in two ways, either by the index of
the solution using the [] syntax or by label number using the () syntax. For example, sssume
that the parsed object is contained in a variable data. The first solution may be accessed using
the command data[0], while the solution with label 57 may be accessed using the command
data(57).

This class has two methods that are particularily useful for creating data which can be used
in other programs. First, there is a method called toArray which takes a solution and re-
turns a standard Python array. Second, there is a method called writeRawFilename which will
create a standard ASCII file which contains the solution. The first element of each row will
be the ’t’ value and the following elements will be the values of the components at that ’t’
value. For example, we again assume that the parsed object is contained in a variable data.
If one wanted to have the solution with label 57 returned as a Python array one would type
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Query string Meaning

data An array which contains the AUTO 2000 output.

Branch number
The number of the branch to which the solution belongs.

ISW
The ISW value used to start the calcluation. See Sec-
tion 5.8.3.

Label The label of the solution.

NCOL
The number of collocation points used to compute the
solution. See Section 5.3.2.

NTST
The number of mesh intervals used to compute the solu-
tion. See Section 5.3.1.

Parameters The value of all of the parameters for the solution.

Point number The number of the point in the given branch.

Type name
A short string which describes the type of the solution
(see Table 4.5).

Type number
A number which describes the type of the solution (see
Table 4.5).

p
The value of all of the parameters for the solution. (This
is an alias for ’Parameter’).

parameters
The value of all of the parameters for the solution. (This
is an alias for ’Parameter’).

Table 4.6: This table shows the strings that can be used to query a bifurcation solution object
and their meanings.
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data(57).toArray(). Similarily, if one wanted to write out the solution to the file outputfile

one would type data(57).writeRawFilename(’outputfile’).

4.9 The .autorc File

Much of the default behavior of the AUTO 2000 CLUI can be controlled by the .autorc file. The
.autorc file can exist in either the main AUTO 2000 directory, the users home directory, or the
current directory. For any option which is defined in more then one file, the .autorc file in the
current directory (if it exists) takes precedence, followed by the .autorc file in the users home
directory (if it exists), and then the .autorc file in the main AUTO 2000 directory. Hence, options
may be defined on either a per directory, per user, or global basis.

The first section of the .autorc file begins with the line [AUTO command aliases] and this
section defines short names, or aliases, for the AUTO 2000 CLUI commands. Each line thereafter
is a definition of a command, similiar to branchPoint =commandQueryBranchPoint. The right
hand side of the assignment is the internal AUTO 2000 CLUI name for the command, while the
left hand side is the desired alias. Aliases and internal names may be used interchangably, but
the intention is that the aliases will be more commonly used. A default set of aliases is provided,
and these aliases will be used in the examples in the rest of this Chapter. The default aliases are
listed in the reference in Section 4.13.

NOTE: Defaults for the plotting tool may be included in the .autorc file as well. The docu-
mentation for this is under developement, but the file $AUTO DIR/.autorc contains examples of
how these options may be set.

4.10 Two Dimensional Plotting Tool

The two dimensional plotting tool can be run by using the command plot() to plot the files
fort.7 and fort.8 after a calculation has been run, or using the command plot(’foo’) to plote
the data in the files s.foo and b.foo.

The menu bar provides two buttons. The File button brings up a menu which allows the
user to save the current plot as a Postscript file or to quit the plotter. The Options button allows
the plotter configuration options to be modified. The available options are decribed in Table 4.7.
In addition, the options can be set from within the CLUI. For example, the set of commands
in Figure 4.15 shows how to create a plotter and change its background color to black. The
demo script auto/2000/demo/python/plotter.py contains several examples of changing options in
plotters.

Pressing the right mouse button in the plotting window brings up a menu of buttons which
control several aspects of the plotting window. The top two toggle buttons control what func-
tion the left button performs. The print value button causes the left button to print out the
numerical value underneath the pointer when it is clicked. When zoom button is checked the left
mouse button may be held down to create a box in the plot. When the left button is released the
plot will zoom to the selected portion of the diagram. The unzoom button returns the diagram
to the default zoom. The Postscript button allows the user to save the plot as a Postscript file.
The Configure... button brings up the dialog for setting configuration options.
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AUTO> plot=pl()

Created plotter

AUTO> plot.config(bg="black")

AUTO>

Figure 4.15: This example shows how a plotter is created, and how the background color may be
changed to black. All other configuration options are set similarily. Note, the above commands
assume that the files fort.7 and fort.8 exist in the current directory.

Query string Meaning
background The background color of the plot.
bifurcation column defaults A set of bifurcation columns the user is likely to use.
bifurcation diagram A parsed bifurcation diagram file to plot.
bifurcation diagram filename The filename of the bifurcation diagram to plot.
bifurcation symbol The symbol to use for bifurcation points.
bifurcation x The column to plot along the X-axis for bifurcation diagrams.
bifurcation y The column to plot along the Y-axis for bifurcation diagrams.
color list A list of colors to use for multiple plots.
decorations Turn on or off the axis, tick marks, etc.
error symbol The symbol to use for error points.
foreground The background color of the plot.
grid Turn on or off the grid.
hopf symbol The symbol to use for Hopf bifurcation points.
index An array of indicies to plot.
label An array of labels to plot.
label defaults A set of labels that the user is likely to use.
limit point symbol The symbol to use for limit points.
mark t The t value to marker with a small ball.
maxx The upper bound for the x-axis of the plot.
maxy The upper bound for the y-axis of the plot.
minx The lower bound for the x-axis of the plot.
miny The lower bound for the y-axis of the plot.
period doubling symbol The symbol to use for period doubling bifurcation points.
runner The runner object from which to get data.
special point colors An array of colors used to mark special points.
special point radius The radius of the spheres used to mark special points.
solution A parsed solution file to plot.
solution column defaults A set of solution columns the user is likely to use.
solution filename The filename of the solution to plot.
solution x The column to plot along the X-axis for solutions.
solution y The column to plot along the Y-axis for solutions.
symbol font The font to use for marker symbols.
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symbol color The color to use for the marker symbols.
tick label template A string which defines the format of the tick labels.
tick length The length of the tick marks.
torus symbol The symbol to use for torus bifurcation points.
type The type of the plot, either “solution” or “bifurcation”.
user point symbol The symbol to use for user defined output points.
xlabel The label for the x-axis.
xmargin The margin between the graph and the right and left edges.
xticks The number of ticks on the x-axis.
ylabel The label for the y-axis.
ymargin The margin between the graph and the top and bottom edges.
yticks The number of ticks on the y-axis.

Table 4.7: This table shows the options that can be set for
the AUTO 2000 CLUI two dimensional plotting window
and their meanings.

4.11 Three Dimensional Plotting Tool

NOTE: the documentation in this section is under developement.
The AUTO 2000 three dimensional plotting tool can use DataViewer or OpenInventor for

rendering three dimensional representations of bifurcation diagrams and solutions and is under
active development. Neither DataViewer nor OpenInventor are provided with AUTO 2000 and
must be downloaded seperately. If you are interested in the three dimensional plotting tool please
contact redrod@acm.org.
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4.12 Quick Reference

In this section we have created a table of all of the AUTO 2000 CLUI commands, their abbrevia-
tions, and a one line description of what function they perform. Each command may be entered
using its full name or any of its aliases.

Command Aliases Description
commandAppend ap append Append data files.
commandCat cat Print the contents of a file
commandCd cd Change directories.
commandClean clean cl Clean the current directory.
commandCopyAndLoadDemo dm demo Copy a demo into the cur-

rent directory and load it.
commandCopyDataFiles copy cp Copy data files.
commandCopyDemo copydemo Copy a demo into the cur-

rent directory.
commandCopyFortFiles sv save Save data files.
commandCreateGUI gui Show AUTOs graphical user

interface.
commandDeleteDataFiles delete dl Delete data files.
commandDeleteFortFiles df deletefort Clear the current directory

of fort files.
commandDouble double db Double a solution.
commandInteractiveHelp man help Get help on the AUTO com-

mands.
commandLs ls List the current directory.
commandMoveFiles move mv Move data-files to a new

name.
commandParseConstantsFile cn constantsget Get the current continuation

constants.
commandParseDiagramAndSolutionFile bt diagramandsolu-

tionget
Parse both bifurcation dia-
gram and solution.

commandParseDiagramFile dg diagramget Parse a bifurcation diagram.
commandParseSolutionFile sl solutionget Parse solution file:
commandPlotter p2 pl plot 2D plotting of data.
commandPlotter3D plot3 p3 3D plotting of data.
commandQueryBranchPoint br bp branchpoint Print the “branch-point

function”.
commandQueryEigenvalue eigenvalue ev eg Print eigenvalues of Jaco-

bian (algebraic case).
commandQueryFloquet fl floquet Print the Floquet multipli-

ers.
commandQueryHopf hb hp hopf lp Print the value of the “Hopf

function”.
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commandQueryIterations iterations it Print the number of Newton
interations.

commandQueryLimitpoint lm limitpoint Print the value of the “limit
point function”.

commandQueryNote nt note Print notes in info file.
commandQuerySecondaryPeriod sc secondaryperiod

sp
Print value of “secondary-
periodic bif. fcn”.

commandQueryStepsize ss stepsize st Print continuation step
sizes.

commandRun r run rn Run AUTO.
commandRunnerConfigFort2 changeconstant cc ch Modify continuation con-

stants.
commandRunnerLoadName ld load Load files into the AUTO

runner.
commandRunnerPrintFort2 pc pr printconstant Print continuation parame-

ters.
commandShell shell Run a shell command.
commandTriple tr triple Triple a solution.
commandUserData us userdata Covert user-supplied data

files.
commandWait wait Wait for the user to enter a

key.
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4.13 Reference

4.13.1 commandAppend

Purpose

Append data files.

Description

Type commandAppend(’xxx’) to append the output-files fort.7, fort.8, fort.9, to exist-
ing data-files s.xxx, b.xxx, and d.xxx (if you are using the default filename templates).
Type commandAppend(’xxx’,’yyy’) to append existing data-files s.xxx, b.xxx, and
d.xxx to data-files s.yyy, b.yyy, and d.yyy (if you are using the default filename
templates).

Aliases

ap append

4.13.2 commandCat

Purpose

Print the contents of a file

Description

Type ’commandCat xxx’ to list the contents of the file ’xxx’. This calls the Unix
function ’cat’ for reading the file.

Aliases

cat
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4.13.3 commandCd

Purpose

Change directories.

Description

Type ’commandCd xxx’ to change to the directory ’xxx’. This command understands
both shell variables and home directory expansion.

Aliases

cd

4.13.4 commandClean

Purpose

Clean the current directory.

Description

Type commandClean() to clean the current directory. This command will delete all
files of the form fort.*, *.o, and *.exe.

Aliases

clean cl
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4.13.5 commandCopyAndLoadDemo

Purpose

Copy a demo into the current directory and load it.

Description

Type commandCopyAndLoadDemo(’xxx’) to copy all files from
auto/2000/demos/xxx to the current user directory. Here ’xxx’ denotes a
demo name; e.g., ’abc’. Note that the ’dm’ command also copies a Makefile to
the current user directory. To avoid the overwriting of existing files, always run
demos in a clean work directory. NOTE: This command automatically performs the
commandRunnerLoadName command as well.

Aliases

dm demo

4.13.6 commandCopyDataFiles

Purpose

Copy data files.

Description

Type commandCopyDataFiles(’xxx’,’yyy’) to copy the data-files c.xxx, d.xxx, b.xxx,
and h.xxx to c.yyy, d.yyy, b.yyy, and h.yyy (if you are using the default filename
templates).

Aliases

copy cp
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4.13.7 commandCopyDemo

Purpose

Copy a demo into the current directory.

Description

Type commandCopyDemo(’xxx’) to copy all files from auto/2000/demos/xxx to the
current user directory. Here ’xxx’ denotes a demo name; e.g., ’abc’. Note that the
’dm’ command also copies a Makefile to the current user directory. To avoid the
overwriting of existing files, always run demos in a clean work directory.

Aliases

copydemo

4.13.8 commandCopyFortFiles

Purpose

Save data files.

Description

Type commandCopyFortFiles(’xxx’) to save the output-files fort.7, fort.8, fort.9, to
b.xxx, s.xxx, d.xxx (if you are using the default filename templates). Existing files
with these names will be overwritten.

Aliases

sv save
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4.13.9 commandCreateGUI

Purpose

Show AUTOs graphical user interface.

Description

Type commandCreateGUI() to start AUTOs graphical user interface.
NOTE: This command is not implemented yet.

Aliases

gui

4.13.10 commandDeleteDataFiles

Purpose

Delete data files.

Description

Type commandDeleteDataFiles(’xxx’) to delete the data-files d.xxx, b.xxx, and s.xxx
(if you are using the default filename templates).

Aliases

delete dl
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4.13.11 commandDeleteFortFiles

Purpose

Clear the current directory of fort files.

Description

Type commandDeleteFortFiles() to clean the current directory. This command will
delete all files of the form fort.*.

Aliases

df deletefort

4.13.12 commandDouble

Purpose

Double a solution.

Description

Type commandDouble() to double the solution in ’fort.7’ and ’fort.8’.
Type commandDouble(’xxx’) to double the solution in b.xxx and s.xxx (if you are
using the default filename templates).

Aliases

double db
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4.13.13 commandInteractiveHelp

Purpose

Get help on the AUTO commands.

Description

Type ’help’ to list all commands with a online help. Type ’help xxx’ to get help for
command ’xxx’.

Aliases

man help

4.13.14 commandLs

Purpose

List the current directory.

Description

Type ’commandLs’ to run the system ’ls’ command in the current directory. This
command will accept whatever arguments are accepted by the Unix command ’ls’.

Aliases

ls
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4.13.15 commandMoveFiles

Purpose

Move data-files to a new name.

Description

Type commandMoveFiles(’xxx’,’yyy’) to move the data-files b.xxx, s.xxx, d.xxx, and
c.xxx to b.yyy, s.yyy, d.yyy, and c.yyy (if you are using the default filename tem-
plates).

Aliases

move mv

4.13.16 commandParseConstantsFile

Purpose

Get the current continuation constants.

Description

Type commandParseConstantsFile(’xxx’) to get a parsed version of the constants file
c.xxx (if you are using the default filename templates).

Aliases

cn constantsget
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4.13.17 commandParseDiagramAndSolutionFile

Purpose

Parse both bifurcation diagram and solution.

Description

Type commandParseDiagramAndSolutionFile(’xxx’) to get a parsed version of the
diagram file b.xxx and solution file s.xxx (if you are using the default filename tem-
plates).

Aliases

bt diagramandsolutionget

4.13.18 commandParseDiagramFile

Purpose

Parse a bifurcation diagram.

Description

Type commandParseDiagramFile(’xxx’) to get a parsed version of the diagram file
b.xxx (if you are using the default filename templates).

Aliases

dg diagramget
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4.13.19 commandParseSolutionFile

Purpose

Parse solution file:

Description

Type commandParseSolutionFile(’xxx’) to get a parsed version of the solution file
s.xxx (if you are using the default filename templates).

Aliases

sl solutionget

4.13.20 commandPlotter

Purpose

2D plotting of data.

Description

Type commandPlotter(’xxx’) to run the graphics program for the graphical inspection
of the data-files b.xxx and s.xxx (if you are using the default filename templates).
The return value will be the handle for the graphics window.
Type commandPlotter() to run the graphics program for the graphical inspection
of the output-files ’fort.7’ and ’fort.8’. The return value will be the handle for the
graphics window.

Aliases

p2 pl plot
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4.13.21 commandPlotter3D

Purpose

3D plotting of data.

Description

Type commandPlotter3D(’xxx’) to run the graphics program for the graphical inspec-
tion of the data-files b.xxx and s.xxx (if you are using the default filename templates).
The return value will be the handle for the graphics window.
Type commandPlotter3D() to run the graphics program for the graphical inspection
of the output-files ’fort.7’ and ’fort.8’. The return value will be the handle for the
graphics window.

Aliases

plot3 p3

4.13.22 commandQueryBranchPoint

Purpose

Print the “branch-point function”.

Description

Type commandQueryBranchPoint() to list the value of the “branch-point function”
in the output-file fort.9. This function vanishes at a branch point.
Type commandQueryBranchPoint(’xxx’) to list the value of the “branch-point func-
tion” in the info file ’d.xxx’.

Aliases

br bp branchpoint
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4.13.23 commandQueryEigenvalue

Purpose

Print eigenvalues of Jacobian (algebraic case).

Description

Type commandQueryEigenvalue() to list the eigenvalues of the Jacobian in fort.9.
(Algebraic problems.)
Type commandQueryEigenvalue(’xxx’) to list the eigenvalues of the Jacobian in the
info file ’d.xxx’.

Aliases

eigenvalue ev eg

4.13.24 commandQueryFloquet

Purpose

Print the Floquet multipliers.

Description

Type commandQueryFloquet() to list the Floquet multipliers in the output-file fort.9.
(Differential equations.)
Type commandQueryFloquet(’xxx’) to list the Floquet multipliers in the info file
’d.xxx’.

Aliases

fl floquet
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4.13.25 commandQueryHopf

Purpose

Print the value of the “Hopf function”.

Description

Type commandQueryHopf() to list the value of the “Hopf function” in the output-file
fort.9. This function vanishes at a Hopf bifurcation point.
Type commandQueryHopf(’xxx’) to list the value of the “Hopf function” in the info
file ’d.xxx’.

Aliases

hb hp hopf lp

4.13.26 commandQueryIterations

Purpose

Print the number of Newton interations.

Description

Type commandQueryIterations() to list the number of Newton iterations per contin-
uation step in fort.9.
Type commandQueryIterations(’xxx’) to list the number of Newton iterations per
continuation step in the info file ’d.xxx’.

Aliases

iterations it
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4.13.27 commandQueryLimitpoint

Purpose

Print the value of the “limit point function”.

Description

Type commandQueryLimitpoint() to list the value of the “limit point function” in
the output-file fort.9. This function vanishes at a limit point (fold).
Type commandQueryLimitpoint(’xxx’) to list the value of the “limit point function”
in the info file ’d.xxx’.

Aliases

lm limitpoint

4.13.28 commandQueryNote

Purpose

Print notes in info file.

Description

Type commandQueryNote() to show any notes in the output-file fort.9.
Type commandQueryNote(’xxx’) to show any notes in the info file ’d.xxx’.

Aliases

nt note
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4.13.29 commandQuerySecondaryPeriod

Purpose

Print value of “secondary-periodic bif. fcn”.

Description

Type commandQuerySecondaryPeriod() to list the value of the “secondary-periodic
bifurcation function” in the output-file ’fort.9. This function vanishes at period-
doubling and torus bifurcations.
Type commandQuerySecondaryPeriod(’xxx’) to list the value of the “secondary-
periodic bifurcation function” in the info file ’d.xxx’.

Aliases

sc secondaryperiod sp

4.13.30 commandQueryStepsize

Purpose

Print continuation step sizes.

Description

Type commandQueryStepsize() to list the continuation step size for each continuation
step in ’fort.9.
Type commandQueryStepsize(’xxx’) to list the continuation step size for each con-
tinuation step in the info file ’d.xxx’.

Aliases

ss stepsize st
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4.13.31 commandRun

Purpose

Run AUTO.

Description

Type commandRun([options]) to run AUTO with the given options. There are four
possible options:

Long name Short name Description

-------------------------------------------

equation e The equations file

constants c The AUTO constants file

solution s The restart solution file

homcont h The Homcont parameter file

Options which are not explicitly set retain their previous value. For example one may
type: commandRun(e=’ab’,c=’ab.1’) to use ’ab.c’ as the equations file and c.ab.1 as
the constants file (if you are using the default filename templates).
Type commandRun(’name’) load all files with base ’name’. This does the same thing
as running commandRun(e=’name’,c=’name,s=’name’,h=’name’).

Aliases

r run rn

4.13.32 commandRunnerConfigFort2

Purpose

Modify continuation constants.

Description

Type commandRunnerConfigFort2(’xxx’,yyy) to change the constant ’xxx’ to have
value yyy.

Aliases

changeconstant cc ch
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4.13.33 commandRunnerLoadName

Purpose

Load files into the AUTO runner.

Description

Type commandRunnerLoadName([options]) to modify AUTO runner. There are four
possible options:

Long name Short name Description

-------------------------------------------

equation e The equations file

constants c The AUTO constants file

solution s The restart solution file

homcont h The Homcont parameter file

Options which are not explicitly set retain their previous value. For example one may
type: commandRunnerLoadName(e=’ab’,c=’ab.1’) to use ’ab.c’ as the equations file
and c.ab.1 as the constants file (if you are using the default filename templates).
Type commandRunnerLoadName(’name’) load all files with base
’name’. This does the same thing as running commandRunnerLoad-
Name(e=’name’,c=’name,s=’name’,h=’name’).

Aliases

ld load
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4.13.34 commandRunnerPrintFort2

Purpose

Print continuation parameters.

Description

Type commandRunnerPrintFort2() to print all the parameters. Type commandRun-
nerPrintFort2(’xxx’) to return the parameter ’xxx’.

Aliases

pc pr printconstant

4.13.35 commandShell

Purpose

Run a shell command.

Description

Type ’shell xxx’ to run the command ’xxx’ in the Unix shell and display the results
in the AUTO command line user interface.

Aliases

shell
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4.13.36 commandTriple

Purpose

Triple a solution.

Description

Type commandTriple() to triple the solution in ’fort.7’ and ’fort.8’.
Type commandTriple(’xxx’) to triple the solution in b.xxx and s.xxx (if you are using
the default filename templates).

Aliases

tr triple

4.13.37 commandUserData

Purpose

Covert user-supplied data files.

Description

Type commandUserData(’xxx’) to convert a user-supplied data file ’xxx.dat’ to
AUTO format. The converted file is called ’s.dat’. The original file is left unchanged.
AUTO automatically sets the period in PAR(11). Other parameter values must be set
in ’stpnt’. (When necessary, PAR(11) may also be redefined there.) The constants-
file file ’c.xxx’ must be present, as the AUTO-constants ’NTST’ and ’NCOL’ are used
to define the new mesh. For examples of using the ’userData’ command see demos
’lor’ and ’pen’ (where it has the old name ’fc’).

Aliases

us userdata
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4.13.38 commandWait

Purpose

Wait for the user to enter a key.

Description

Type ’commandWait’ to have the AUTO interface wait until the user hits any key
(mainly used in scripts).

Aliases

wait
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Chapter 5

Description of AUTO -Constants.

5.1 The AUTO -Constants File.

As described in Section 3.1, if the equations-file is xxx.c then the constants that define the
computation are normally expected in the file c.xxx. The general format of this file is the same
for all AUTO runs. For example, the file c.ab in directory auto/2000/demos/ab is listed below.
(The tutorial demo ab is described in detail in Chapter 7.)

2 1 0 1 NDIM,IPS,IRS,ILP

1 1 NICP,(ICP(I),I=1,NICP)

50 4 3 1 1 0 0 0 NTST,NCOL,IAD,ISP,ISW,IPLT,NBC,NINT

100 0. 0.15 0. 100. NMX,RL0,RL1,A0,A1

100 10 2 8 5 3 0 NPR,MXBF,IID,ITMX,ITNW,NWTN,JAC

1.e-6 1.e-6 0.0001 EPSL,EPSU,EPSS

0.01 0.005 0.05 1 DS,DSMIN,DSMAX,IADS

1 NTHL,((I,THL(I)),I=1,NTHL)

11 0.

0 NTHU,((I,THU(I)),I=1,NTHU)

0 NUZR,((I,UZR(I)),I=1,NUZR)

The significance of the AUTO -constants, grouped by function, is described in the sections
below. Representative demos that illustrate use of the AUTO -constants are also mentioned.

5.2 Problem Constants.

5.2.1 NDIM

Dimension of the system of equations as specified in the user-supplied subroutine func.

5.2.2 NBC

The number of boundary conditions as specified in the user-supplied subroutine bcnd.
(Demos exp, kar.)
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5.2.3 NINT

The number of integral conditions as specified in the user-supplied subroutine icnd.
(Demos int, lin, obv.)

5.2.4 JAC

Used to indicate whether derivatives are supplied by the user or to be obtained by differencing :

- JAC=0 : No derivatives are given by the user. (Most demos use JAC=0.)

- JAC=1 : Derivatives with respect to state- and problem-parameters are given in the user-
supplied subroutines func, bcnd, icnd and fopt, where applicable. This may be neces-
sary for sensitive problems. It is also recommended for computations in which AUTO gen-
erates an extended system, for example, when ISW=2.

(Demos int, dd2, obt, plp, ops.)

(For ISW see Section 5.8.3.)

5.3 Discretization Constants.

5.3.1 NTST

The number of mesh intervals used for discretization. NTST remains fixed during any particular
run, but can be changed when restarting. Recommended value of NTST : As small as possible to
maintain convergence.

(Demos exp, ab, spb.)
(For mesh adaption see IAD in Section 5.3.3.)

5.3.2 NCOL

The number of Gauss collocation points per mesh interval, (2 ≤ NCOL ≤ 7). NCOL remains fixed
during any given run, but can be changed when restarting at a previously computed solution.
The choice NCOL=4, used in most demos, is recommended. If NDIM is “large” and the solutions
“very smooth” then NCOL=2 may be appropriate.

5.3.3 IAD

This constant controls the mesh adaption :

- IAD=0 : Fixed mesh. Normally, this choice should never be used, as it may result in spurious
solutions. (Demo ext.)

- IAD>0 : Adapt the mesh every IAD steps along the branch. Most demos use IAD=3, which
is the strongly recommended value.
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When computing “trivial” solutions to a boundary value problem, for example, when all
solution components are constant, then the mesh adaption may fail under certain circumstances,
and overflow may occur. In such case, try recomputing the solution branch with a fixed mesh
(IAD=0). Be sure to set IAD back to IAD=3 for computing eventual non-trivial bifurcating
solution branches.

5.4 Tolerances.

5.4.1 EPSL

Relative convergence criterion for equation parameters in the Newton/Chord method. Most
demos use EPSL=10−6 or EPSL=10−7, which is the recommended value range.

5.4.2 EPSU

Relative convergence criterion for solution components in the Newton/Chord method. Most
demos use EPSU=10−6 or EPSU=10−7, which is the recommended value range.

5.4.3 EPSS

Relative arclength convergence criterion for the detection of special solutions. Most demos use
EPSS=10−4 or EPSS=10−5, which is the recommended value range. Generally, EPSS should be
approximately 100 to 1000 times the value of EPSL, EPSU.

5.4.4 ITMX

The maximum number of iterations allowed in the accurate location of special solutions, such
as bifurcations, folds, and user output points, by Müller’s method with bracketing. The recom-
mended value is ITMX=8, used in most demos.

5.4.5 NWTN

After NWTN Newton iterations the Jacobian is frozen, i.e., AUTO uses full Newton for the first
NWTN iterations and the Chord method for iterations NWTN+1 to ITNW. The choice NWTN=3
is strongly recommended and used in most demos. Note that this constant is only effective for
ODEs, i.e., for solving the piecewise polynomial collocation equations. For algebraic systems
AUTO always uses full Newton.

5.4.6 ITNW

The maximum number of combined Newton-Chord iterations. When this maximum is reached,
the step will be retried with half the stepsize. This is repeated until convergence, or until the
minimum stepsize is reached. In the latter case the computation of the branch is discontinued
and a message printed in fort.9. The recommended value is ITNW=5, but ITNW=7 may be used
for “difficult” problems, for example, demos spb, chu, plp, etc.
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5.5 Continuation Step Size.

5.5.1 DS

AUTO uses pseudo-arclength continuation for following solution branches. The pseudo-arclength
stepsize is the distance between the current solution and the next solution on a branch. By
default, this distance includes all state variables (or state functions) and all free parameters. The
constant DS defines the pseudo-arclength stepsize to be used for the first attempted step along
any branch. (Note that if IADS>0 then DS will automatically be adapted for subsequent steps
and for failed steps.) DS may be chosen positive or negative; changing its sign reverses the
direction of computation. The relation DSMIN ≤ | |DS ≤ DSMAX must be satisfied. The precise
choice of DS is problem-dependent; the demos use a value that was found appropriate after some
experimentation.

5.5.2 DSMIN

This is minimum allowable absolute value of the pseudo-arclength stepsize. DSMIN must be
positive. It is only effective if the pseudo-arclength step is adaptive, i.e., if IADS>0. The choice
of DSMIN is highly problem-dependent; most demos use a value that was found appropriate after
some experimentation. See also the discussion in Section 6.2.

5.5.3 DSMAX

The maximum allowable absolute value of the pseudo-arclength stepsize. DSMAX must be pos-
itive. It is only effective if the pseudo-arclength step is adaptive, i.e., if IADS>0. The choice
of DSMAX is highly problem-dependent; most demos use a value that was found appropriate after
some experimentation. See also the discussion in Section 6.2.

5.5.4 IADS

This constant controls the frequency of adaption of the pseudo-arclength stepsize.

- IADS=0 : Use fixed pseudo-arclength stepsize, i.e., the stepsize will be equal to the specified
value of DS for every step. The computation of a branch will be discontinued as soon as
the maximum number of iterations ITNW is reached. This choice is not recommended.

(Demo tim.)

- IADS>0 : Adapt the pseudo-arclength stepsize after every IADS steps. If the New-
ton/Chord iteration converges rapidly then | |DS will be increased, but never beyond
DSMAX. If a step fails then it will be retried with half the stepsize. This will be done
repeatedly until the step is successful or until | |DS reaches DSMIN. In the latter case non-
convergence will be signalled. The strongly recommended value is IADS=1, which is used
in almost all demos.
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5.5.5 NTHL

By default, the pseudo-arclength stepsize includes all state variables (or state functions) and all
free parameters. Under certain circumstances one may want to modify the weight accorded to
individual parameters in the definition of stepsize. For this purpose, NTHL defines the number of
parameters whose weight is to be modified. If NTHL=0 then all weights will have default value
1.0 . If NTHL>0 then one must enter NTHL pairs, Parameter Index Weight , with each pair on
a separate line.

For example, for the computation of periodic solutions it is recommended that the period
not be included in the pseudo-arclength continuation stepsize, in order to avoid period-induced
limitations on the stepsize near orbits of infinite period. This exclusion can be accomplished by
setting NTHL=1, with, on a separate line, the pair 11 0.0 . Most demos that compute periodic
solutions use this option; see for example demo ab.

5.5.6 NTHU

Under certain circumstances one may want to modify the weight accorded to individual state
variables (or state functions) in the definition of stepsize. For this purpose, NTHU defines the
number of states whose weight is to be modified. If NTHU=0 then all weights will have default
value 1.0 . If NTHU>0 then one must enter NTHU pairs, State Index Weight , with each pair
on a separate line. At present none of the demos use this option.

5.6 Diagram Limits.

There are three ways to limit the computation of a branch :

- By appropriate choice of the computational window defined by the constants RL0, RL1,
A0, and A1. One should always check that the starting solution lies within this computa-
tional window, otherwise the computation will stop immediately at the starting point.

- By specifying the maximum number of steps, NMX.

- By specifying a negative parameter index in the list associated with the constant NUZR;
see Section 5.9.4.

5.6.1 NMX

The maximum number of steps to be taken along any branch.

5.6.2 RL0

The lower bound on the principal continuation parameter. (This is the parameter which appears
first in the ICP list; see Section 5.7.1.).
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5.6.3 RL1

The upper bound on the principal continuation parameter.

5.6.4 A0

The lower bound on the principal solution measure. (By default, if IPLT=0, the principal solution
measure is the L2-norm of the state vector or state vector function. See the AUTO -constant
IPLT in Section 5.9.3 for choosing another principal solution measure.)

5.6.5 A1

The upper bound on the principal solution measure.

5.7 Free Parameters.

5.7.1 NICP, ICP

For each equation type and for each continuation calculation there is a typical (“generic”) number
of problem parameters that must be allowed to vary, in order for the calculations to be properly
posed. The constant NICP indicates how many free parameters have been specified, while the
array ICP actually designates these free parameters. The parameter that appears first in the
ICP list is called the “principal continuation parameter”. Specific examples and special cases are
described below.

5.7.2 Fixed points.

The simplest case is the continuation of a solution branch to the system f(u, p) = 0, where
f(·, ·), u ∈ Rn, cf. Equation (2.1). Such a system arises in the continuation of ODE stationary
solutions and in the continuation of fixed points of discrete dynamical systems. There is only one
free parameter here, so NICP=1.

As a concrete example, consider Run 1 of demo ab, where NICP=1, with ICP(1)=1. Thus,
in this run PAR(1) is designated as the free parameter.

5.7.3 Periodic solutions and rotations.

The continuation of periodic solutions and rotations generically requires two parameters, namely,
one problem parameter and the period. Thus, in this case NICP=2. For example, in Run 2
of demo ab we have NICP=2, with ICP(1)=1 and ICP(2)=11. Thus, in this run, the free
parameters are PAR(1) and PAR(11). (Note that AUTO reserves PAR(11) for the period.)

Actually, for periodic solutions, one can set NICP=1 and only specify the index of the free
problem parameter, as AUTO will automatically addd PAR(11). However, in this case the period
will not appear in the screen output and in the fort.7 output-file.

For fixed period orbits one must set NICP=2 and specify two free problem parameters. For
example, in Run 7 of demo pp2, we have NICP=2, with PAR(1) and PAR(2) specified as free
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problem parameters. The period PAR(11) is fixed in this run. If the period is large then such a
continuation provides a simple and effective method for computing a locus of homoclinic orbits.

5.7.4 Folds and Hopf bifurcations.

The continuation of folds for algebraic problems and the continuation of Hopf bifurcations requires
two free problem parameters, i.e., NICP=2. For example, to continue a fold in Run 3 of demo
ab, we have NICP=2, with PAR(1) and PAR(3) specified as free parameters. Note that one
must set ISW=2 for computing such loci of special solutions. Also note that in the continuation
of folds the principal continuation parameter must be the one with respect to which the fold was
located.

5.7.5 Folds and period-doublings.

The continuation of folds, for periodic orbits and rotations, and the continuation of period-
doubling bifurcations require two free problem parameters plus the free period. Thus, one would
normally set NICP=3. For example, in Run 6 of demo pen, where a locus of period-doubling
bifurcations is computed for rotations, we have NICP=3, with PAR(2), PAR(3), and PAR(11)

specified as free parameters. Note that one must set ISW=2 for computing such loci of special
solutions. Also note that in the continuation of folds the principal continuation parameter must
be the one with respect to which the fold was located.

Actually, one may set NICP=2, and only specify the problem parameters, as AUTO will
automatically add the period. For example, in Run 3 of demo plp, where a locus of folds is
computed for periodic orbits, we have NICP=2, with PAR(4) and PAR(1) specified as free
parameters. However, in this case the period will not appear in the screen output and in the
fort.7 output-file.

To continue a locus of folds or period-doublings with fixed period, simply set NICP=3 and
specify three problem parameters, not including PAR(11).

5.7.6 Boundary value problems.

The simplest case is that of boundary value problems where NDIM= NBC and where NINT=0.
Then, generically, one free problem parameter is required for computing a solution branch. For
example, in demo exp, we have NDIM= NBC=2, NINT=0. Thus NICP=1. Indeed, in this demo
one free parameter is designated, namely PAR(1).

More generally, for boundary value problems with integral constraints, the generic number
of free parameters is NBC + NINT− NDIM +1. For example, in demo lin, we have NDIM=2,
NBC=2, and NINT=1. Thus NICP=2. Indeed, in this demo two free parameters are designated,
namely PAR(1) and PAR(3).

5.7.7 Boundary value folds.

To continue a locus of folds for a general boundary value problem with integral constraints, set
NICP= NBC+ NINT− NDIM+2, and specify this number of parameter indices to designate the free
parameters.
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5.7.8 Optimization problems.

In algebraic optimization problems one must set ICP(1)=10, as AUTO uses PAR(10) as principal
continuation parameter to monitor the value of the objective function. Furthermore, one must
designate one free equation parameter in ICP(2). Thus, NICP=2 in the first run.

Folds with respect to PAR(10) correspond to extrema of the objective function. In a second
run one can restart at such a fold, with an additional free equation parameter specified in ICP(3).
Thus, NICP=3 in the second run.

The above procedure can be repeated. For example, folds from the second run can be continued
in a third run with three equation parameters specified in addition to PAR(10). Thus, NICP=4
in the third run.

For a simple example see demo opt, where a four-parameter extremum is located. Note
that NICP=5 in each of the four constants-files of this demo, with the indices of PAR(10) and
PAR(1)-PAR(4) specified in ICP. Thus, in the first three runs, there are overspecified parameters.
However, AUTO will always use the correct number of parameters. Although the overspecified
parameters will be printed, their values will remain fixed.

5.7.9 Internal free parameters.

The actual continuation scheme in AUTO may use additional free parameters that are automati-
cally added. The simplest example is the computation of periodic solutions and rotations, where
AUTO automatically adds the period, if not specified. The computation of loci of folds, Hopf bi-
furcations, and period-doublings also requires additional internal continuation parameters. These
will be automatically added, and their indices will be greater than 10.

5.7.10 Parameter overspecification.

The number of specified parameter indices is allowed to be be greater than the generic number.
In such case there will be “overspecified” parameters, whose values will appear in the screen and
fort.7 output, but which are not part of the continuation process. A simple example is provided
by demo opt, where the first three runs have overspecified parameters whose values, although
constant, are printed.

There is, however, a more useful application of parameter overspecification. In the user-
supplied subroutine pvls one can define solution measures and assign these to otherwise unused
parameters. Such parameters can then be overspecified, in order to print them on the screen and
in the fort.7 output. It is important to note that such overspecified parameters must appear at
the end of the ICP list, as they cannot be used as true continuation parameters.

For an example of using parameter overspecification for printing user-defined solution mea-
sures, see demo pvl. This is a boundary value problem (Bratu’s equation) which has only one
true continuation parameter, namely PAR(1). Three solution measures are defined in the sub-
routine pvls, namely, the L2-norm of the first solution component, the minimum of the second
component, and the left boundary value of the second component. These solution measures are
assigned to PAR(2), PAR(3), and PAR(4), respectively. In the constants-file c.pvl we have
NICP=4, with PAR(1)-PAR(4) specified as parameters. Thus, in this example, PAR(2)-PAR(4)
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are overspecified. Note that PAR(1) must appear first in the ICP list; the other parameters
cannot be used as true continuation parameters.

5.8 Computation Constants.

5.8.1 ILP

- ILP=0 : No detection of folds. This choice is recommended.

- ILP=1 : Detection of folds. To be used if subsequent fold continuation is intended.

2

5.8.2 ISP

This constant controls the detection of branch points, period-doubling bifurcations, and torus
bifurcations.

- ISP=0 : This setting disables the detection of branch points, period-doubling bifurcations,
and torus bifurcations and the computation of Floquet multipliers.

- ISP=1 : Branch points are detected for algebraic equations, but not for periodic solutions
and boundary value problems. Period-doubling bifurcations and torus bifurcations are not
located either. However, Floquet multipliers are computed.

- ISP=2 : This setting enables the detection of all special solutions. For periodic solutions
and rotations, the choice ISP=2 should be used with care, due to potential inaccuracy in
the computation of the linearized Poincaré map and possible rapid variation of the Floquet
multipliers. The linearized Poincaré map always has a multiplier z = 1. If this multiplier
becomes inaccurate then the automatic detection of secondary periodic bifurcations will be
discontinued and a warning message will be printed in fort.9. See also Section 6.4.

- ISP=3 : Branch points will be detected, but AUTO will not monitor the Floquet multipliers.
Period-doubling and torus bifurcations will go undetected. This option is useful for certain
problems with non-generic Floquet behavior. The Floquet multipliers will be output to the
diagnostic file.

5.8.3 ISW

This constant controls branch switching at branch points for the case of differential equations.
Note that branch switching is automatic for algebraic equations.

- ISW=1 : This is the normal value of ISW.

- ISW=−1 : If IRS is the label of a branch point or a period-doubling bifurcation then branch
switching will be done. For period doubling bifurcations it is recommended that NTST be
increased. For examples see Run 2 and Run 3 of demo lor, where branch switching is done
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at period-doubling bifurcations, and Run 2 and Run 3 of demo bvp, where branch switching
is done at a transcritical branch point.

- ISW=2 : If IRS is the label of a fold, a Hopf bifurcation point, or a period-doubling or torus
bifurcation then a locus of such points will be computed. An additional free parameter
must be specified for such continuations; see also Section 5.7.

5.8.4 MXBF

This constant, which is effective for algebraic problems only, sets the maximum number of bifur-
cations to be treated. Additional branch points will be noted, but the corresponding bifurcating
branches will not be computed. If MXBF is positive then the bifurcating branches of the first
MXBF branch points will be traced out in both directions. If MXBF is negative then the bifurcating
branches of the first | MXBF | branch points will be traced out in only one direction.

5.8.5 IRS

This constant sets the label of the solution where the computation is to be restarted.

- IRS=0 : This setting is typically used in the first run of a new problem. In this case a starting
solution must be defined in the user-supplied subroutine stpnt; see also Section 3.3. For
representative examples of analytical starting solutions see demos ab and frc. For starting
from unlabeled numerical data see the @fc command (Section A) and demos lor and pen.

- IRS>0 : Restart the computation at the previously computed solution with label IRS.
This solution is normally expected to be in the current data-file q.xxx; see also the @r and
@R commands in Section A. Various AUTO -constants can be modified when restarting.

5.8.6 IPS

This constant defines the problem type :

- IPS=0 : An algebraic bifurcation problem. Hopf bifurcations will not be detected and
stability properties will not be indicated in the fort.7 output-file.

- IPS=1 : Stationary solutions of ODEs with detection of Hopf bifurcations. The sign of PT,
the point number, in fort.7 is used to indicate stability : − is stable , + is unstable.

(Demo ab.)

- IPS=−1 : Fixed points of the discrete dynamical system u(k+1) = f(u(k), p), with detection
of Hopf bifurcations. The sign of PT in fort.7 indicates stability : − is stable , + is unstable.
(Demo dd2.)

- IPS=−2 : Time integration using implicit Euler. The AUTO -constants DS, DSMIN,
DSMAX, and ITNW, NWTN control the stepsize. In fact, pseudo-arclength is used for “con-
tinuation in time”. Note that the time discretization is only first order accurate, so that
results should be carefully interpreted. Indeed, this option has been included primarily
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for the detection of stationary solutions, which can then be entered in the user-supplied
subroutine stpnt.

(Demo ivp.)

- IPS=2 : Computation of periodic solutions. Starting data can be a Hopf bifurcation point
(Run 2 of demo ab), a periodic orbit from a previous run (Run 4 of demo pp2), an
analytically known periodic orbit (Run 1 of demo frc), or a numerically known periodic
orbit (Demo lor). The sign of PT in fort.7 is used to indicate stability : − is stable , + is
unstable or unknown.

- IPS=4 : A boundary value problem. Boundary conditions must be specified in the user-
supplied subroutine bcnd and integral constraints in icnd. The AUTO -constants NBC

and NINT must be given correct values. (Demos exp, int, kar.)

- IPS=5 : Algebraic optimization problems. The objective function must be specified in the
user-supplied subroutine fopt. (Demo opt.)

- IPS=7 : A boundary value problem with computation of Floquet multipliers. This is a
very special option; for most boundary value problems one should use IPS=4. Boundary
conditions must be specified in the user-supplied subroutine bcnd and integral constraints
in icnd. The AUTO -constants NBC and NINT must be given correct values.

- IPS=9 : This option is used in connection with the HomCont algorithms described in
Chapters 15-21 for the detection and continuation of homoclinic bifurcations.

(Demos san, mtn, kpr, cir, she, rev.)

- IPS=11 : Spatially uniform solutions of a system of parabolic PDEs, with detection of
traveling wave bifurcations. The user need only define the nonlinearity (in subroutine func),
initialize the wave speed in PAR(10), initialize the diffusion constants in PAR(15,16,· · ·),
and set a free equation parameter in ICP(1). (Run 2 of demo wav.)

- IPS=12 : Continuation of traveling wave solutions to a system of parabolic PDEs. Starting
data can be a Hopf bifurcation point from a previous run with IPS=11, or a traveling wave
from a previous run with IPS=12. (Run 3 and Run 4 of demo wav.)

- IPS=14 : Time evolution for a system of parabolic PDEs subject to periodic boundary
conditions. Starting data may be solutions from a previous run with IPS=12 or 14. Start-
ing data can also be specified in stpnt, in which case the wave length must be specified
in PAR(11), and the diffusion constants in PAR(15,16,· · ·). AUTO uses PAR(14) for
the time variable. DS, DSMIN, and DSMAX govern the pseudo-arclength continuation in
the space-time variables. Note that the time discretization is only first order accurate, so
that results should be carefully interpreted. Indeed, this option is mainly intended for the
detection of stationary waves. (Run 5 of demo wav.)

- IPS=15 : Optimization of periodic solutions. The integrand of the objective functional
must be specified in the user-supplied subroutine fopt. Only PAR(1-9) should be used
for problem parameters. PAR(10) is the value of the objective functional, PAR(11) the
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period, PAR(12) the norm of the adjoint variables, PAR(14) and PAR(15) are internal
optimality variables. PAR(21-29) and PAR(31) are used to monitor the optimality
functionals associated with the problem parameters and the period. Computations can be
started at a solution computed with IPS=2 or IPS=15. For a detailed example see demo
ops.

- IPS=16 : This option is similar to IPS=14, except that the user supplies the boundary
conditions. Thus this option can be used for time-integration of parabolic systems subject
to user-defined boundary conditions. For examples see the first runs of demos pd1, pd2,
and bru. Note that the space-derivatives of the initial conditions must also be supplied
in the user-supplied subroutine stpnt. The initial conditions must satisfy the boundary
conditions. This option is mainly intended for the detecting stationary solutions.

- IPS=17 : This option can be used to continue stationary solutions of parabolic systems
obtained from an evolution run with IPS=16. For examples see the second runs of demos
pd1 and pd2.

5.9 Output Control.

5.9.1 NPR

This constant can be used to regularly write fort.8 plotting and restart data. IF NPR>0 then
such output is written every NPR steps. IF NPR=0 or if NPR≥ NMX then no such output is
written. Note that special solutions, such as branch points, folds, end points, etc., are always
written in fort.8. Furthermore, one can specify parameter values where plotting and restart
data is to be written; see Section 5.9.4. For these reasons, and to limit the output volume, it is
recommended that NPR output be kept to a minimum.

5.9.2 IID

This constant controls the amount of diagnostic output printed in fort.9 : the greater IID the
more detailed the diagnostic output.

- IID=0 : Minimal diagnostic output. This setting is not recommended.

- IID=2 : Regular diagnostic output. This is the recommended value of IID.

- IID=3 : This setting gives additional diagnostic output for algebraic equations, namely the
Jacobian and the residual vector at the starting point. This information, which is printed
at the beginning of fort.9, is useful for verifying whether the starting solution in stpnt is
indeed a solution.

- IID=4 : This setting gives additional diagnostic output for differential equations, namely
the reduced system and the associated residual vector. This information is printed for every
step and for every Newton iteration, and should normally be suppressed. In particular it
can be used to verify whether the starting solution is indeed a solution. For this purpose,
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the stepsize DS should be small, and one should look at the residuals printed in the fort.9
output-file. (Note that the first residual vector printed in fort.9 may be identically zero, as
it may correspond to the computation of the starting direction. Look at the second residual
vector in such case.) This residual vector has dimension NDIM+ NBC+ NINT+1, which
accounts for the NDIM differential equations, the NBC boundary conditions, the NINT user-
defined integral constraints, and the pseudo-arclength equation. For proper interpretations
of these data one may want to refer to the solution algorithm for solving the collocation
system, as described in Doedel, Keller & Kernévez (1991b).

- IID=5 : This setting gives very extensive diagnostic output for differential equations, namely,
debug output from the linear equation solver. This setting should not normally be used as
it may result in a huge fort.9 file.

5.9.3 IPLT

This constant allows redefinition of the principal solution measure, which is printed as the second
(real) column in the screen output and in the fort.7 output-file :

- If IPLT = 0 then the L2-norm is printed. Most demos use this setting. For algebraic
problems, the standard definition of L2-norm is used. For differential equations, the L2-
norm is defined as

√

√

√

√

∫ 1

0

NDIM
∑

k=1

Uk(x)2 dx .

Note that the interval of integration is [0, 1], the standard interval used by AUTO. For
periodic solutions the independent variable is transformed to range from 0 to 1, before
the norm is computed. The AUTO-constants THL(*) and THU(*) (see Section 5.5.5 and
Section 5.5.6) affect the definition of the L2-norm.

- If 0 < IPLT ≤ NDIM then the maximum of the IPLT’th solution component is printed.

- If − NDIM ≤ IPLT <0 then the minimum of the IPLT’th solution component is printed.
(Demo fsh.)

- If NDIM < IPLT ≤ 2* NDIM then the integral of the ( IPLT− NDIM)’th solution component
is printed. (Demos exp, lor.)

- If 2* NDIM < IPLT ≤ 3* NDIM then the L2-norm of the ( IPLT− NDIM)’th solution com-
ponent is printed. (Demo frc.)

Note that for algebraic problems the maximum and the minimum are identical. Also, for
ODEs the maximum and the minimum of a solution component are generally much less accurate
than the L2-norm and component integrals. Note also that the subroutine pvls provides a
second, more general way of defining solution measures; see Section 5.7.10.
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5.9.4 NUZR

This constant allows the setting of parameter values at which labeled plotting and restart infor-
mation is to be written in the fort.8 output-file. Optionally, it also allows the computation to
terminate at such a point.

- Set NUZR=0 if no such output is needed. Many demos use this setting.

- If NUZR>0 then one must enter NUZR pairs, Parameter-Index Parameter-Value , with
each pair on a separate line, to designate the parameters and the parameter values at which
output is to be written. For examples see demos exp, int, and fsh.

- If such a parameter index is preceded by a minus sign then the computation will terminate
at such a solution point. (Demos pen and bru.)

Note that fort.8 output can also be written at selected values of overspecified parameters. For
an example see demo pvl. For details on overspecified parameters see Section 5.7.10.
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Chapter 6

Notes on Using AUTO .

6.1 Restrictions on the Use of PAR.

The array PAR in the user-supplied subroutines is available for equation parameters that the
user wants to vary at some point in the computations. In any particular computation the free
parameter(s) must be designated in ICP; see Section 5.7. The following restrictions apply :

- The maximum number of parameters, NPARX in auto/2000/src/auto c.h, has pre-defined
value NPARX=36. NPARX should not normally be increased and it should never be de-
creased. Any increase of NPARX must be followed by recompilation of AUTO .

- Generally one should only use PAR(1)-PAR(9) for equation parameters, as AUTO may
need the other components internally.

6.2 Efficiency.

In AUTO , efficiency has at times been sacrificed for generality of programming. This applies in
particular to computations in which AUTO generates an extended system, for example, compu-
tations with ISW=2. However, the user has significant control over computational efficiency, in
particular through judicious choice of the AUTO -constants DS, DSMIN, and DSMAX, and, for
ODEs, NTST and NCOL. Initial experimentation normally suggests appropriate values.

Slowly varying solutions to ODEs can often be computed with remarkably small values of
NTST and NCOL, for example, NTST=5, NCOL=2. Generally, however, it is recommended to set
NCOL=4, and then to use the “smallest” value of NTST that maintains convergence.

The choice of the pseudo-arclength stepsize parameters DS, DSMIN, and DSMAX is highly
problem dependent. Generally, DSMIN should not be taken too small, in order to prevent excessive
step refinement in case of non-convergence. It should also not be too large, in order to avoid instant
non-convergence. DSMAX should be sufficiently large, in order to reduce computation time and
amount of output data. On the other hand, it should be sufficiently small, in order to prevent
stepping over bifurcations without detecting them. For a given equation, appropriate values of
these constants can normally be found after some initial experimentation.

The constants ITNW, NWTN, THL, EPSU, EPSL, EPSS also affect efficiency. Understanding
their significance is therefore useful; see Section 5.4 and Section 5.5. Finally, it is recommended
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that initial computations be done with ILP=0; no fold detection; and ISP=1; no bifurcation
detection for ODEs.

6.3 Correctness of Results.

AUTO -computed solutions to ODEs are almost always structurally correct, because the mesh
adaption strategy, if IAD>0, safeguards to some extent against spurious solutions. If these do
occur, possibly near infinite-period orbits, the unusual appearance of the solution branch typically
serves as a warning. Repeating the computation with increased NTST is then recommended.

6.4 Bifurcation Points and Folds.

It is recommended that the detection of folds and bifurcation points be initially disabled. For
example, if an equation has a “vertical” solution branch then AUTO may try to locate one fold
after another.

Generally, degenerate bifurcations cannot be detected. Furthermore, bifurcations that are
close to each other may not be noticed when the pseudo-arclength step size is not sufficiently
small. Hopf bifurcation points may go unnoticed if no clear crossing of the imaginary axis takes
place. This may happen when there are other real or complex eigenvalues near the imaginary
axis and when the pseudo-arclength step is large compared to the rate of change of the critical
eigenvalue pair. A typical case is a Hopf bifurcation close to a fold. Similarly, Hopf bifurcations
may go undetected if switching from real to complex conjugate, followed by crossing of the
imaginary axis, occurs rapidly with respect to the pseudo-arclength step size. Secondary periodic
bifurcations may not be detected for similar reasons. In case of doubt, carefully inspect the
contents of the diagnostics file fort.9.

6.5 Floquet Multipliers.

AUTO extracts an approximation to the linearized Poincaré map from the Jacobian of the lin-
earized collocation system that arises in Newton’s method. This procedure is very efficient; the
map is computed at negligible extra cost. The linear equations solver of AUTO is described in
Doedel, Keller & Kernévez (1991b). The actual Floquet multiplier solver was written by Fairgrieve
(1994). For a detailed description of the algorithm see Fairgrieve & Jepson (1991).

For periodic solutions, the exact linearized Poincaré map always has a multiplier z = 1. A good
accuracy check is to inspect this multiplier in the diagnostics output-file fort.9. If this multiplier
becomes inaccurate then the automatic detection of potential secondary periodic bifurcations (if
ISP=2) is discontinued and a warning is printed in fort.9. It is strongly recommended that the
contents of this file be habitually inspected, in particular to verify whether solutions labeled as
BP or TR (cf. Table 3.1) have indeed been correctly classified.
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6.6 Memory Requirements.

Pre-defined maximum values of certain AUTO -constants are in auto/2000/src/auto c.h; see also
Section 1.3. These maxima affect the run-time memory requirements and should not be set to
unnecessarily large values. If an application only solves algebraic systems and if NDIM is “large”
then memory requirements can be much reduced by setting each of NTSTX, NCOLX, NBCX,
NINTX, equal to 1 in auto/2000/src/auto c.h, followed by recompilation of the AUTO libraries.
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Chapter 7

AUTO Demos : Tutorial.
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7.1 Introduction.

The directory auto/2000/demos has a large number of subdirectories, for example ab, pp2, exp,
etc., each containing all necessary files for certain illustrative calculations. Each subdirectory, say
xxx, corresponds to a particular equation and contains one equations-file xxx.c and one or more
constants-files c.xxx.i, one for each successive run of the demo. To see how the equations have
been programmed, inspect the equations-file. To understand in detail how AUTO is instructed
to carry out a particular task, inspect the appropriate constants-file. In this chapter we describe
the tutorial demo ab in detail. A brief description of other demos is given in later chapters.

7.2 ab : A Tutorial Demo.

This demo illustrates the computation of stationary solutions, Hopf bifurcations and periodic
solutions, and the computation loci of folds and Hopf bifurcation points. The equations, that
model an A → B reaction, are those from Uppal, Ray & Poore (1974), namely

u′1 = −u1 + p1(1 − u1)e
u2,

u′2 = −u2 + p1p2(1 − u1)e
u2 − p3u2.

(7.1)

7.3 Copying the Demo Files.

The commands listed in Table 7.1 will copy the demo files to your work directory.

Unix-COMMAND ACTION
auto start the AUTO2000 Command Line User Interface

AUTO -COMMAND ACTION
cd go to main directory (or other directory).
! mkdir ab create an empty work directory. Note: the

’ !’ is used to signify a command which is
sent to the shell.

cd ab change to the work directory.
demo(’ab’) copy the demo files to the work directory.

Table 7.1: Copying the demo ab files.

At this point you may want to see what files have been copied to the work directory. In
particular, you may want to edit the equations-file ab.c to see how the equations have been
entered (in subroutine func) and how the starting solution has been set (in subroutine stpnt).
Note that, initially, p1 = 0 p2 = 14, and p3 = 2, for which u1 = u2 = 0 is a stationary solution.
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7.4 Executing all Runs Automatically.

To execute all prepared runs of demo ab, simply type one or both of the command given in
Table 7.2.

AUTO -COMMAND ACTION
demofile(’ab old.auto’) execute all runs of demo ab interactively

using a new constants file for each run

demofile(’ab new.auto’) execute all runs of demo ab interactively
by modifying the constants file before each
run

Table 7.2: Executing all runs of demo ab.

Each of the commands in Table 7.2 begins a tutorial which will proceed one step each time
the user presses a key. Each step consists of a single AUTO command preceded by instructions
as to what action the command performs. The tutorial script ab old.auto performs the demo by
reading in a sequence of AUTO constants files each of which corresponds to a step of the demo.
The tutorial script ab new.auto performs the demo by reading in a single AUTO constants file
and then interactively modifying it to perform each of the demo. Both are valid and effective
methods for running AUTO , with ab old.auto being similar to the way AUTO was used before
the advent of the CLUI, and ab new.auto using new functionality provided by the CLUI.

Note that there are five separate runs. In the first run, a branch of stationary solutions
is traced out. Along it, two folds (LP) and one Hopf bifurcation (HB) are located. The free
parameter is p1. The other parameters remain fixed in this run. Note also that only special,
labeled solution points are printed on the screen. More detailed results are saved in the data-files
b.ab, s.ab, and d.ab.

The second run traces out the branch of periodic solutions that emanates from the Hopf
bifurcation. The free parameters are p1 and the period. The detailed results are appended to the
existing data-files b.ab, s.ab, and d.ab.

In the third run, one of the folds detected in the first run is followed in the two parameters
p1 and p3, while p2 remains fixed. The fourth run continues this branch in opposite direction.
Similarly, in the fifth run, the Hopf bifurcation located in the first run is followed in the two
parameters p1 and p3. (In this example this is done in one direction only.) The detailed results
of these continuations are accumulated in the data-files b.2p, s.2p, and d.2p.

The numerical results are given below in somewhat abbreviated form. Some differences in
output are to be expected on different machines. This does not mean that the results have
different accuracy, but simply that arithmetic differences have accumulated from step to step,
possibly leading to different step size decisions.

One could now use the AUTO CLUI to graphically inspect the contents of the data-files, but
we shall do this later. However, it may be useful to edit these files to view their contents.

Next, reset the work directory, by typing the command given in Table 7.3.
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AUTO -COMMAND ACTION
cl() remove temporary files of demo ab
dl(’ab’) remove ’ab’ data-files of demo ab
dl(’2p’) remove ’2p’ data-files of demo ab

Table 7.3: Cleaning the demo ab work directory.

ab : first run : stationary solutions

BR PT TY LAB PAR(1) L2-NORM U(1) U(2)

1 1 EP 1 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

1 33 LP 2 1.05739E-01 1.48439E+00 3.11023E-01 1.45144E+00

1 70 LP 3 8.89318E-02 3.28824E+00 6.88982E-01 3.21525E+00

1 90 HB 4 1.30899E-01 4.27186E+00 8.95080E-01 4.17704E+00

1 92 EP 5 1.51241E-01 4.36974E+00 9.15589E-01 4.27275E+00

Saved as *.ab

ab : second run : periodic solutions

BR PT TY LAB PAR(1) L2-NORM MAX U(1) MAX U(2) PERIOD

4 30 6 1.19881E-01 3.98712E+00 9.91911E-01 7.02034E+00 2.721E+00

4 60 7 1.15303E-01 3.14630E+00 9.99577E-01 9.95764E+00 6.147E+00

4 90 8 1.05650E-01 2.21917E+00 9.99166E-01 9.36609E+00 1.399E+01

4 120 9 1.05507E-01 1.69684E+00 9.99086E-01 9.29629E+00 9.956E+01

4 150 EP 10 1.05507E-01 1.60388E+00 9.99789E-01 9.28146E+00 1.867E+03

Appended to *.ab

ab : third run : a 2-parameter locus of folds

BR PT TY LAB PAR(1) L2-NORM U(1) U(2) PAR(3)

2 27 LP 11 1.35335E-01 2.06012E+00 4.99653E-01 1.99861E+00 2.499E+00

2 100 EP 12 1.09381E-08 2.13650E+01 9.53147E-01 2.13437E+01 -3.748E-01

Saved as *.2p

ab : fourth run : the locus of folds in reverse direction

BR PT TY LAB PAR(1) L2-NORM U(1) U(2) PAR(3)

2 35 EP 11 -1.31939E-03 9.96432E-01 -3.58651E-03 9.96426E-01 -1.050E+00

Appended to *.2p

ab : fifth run : a 2-parameter locus of Hopf points

BR PT TY LAB PAR(1) L2-NORM U(1) U(2) PAR(3)

4 100 EP 11 8.80940E-05 1.17440E+01 9.14609E-01 1.17083E+01 9.362E-02

Appended to *.2p
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7.5 Executing Selected Runs Automatically.

As illustrated by the commands in Table 7.6, one can also execute selected runs of demo ab. In
general, this cannot be done in arbitrary order, as any given run may need restart data from a
previous run. Run 3 only requires the results of Run 1, so that the displayed command sequence is
indeed appropriate. The screen output of these runs will be identical to that of the corresponding
earlier runs, except for a change in solution labels in Run 3.

In real use there are two mains ways in which the AUTO can be used. First, one can prepare
a constants-file for each run. In the illustrative runs below, the constants-files were carefully
prepared in advance. For example, the file c.ab.1 contains the AUTO -constants for Run 1,
c.ab.3 contains the AUTO -constants for Run 3, etc.

AUTO -COMMAND ACTION
ld("ab") load the problem definition ab
run(c="ab.1") execute the run which uses the constants in c.ab.1
sv("ab") save the results of the run into the files b.ab, s.ab, and d.ab
run(c="ab.3",s="ab") execute the third run of demo ab

Table 7.4: Selected runs of demo ab.

On the other hand, one can use the CLUI to generate the constants file at runtime. In the
example below, the constant file c.ab.1 will be read in, and the CLUI will be used to make the
appropriate changes to perform the same calculation as in Table 7.6.

AUTO -COMMAND ACTION
ld("ab") load the problem definition ab
run(c="ab.1") execute the run which uses the constants in c.ab.1
sv("ab") save the results of the run into the files b.ab, s.ab, and d.ab
cc("IRS",2) start the new calculation from a solution with label 2
cc("ICP",[0,2]) since we are following a locus of folds we require two free parameters
cc("ISP",0) turn off detection of branch points
cc("ISW",2) since we start at a fold the ISW parameter indicates we

desire to compute a locus of such points

cc("DSMAX",0.5) increase the maximum allowed step size
run(s="ab") execute the third run of demo ab

Table 7.5: Selected runs of demo ab.

7.6 Using AUTO -Commands.

Next, with the commands in Table ??, we execute the first two runs of demo ab again, using
commands similar Table ?? that one would normally use in an actual application. We still use
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AUTO -COMMAND ACTION
cl() remove temporary files of any previous runs of the demo
dl("ab") remove ’ab’ data-files of any previous runs of the demo
dl("2p") remove ’2p’ data-files of any previous runs of the demo
ld("ab") make sure the problem definition is loaded
run(c="ab.1") compute a stationary solution branch with folds and Hopf bifurcation
sv("ab") save output-files as b.ab, s.ab, d.ab
run(c="ab.2",s="ab") compute a branch of periodic solutions from the Hopf point
ap("ab") append the output-files to b.ab, s.ab, d.ab

Table 7.6: Commands for Run 1 and Run 2 of demo ab.

the demo constants-files that were prepared in advance and assume you are in the directory into
which the ab demo has already been copied

It is instructive to look at the constants-files c.ab.1 and c.ab.2 used in the two runs above.
The significance of each AUTO -constant set in these files can be found in Chapter 5. Note in
particular the AUTO -constants that were changed between the two runs; see Table 7.7.

Constant Run 1 Run 2 Reason for Change
IPS 1 2 To compute periodic solutions in Run 2
IRS 0 4 To specify the Hopf bifurcation restart label
NICP 1 2 The second run has two free parameters
ICP 1 1, 11 To use and print PAR(1) and PAR(11) in Run 2
NMX 100 150 To allow more continuation steps in Run 2
NPR 100 30 To print output every 30 steps in Run 2

Table 7.7: Differences in AUTO -constants between c.ab.1 and c.ab.2.

Actually, for periodic solutions, AUTO automatically adds PAR(11) (the period) as second
parameter. However, for the period to be printed, one must specify the index 11 in the ICP list,
as shown in Table 7.7.

7.7 Plotting the Results with AUTO .

The bifurcation diagram computed in the runs above is stored in the file b.ab, while each labeled
solution is fully stored in s.ab. To use AUTO to graphically inspect these data-files, type the
AUTO -command given in Table 7.8. The saved plots are shown in Figure 7.1 and in Figure 7.2.

Figure 7.1 shows the default view of the plotting tool, which consists of a representation of
the bifurcation diagram. Step by step instructions for creating Figure 7.2 are given below.

The plotting window consists of a menubar at the top, a plotting area, and a control panel with
four control widgets at the bottom. The first step in creating Figure 7.2 is to change the mode of
the plotting tool from “bifurcation” to “solution”. This is accomplished by clicking on the widget
marked “Type” on the bottom control panel and setting it from “bifurcation” to “solution”. In
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the plotting window will appear a plot of the first labeled solution in s.ab. Unfortunately, this
is an equilibrium solution, so only a single point is plotted. Since we wish to plot the periodic
solutions, we modify the widget marked “Label” by changing its value from “[1]” to “[6,7,10]”
(don’t forget to hit the return key when you are done modifying the value). This signifies that
instead of plotting the solution with label 1 we want to plot the solutions with labels 6, 7, and
10 simultaneously. In the plotting window we now have three curves, each of which is a plot of
time versus the value of the first state variable. If we want a different plot, say the values of the
two state variables plotted against each other, we use the two remaining widgets in the control
panel, labeled “X” and “Y”. For example, if change the value of “X” from “[’t’]” to “[0]” and the
value of “Y” from “[0]” to “[1]” we get a phase plot of the period solutions (don’t forget to hit
the return key when you are done modifying each value). This plot is shown in Figure 7.2.

The plotting tool can also be used to create Postscript files from plots by selecting the “File”
on the menubar and then selecting the “Save Postscript...” from the drop down menu. This will
bring up a dialog into which the user can enter the filename of the postscript file to save the plot
in. Further information on the plotting tool can be found in Section 4.10.

AUTO -COMMAND ACTION
plot("ab") run AUTO to graph the contents of b.ab and s.ab;

Table 7.8: Command for plotting the files b.ab and s.ab.

7.8 Following Folds and Hopf Bifurcations.

The commands in Table 7.9 will execute the remaining runs of demo ab. Here, as in later demos,
some of the AUTO -constants that have been changed between runs are indicated in the Table.

AUTO -COMMAND ACTION
run(c="ab.3",s="ab") compute a locus of folds with changes (from c.ab.1) :

IRS, NICP, ICP, ISW, DSMAX

sv("2p") save output-files as b.2p, s.2p, d.2p
run(c="ab.4",s="ab") compute the locus of folds in reverse direction with

changes (from c.ab.3) : DS (sign)

ap("2p") append the output-files to b.2p, s.2p, d.2p
run(c="ab.4",s="ab") compute a locus of Hopf points with changes (from

c.ab.4) : IRS

ap("2p") append the output-files to b.2p, s.2p, d.2p

Table 7.9: Commands for Runs 3, 4, and 5 of demo ab.
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Figure 7.1: The bifurcation diagram of demo ab.
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Figure 7.2: The phase plot of solutions 6, 7, and 10 in demo ab.
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7.9 Relabeling Solutions in the Data-Files.

Next we want to plot the two-parameter diagram computed in the last three runs. However, the
solution labels in these runs are not distinct. This is due to the fact that in each of these three
runs the restart solution was read from s.ab, while the computed solutions were stored in s.2p.
Consequently, these runs were unaware of each other’s results, which led to non-unique labels.
For relabeling purpose, and more generally for file maintenance, there is a utility program that
can be invoked as indicated in Table 7.10. Its use is illustrated in Table 7.11.

AUTO -COMMAND ACTION
rl("2p") run the relabeling program on b.2p and s.2p

Table 7.10: Command to run the relabeling program on b.2p and s.2p.

RELABELING COMMAND ACTION
l list the labeled solutions in s.2p
r relabel the solutions
l list the new solution labeling
w rewrite b.2p and s.2p

Table 7.11: Relabeling commands for the files b.2p and s.2p.

7.10 Plotting the 2-Parameter Diagram.

To plot the files b.2p and s.2p, enter the command listed in Table 7.12. The saved plot is shown
in Figure 7.3.

AUTO -COMMAND ACTION
plot("2p") run to graph the contents of b.2p and s.2p;

Table 7.12: Command to plot the files b.2p and s.2p.
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Figure 7.3: Loci of folds and Hopf bifurcations for demo ab.
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Chapter 8

AUTO Demos : Fixed points.

8.1 enz : Stationary Solutions of an Enzyme Model.

The equations, that model a two-compartment enzyme system (Kernévez (1980)), are given by

s′1 = (s0 − s1) + (s2 − s1) − ρR(s1),
s′2 = (s0 + µ− s2) + (s1 − s2) − ρR(s2),

(8.1)

where
R(s) =

s

1 + s+ κs2
.

The free parameter is s0. Other parameters are fixed. This equation is also considered in Doedel,
Keller & Kernévez (1991a).

AUTO -COMMAND ACTION
! mkdir enz create an empty work directory
cd enz change directory
demo(’enz’) copy the demo files to the work directory
ld(’enz’) load the problem definition
run(c=’enz.1’) compute stationary solution branches
sv(’enz’) save output-files as b.enz, s.enz, d.enz

Table 8.1: Commands for running demo enz.
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8.2 dd2 : Fixed Points of a Discrete Dynamical System.

This demo illustrates the computation of a solution branch and its bifurcating branches for a
discrete dynamical system. Also illustrated is the continuation of Naimark-Sacker (or Hopf)
bifurcations The equations, a discrete predator-prey system, are

uk+1
1 = p1u

k
1(1 − uk

1) − p2u
k
1u

k
2,

uk+1
2 = (1 − p3)u

k
2 + p2u

k
1u

k
2.

(8.2)

In the first run p1 is free. In the second run, both p1 and p2 are free. The remaining equation
parameter, p3, is fixed in both runs.

AUTO -COMMAND ACTION
! mkdir dd2 create an empty work directory
cd dd2 change directory
demo(’dd2’) copy the demo files to the work directory
ld(’dd2’) load the problem definition
run(c=’dd2.1’) 1st run; fixed point solution branches
sv(’dd2’) save output-files as b.dd2, s.dd2, d.dd2
run(c=’dd2.2’,s=’dd2’) 2nd run; a locus of Naimark-Sacker bifur-

cations. Constants changed : IRS, ISW

sv(’ns’) save output-files as b.ns, s.ns, d.ns

Table 8.2: Commands for running demo dd2.
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Chapter 9

AUTO Demos : Periodic solutions.
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9.1 lrz : The Lorenz Equations.

This demo computes two symmetric homoclinic orbits in the Lorenz equations

u′1 = p3(u2 − u1),
u′2 = p1u1 − u2 − u1u3,
u′3 = u1u2 − p2u3.

(9.1)

Here p1 is the free parameter, and p2 = 8/3, p3 = 10. The two homoclinic orbits correspond to
the final, large period orbits on the two periodic solution branches.

AUTO -COMMAND ACTION
! mkdir lrz create an empty work directory
cd lrz change directory
demo(’lrz’) copy the demo files to the work directory
ld(’lrz’) load the problem definition
run(c=’lrz.1’) compute stationary solutions
sv(’lrz’) save output-files as b.lrz, s.lrz, d.lrz
run(c=’lrz.2’,s=’lrz’) compute periodic solutions; the final orbit

is near-homoclinic. Constants changed :
IPS, IRS, NICP, ICP, NMX, NPR, DS

ap(’lrz’) append the output-files to b.lrz, s.lrz, d.lrz
run(c=’lrz.3’,s=’lrz’) compute the symmetric periodic solution

branch. Constants changed : IRS

ap(’lrz’) append the output-files to b.lrz, s.lrz, d.lrz

Table 9.1: Commands for running demo lrz.
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9.2 abc : The A → B → C Reaction.

This demo illustrates the computation of stationary solutions, Hopf bifurcations and periodic
solutions in the A → B → C reaction (Doedel & Heinemann (1983)).

u′1 = −u1 + p1(1 − u1)e
u3,

u′2 = −u2 + p1e
u3(1 − u1 − p5u2),

u′3 = −u3 − p3u3 + p1p4e
u3(1 − u1 + p2p5u2),

(9.2)

with p2 = 1, p3 = 1.55, p4 = 8, and p5 = 0.04. The free parameter is p1.

AUTO -COMMAND ACTION
! mkdir abc create an empty work directory
cd abc change directory
demo(’abc’) copy the demo files to the work directory
ld(’abc’) load the problem definition
run(c=’abc.1’) compute the stationary solution branch with Hopf bifurcations
sv(’abc’) save output-files as b.abc, s.abc, d.abc
run(c=’abc.2’,s=’abc’) compute a branch of periodic solutions

from the first Hopf point. Constants
changed : IRS, IPS, NICP, ICP

ap(’abc’) append the output-files to b.abc, s.abc, d.abc
run(c=’abc.3’,s=’abc’) compute a branch of periodic solutions

from the second Hopf point. Constants
changed : IRS, NMX

ap(’abc’) append the output-files to b.abc, s.abc, d.abc

Table 9.2: Commands for running demo abc.
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9.3 pp2 : A 2D Predator-Prey Model.

This demo illustrates a variety of calculations. The equations, which model a predator-prey
system with harvesting, are

u′1 = p2u1(1 − u1) − u1u2 − p1(1 − e−p3u1),
u′2 = −u2 + p4u1u2.

(9.3)

Here p1 is the principal continuation parameter, p3 = 5, p4 = 3, and, initially, p2 = 3. For
two-parameter computations p2 is also free.

AUTO -COMMAND ACTION
! mkdir pp2 create an empty work directory
cd pp2 change directory
demo(’pp2’) copy the demo files to the work directory
ld(’pp2’) load the problem definition
run(c=’pp2.1’) 1st run; stationary solutions
sv(’pp2’) save output-files as b.pp2, s.pp2, d.pp2
run(c=’pp2.2’,s=’pp2’) 2nd run; restart at a labeled solution. Con-

stants changed : IRS, RL1

ap(’pp2’) append output-files to b.pp2, s.pp2, d.pp2
run(c=’pp2.3’,s=’pp2’) 3rd run; periodic solutions. Constants

changed : IRS, IPS, ILP

ap(’pp2’) append output-files to b.pp2, s.pp2, d.pp2
run(c=’pp2.4’,s=’pp2’) 4th run; restart at a labeled periodic solu-

tion. Constants changed : IRS, NTST

ap(’pp2’) append output-files to b.pp2, s.pp2, d.pp2
run(c=’pp2.5’,s=’pp2’) 5th run; continuation of folds. Constants

changed : IRS, IPS, ISW, ICP

sv(’lp’) save output-files as b.lp, s.lp, d.lp
run(c=’pp2.6’,s=’pp2’) 6th run; continuation of Hopf bifurcations.

Constants changed : IRS

sv(’hb’) save output-files as b.hb, s.hb, d.hb
run(c=’pp2.7’,s=’pp2’) 7th run; continuation of homoclinic orbits.

Constants changed : IRS, IPS, ISP

sv(’hom’) save output-files as b.hom, s.hom, d.hom

Table 9.3: Commands for running demo pp2.

93



9.4 lor : Starting an Orbit from Numerical Data.

This demo illustrates how to start the computation of a branch of periodic solutions from nu-
merical data obtained, for example, from an initial value solver. As an illustrative application we
consider the Lorenz equations

u′1 = p3(u2 − u1),
u′2 = p1u1 − u2 − u1u3,
u′3 = u1u2 − p2u3.

(9.4)

Numerical simulations with a simple initial value solver show the existence of a stable periodic
orbit when p1 = 280, p2 = 8/3, p3 = 10. Numerical data representing one complete periodic
oscillation are contained in the file lor.dat. Each row in lor.dat contains four real numbers,
namely, the time variable t, u1, u2 and u3. The correponding parameter values are defined in
the user-supplied subroutine stpnt. The AUTO -command us(’lor’) then converts the data in
lor.dat to a labeled AUTO solution (with label 1) in a new file s.dat. The mesh will be suitably
adapted to the solution, using the number of mesh intervals NTST and the number of collocation
point per mesh interval NCOL specified in the constants-file c.lor. (Note that the file s.dat should
be used for restart only. Do not append new output-files to s.dat, as the command us(’lor’)

only creates s.dat, with no corresponding b.dat.)

AUTO -COMMAND ACTION
! mkdir lor create an empty work directory
cd lor change directory
demo(’lor’) copy the demo files to the work directory
ld(’lor’) load the problem definition
us(’lor’) convert lor.dat to AUTO format in s.dat
run(c=’lor.1’,s=’dat’) compute a solution branch, restart from s.dat
sv(’lor’) save output-files as b.lor, s.lor, d.lor
run(c=’lor.2’,s=’lor’) switch branches at a period-doubling de-

tected in the first run. Constants changed
: IRS, ISW, NTST

ap(’lor’) append the output-files to b.lor, s.lor, d.lor

Table 9.4: Commands for running demo lor.
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9.5 frc : A Periodically Forced System.

This demo illustrates the computation of periodic solutions to a periodically forced system. In
AUTO this can be done by adding a nonlinear oscillator with the desired periodic forcing as one
of the solution components. An example of such an oscillator is

x′ = x+ βy − x(x2 + y2),
y′ = −βx+ y − y(x2 + y2),

(9.5)

which has the asymptotically stable solution x = sin(βt), y = cos(βt). We couple this oscillator
to the Fitzhugh-Nagumo equations :

v′ =
(

F (v) − w
)

/ε,
w′ = v − dw −

(

b+ r sin(βt)
)

,
(9.6)

by replacing sin(βt) by x. Above, F (v) = v(v − a)(1 − v) and a, b, ε and d are fixed. The first
run is a homotopy from r = 0, where a solution is known analytically, to r = 0.2. Part of the
solution branch with r = 0.2 and varying β is computed in the second run. For detailed results
see Alexander, Doedel & Othmer (1990).

AUTO -COMMAND ACTION
! mkdir frc create an empty work directory
cd frc change directory
demo(’frc’) copy the demo files to the work directory
ld(’frc’) load the problem definition
run(c=’frc.1’) homotopy to r = 0.2
sv(’0’) save output-files as b.0, s.0, d.0
run(c=’frc.2’,s=’0’) compute solution branch; restart from

s.0. Constants changed : IRS, ICP(1),

NTST, NMX, DS, DSMAX

sv(’frc’) save output-files as b.frc, s.frc, d.frc

Table 9.5: Commands for running demo frc.
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9.6 ppp : Continuation of Hopf Bifurcations.

This demo illustrates the continuation of Hopf bifurcations in a 3-dimensional predator prey model
(Doedel (1984)). This curve contain branch points, where one locus of Hopf points bifurcates from
another locus of Hopf points. The equations are

u′1 = u1(1 − u1) − p4u1u2,
u′2 = −p2u2 + p4u1u2 − p5u2u3 − p1(1 − e−p6u2)
u′3 = −p3u3 + p5u2u3.

(9.7)

Here p2 = 1/4, p3 = 1/2, p4 = 3, p5 = 3, p6 = 5, and p1 is the free parameter. In the continuation
of Hopf points the parameter p4 is also free.

AUTO -COMMAND ACTION
! mkdir ppp create an empty work directory
cd ppp change directory
demo(’ppp’) copy the demo files to the work directory
ld(’ppp’) load the problem definition
run(c=’ppp.1’) compute stationary solutions; detect Hopf bifurcations
sv(’ppp’) save output-files as b.ppp, s.ppp, d.ppp
run(c=’ppp.2’,s=’ppp’) compute a branch of periodic solutions.

Constants changed : IPS, IRS, ICP

ap(’ppp’) append the output-files to b.ppp, s.ppp, d.ppp
run(c=’ppp.3’,s=’ppp’) compute Hopf bifurcation curves
sv(’hb’) save the output-files as b.hb, s.hb, d.hb

Table 9.6: Commands for running demo ppp.
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9.7 plp : Fold Continuation for Periodic Solutions.

This demo, which corresponds to computations in Doedel, Keller & Kernévez (1991a), shows
how one can continue a fold on a branch of periodic solution in two parameters. The calculation
of a locus of Hopf bifurcations is also included. The equations, that model a one-compartment
activator-inhibitor system (Kernévez (1980)), are given by

s′ = (s0 − s) − ρR(s, a),
a′ = α(a0 − a) − ρR(s, a),

(9.8)

where
R(s, a) =

sa

1 + s+ κs2
, κ > 0.

The free parameter is ρ. In the fold continuation s0 is also free.

AUTO -COMMAND ACTION
! mkdir plp create an empty work directory
cd plp change directory
demo(’plp’) copy the demo files to the work directory
ld(’plp’) load the problem definition
run(c=’plp.1’) 1st run; compute a stationary solution branch and locate HBs
sv(’plp’) save output-files as b.plp, s.plp, d.plp
run(c=’plp.2’,s=’plp’) compute a branch of periodic solutions and

locate a fold. Constants changed : IPS,

IRS, NMX

ap(’plp’) append output-files to b.plp, s.plp, d.plp
run(c=’plp.3’,s=’plp’) Compute a locus of Hopf bifurcation

points. Constants changed : IPS, ICP,

ISW, NMX, RL1

sv(’2p’) save output-files as b.2p, s.2p, d.2p
run(c=’plp.4’,s=’plp’) generate starting data for the fold contin-

uation. Constants changed : IPS, IRS,

ICP, NMX

sv(’tmp’) save output-files as b.tmp, s.tmp, d.tmp
run(c=’plp.5’,s=’tmp’) fold continuation; restart data from s.tmp.

Constants changed : IRS, NUZR

ap(’2p’) append output-files to b.2p, s.2p, d.2p
run(c=’plp.6’,s=’2p’) compute an isola of periodic solutions;

restart data from s.2p. Constants changed
: IRS, ISW, NMX, NUZR

sv(’iso’) save output-files as b.iso, s.iso, d.iso

Table 9.7: Commands for running demo plp.
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9.8 pp3 : Period-Doubling Continuation.

This demo illustrates the computation of stationary solutions, Hopf bifurcations, and periodic
solutions, branch switching at a period-doubling bifurcation, and the computation of a locus of
period-doubling bifurcations. The equations model a 3D predator-prey system with harvesting
(Doedel (1984)).

u′1 = u1(1 − u1) − p4u1u2,
u′2 = −p2u2 + p4u1u2 − p5u2u3 − p1(1 − e−p6u2)
u′3 = −p3u3 + p5u2u3.

(9.9)

The free parameter is p1, except in the period-doubling continuation, where both p1 and p2 are
free.

AUTO -COMMAND ACTION
! mkdir pp3 create an empty work directory
cd pp3 change directory
demo(’pp3’) copy the demo files to the work directory
ld(’pp3’) load the problem definition
run(c=’pp3.1’) 1st run; stationary solutions
sv(’pp3’) save output-files as b.pp3, s.pp3, d.pp3
run(c=’pp3.2’,s=’pp3’) compute a branch of periodic solutions.

Constants changed : IRS, IPS, NMX

ap(’pp3 append output-files to b.pp3, s.pp3, d.pp3
run(c=’pp3.3’,s=’pp3’) compute the branch bifurcating at the

period-doubling. Constants changed :
IRS, ISW, NTST

ap(’pp3’) append output-files to b.pp3, s.pp3, d.pp3
run(c=’pp3.4’,s=’pp3’) generate starting data for the period-

doubling continuation. Constants changed
: ISW

sv(’tmp’) save output-files as b.tmp, s.tmp, d.tmp
run(c=’pp3.5’,s=’tmp’) period-doubling continuation; restart from

s.tmp. Constants changed : IRS

sv(’2p’) save output-files as b.2p, s.2p, d.2p

Table 9.8: Commands for running demo pp3.
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9.9 tor : Detection of Torus Bifurcations.

This demo uses a model in Freire, Rodŕıguez-Luis, Gamero & Ponce (1993) to illustrate the
detection of a torus bifurcation. It also illustrates branch switching at a secondary periodic
bifurcation with double Floquet multiplier at z = 1. The computational results also include
folds, homoclinic orbits, and period-doubling bifurcations. Their continuation is not illustrated
here; see instead the demos plp, pp2, and pp3, respectively. The equations are

x′(t) =
[

− (β + ν)x+ βy − a3x
3 + b3(y − x)3

]

/r,
y′(t) = βx− (β + γ)y − z − b3(y − x)3,
z′(t) = y,

(9.10)

where γ = −0.6, r = 0.6, a3 = 0.328578, and b3 = 0.933578. Initially ν = −0.9 and β = 0.5.

AUTO -COMMAND ACTION
! mkdir tor create an empty work directory
cd tor change directory
demo(’tor’) copy the demo files to the work directory
ld(’tor’) load the problem definition
run(c=’tor.1’) 1st run; compute a stationary solution branch with Hopf bifurcation
sv(’1’) save output-files as b.1, s.1, d.1
run(c=’tor.2’,s=’1’) compute a branch of periodic solutions;

restart from s.1. Constants changed :
IPS, IRS

ap(’1’) append output-files to b.1, s.1, d.1
run(c=’tor.3’,s=’1’) compute a bifurcating branch of periodic

solutions; restart from s.1. Constants
changed : IRS, ISW, NMX

ap(’1’) append output-files to b.1, s.1, d.1

Table 9.9: Commands for running demo tor.
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9.10 pen : Rotations of Coupled Pendula.

This demo illustrates the computation of rotations, i.e., solutions that are periodic, modulo a
phase gain of an even multiple of π. AUTO checks the starting data for components with such a
phase gain and, if present, it will automatically adjust the computations accordingly. The model
equations, a system of two coupled pendula, (Doedel, Aronson & Othmer (1991)), are given by

φ′′
1 + εφ′

1 + sinφ1 = I + γ(φ2 − φ1),
φ′′

2 + εφ′
2 + sinφ2 = I + γ(φ1 − φ2),

(9.11)

or, in equivalent first order form,

φ′
1 = ψ1,
φ′

2 = ψ2,
ψ′

1 = −εψ1 − sinφ1 + I + γ(φ2 − φ1),
ψ′

2 = −εψ2 − sinφ2 + I + γ(φ1 − φ2).

(9.12)

Throughout γ = 0.175. Initially, ε = 0.1 and I = 0.4.
Numerical data representing one complete rotation are contained in the file pen.dat. Each

row in pen.dat contains five real numbers, namely, the time variable t, φ1, φ2, ψ1 and ψ2. The
correponding parameter values are defined in the user-supplied subroutine stpnt.

Actually, in this example, a scaled time variable t is given in pen.dat. For this reason the
period ( PAR(11)) is also set in stpnt. Normally AUTO would automatically set the period
according to the data in pen.dat.

The AUTO -command us(’pen’) converts the data in pen.dat to a labeled AUTO solution
(with label 1) in a new file s.dat. The mesh will be suitably adapted to the solution, using the
number of mesh intervals NTST and the number of collocation point per mesh interval NCOL

specified in the constants-file c.pen. (Note that the file s.dat should be used for restart only. Do
not append new output-files to s.dat, as the command us(’pen’) only creates s.dat, with no
corresponding b.dat.)

The first run, with I as free problem parameter, starts from the converted solution with label 1
in pen.dat. A period-doubling bifurcation is located, and the period-doubled branch is computed
in the second run. Two branch points are located, and the bifurcating branches are traced out in
the third and fourth run, respectively. The fifth run generates starting data for the subsequent
computation of a locus of period-doubling bifurcations. The actual computation is done in the
sixth run, with ε and I as free problem parameters.
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AUTO -COMMAND ACTION
! mkdir pen create an empty work directory
cd pen change directory
demo(’pen’) copy the demo files to the work directory
ld(’pen’) load the problem definition
us(’pen’) convert pen.dat to AUTO format in s.dat
run(c=’pen.1’,s=’dat’) locate a period doubling bifurcation; restart from s.dat
sv(’pen’) save output-files as b.pen, s.pen, d.pen
run(c=’pen.2’,s=’pen’) a branch of period-doubled (and out-of-

phase) rotations. Constants changed :
IPS, NTST, ISW, NMX

ap(’pen’) append output-files tp b.pen, s.pen, d.pen
run(c=’pen.3’,s=’pen’) a secondary bifurcating branch (without

bifurcation detection). Constants changed
: IRS, ISP

ap(’pen’) append output-files to b.pen, s.pen, d.pen
run(c=’pen.4’,s=’pen’) another secondary bifurcating branch

(without bifurcation detection). Constants
changed : IRS

ap(’pen’) append output-files to b.pen, s.pen, d.pen
run(c=’pen.5’,s=’pen’) generate starting data for period doubling

continuation. Constants changed : IRS,

ICP, ICP, ISW, NMX

sv(’t’) save output-files as b.t, s.t, d.t
run(c=’pen.6’,s=’t’) compute a locus of period doubling bi-

furcations; restart from s.t. Constants
changed : IRS

sv(’pd’) save output-files as b.pd, s.pd, d.pd

Table 9.10: Commands for running demo pen.
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9.11 chu : A Non-Smooth System (Chua’s Circuit).

Chua’s circuit is one of the simplest electronic devices to exhibit complex behavior. For related
calculations see Khibnik, Roose & Chua (1993). The equations modeling the circuit are

u′1 = α
[

u2 − h(u1)
]

,
u′2 = u1 − u2 + u3 ,
u′3 = −β u2 ,

(9.13)

where

h(x) = a1x+
1

2
(a0 − a1)

{

| x+ 1 | − | x− 1 |
}

,

and where we take β = 14.3, a0 = −1/7, a1 = 2/7.
Note that h(x) is not a smooth function, and hence the solution to the equations may have

non-smooth derivatives. However, for the orthogonal collocation method to attain its optimal
accuracy, it is necessary that the solution be sufficiently smooth. Moreover, the adaptive mesh
selection strategy will fail if the solution or one of its lower order derivatives has discontinuities.
For these reasons we use the smooth approximation

| x | ≈ 2x

π
arctan(Kx),

which get better as K increases. In the numerical calculations below we use K = 10. The free
parameter is α.

AUTO -COMMAND ACTION
! mkdir chu create an empty work directory
cd chu change directory
demo(’chu’) copy the demo files to the work directory
ld(’chu’) load the problem definition
run(c=’chu.1’) 1st run; stationary solutions
sv(’chu’) save output-files as b.chu, s.chu, d.chu
run(c=’chu.2’,s=’chu’) 2nd run; periodic solutions, with detection

of period-doubling. constants changed :
IPS, IRS, ICP, ICP

ap(’chu’) append the output-files to b.chu, s.chu, d.chu

Table 9.11: Commands for running demo chu.

102



9.12 phs : Effect of the Phase Condition.

This demo illustrates the effect of the phase condition on the computation of periodic solutions.
We consider the differential equation

u′1 = λu1 − u2,
u′2 = u1(1 − u1).

(9.14)

This equation has a Hopf bifurcation from the trivial solution at λ = 0. The bifurcating branch
of periodic solutions is vertical and along it the period increases monotonically. The branch
terminates in a homoclinic orbit containing the saddle point (u1, u2) = (1, 0). Graphical inspection
of the computed periodic orbits, for example u1 versus the scaled time variable t, shows how the
phase condition has the effect of keeping the “peak” in the solution in the same location.

AUTO -COMMAND ACTION
! mkdir phs create an empty work directory
cd phs change directory
demo(’phs’) copy the demo files to the work directory
ld(’phs’) load the problem definition
run(c=’phs.1’) detect Hopf bifurcation
sv(’phs’) save output-files as b.phs, s.phs, d.phs
run(c=’phs.2’,s=’phs’) compute periodic solutions. Constants

changed : IRS, IPS, NPR

ap(’phs’) append output-files to b.phs, s.phs, d.phs

Table 9.12: Commands for running demo phs.
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9.13 ivp : Time Integration with Euler’s Method.

This demo uses Euler’s method to locate a stationary solution of the following predator-prey
system with harvesting :

u′1 = p2u1(1 − u1) − u1u2 − p1(1 − e−p3u1),
u′2 = −u2 + p4u1u2,

(9.15)

where all problem parameters have a fixed value. The equations are the same as those in demo
pp2. The continuation parameter is the independent time variable, namely PAR(14).

Note that Euler time integration is only first order accurate, so that the time step must
be sufficiently small to ensure correct results. Indeed, this option has been added only as a
convenience, and should generally be used only to locate stationary states. Note that the AUTO -
constants DS, DSMIN, and DSMAX control the step size in the space consisting of time, here
PAR(14), and the state vector, here (u1, u2).

AUTO -COMMAND ACTION
! mkdir ivp create an empty work directory
cd ivp change directory
demo(’ivp’) copy the demo files to the work directory
ld(’ivp’) load the problem definition
run(c=’ivp.1’) time integration
sv(’ivp’) save output-files as b.ivp, s.ivp, d.ivp

Table 9.13: Commands for running demo ivp.
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Chapter 10

AUTO Demos : BVP.

10.1 exp : Bratu’s Equation.

This demo illustrates the computation of a solution branch to the boundary value problem

u′1 = u2,
u′2 = −p1e

u1 ,
(10.1)

with boundary conditions u1(0) = 0, u1(1) = 0. This equation is also considered in Doedel,
Keller & Kernévez (1991a).

AUTO -COMMAND ACTION
! mkdir exp create an empty work directory
cd exp change directory
demo(’exp’) copy the demo files to the work directory
run(c=’exp.1’) 1st run; compute solution branch containing fold
sv(’exp’) save output-files as b.exp, s.exp, d.exp
run(c=’exp.2’,s=’exp’) 2nd run; restart at a labeled solution, using

increased accuracy. Constants changed :
IRS, NTST, A1, DSMAX vspace0.2cm

ap(’exp’) append output-files to b.exp, s.exp, d.exp

Table 10.1: Commands for running demo exp.

105



10.2 int : Boundary and Integral Constraints.

This demo illustrates the computation of a solution branch to the equation

u′1 = u2,
u′2 = −p1e

u1 ,
(10.2)

with a non-separated boundary condition and an integral constraint:

u1(0) − u1(1) − p2 = 0,

∫ 1

0

u(t)dt− p3 = 0.

The solution branch contains a fold, which, in the second run, is continued in two equation
parameters.

AUTO -COMMAND ACTION
! mkdir int create an empty work directory
cd int change directory
demo(’int’) copy the demo files to the work directory
run(c=’int.1’) 1st run; detection of a fold
sv(’int’) save output-files as b.int, s.int, d.int
run(c=’int.2’,s=’int’) 2nd run; generate starting data for a curve of folds. Constants changed : IRS, ISW vs-

pace0.2cm
sv(’t’) save the output-files as b.t, s.t, d.t
run(c=’int.3’,s=’t’) 3rd run; compute a curve of folds; restart

from s.t. Constants changed : IRS vs-
pace0.2cm

sv(’lp’) save the output-files as b.lp, s.lp, d.lp

Table 10.2: Commands for running demo int.

106



10.3 bvp : A Nonlinear ODE Eigenvalue Problem.

This demo illustrates the location of eigenvalues of a nonlinear ODE boundary value problem as
bifurcations from the trivial solution branch. The branch of solutions that bifurcates at the first
eigenvalue is computed in both directions. The equations are

u′1 = u2,
u′2 = −(p1π)2u1 + u2

1,
(10.3)

with boundary conditions u1(0) = 0, u1(1) = 0.

AUTO -COMMAND ACTION
! mkdir bvp create an empty work directory
cd bvp change directory
demo(’bvp’) copy the demo files to the work directory
run(c=’bvp.1’) compute the trivial solution branch and locate eigenvalues
sv(’bvp’) save output-files as b.bvp, s.bvp, d.bvp
run(c=’bvp.2’,s=’bvp’) compute the first bifurcating branch.

Constants changed : IRS, ISW, NPR,

DSMAX

ap(’bvp’) append output-files to b.bvp, s.bvp, d.bvp
run(c=’bvp.3’,s=’bvp’) compute the first bifurcating branch in op-

posite direction. Constants changed : DS

ap(’bvp’) append output-files to b.bvp, s.bvp, d.bvp

Table 10.3: Commands for running demo bvp.
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10.4 lin : A Linear ODE Eigenvalue Problem.

This demo illustrates the location of eigenvalues of a linear ODE boundary value problem as
bifurcations from the trivial solution branch. By means of branch switching an eigenfunction
is computed, as is illustrated for the first eigenvalue. This eigenvalue is then continued in two
parameters by fixing the L2-norm of the first solution component. The eigenvalue problem is
given by the equations

u′1 = u2,
u′2 = (p1π)2u1,

(10.4)

with boundary conditions u1(0) − p2 = 0 and u1(1) = 0. We add the integral constraint

∫ 1

0

u1(t)
2dt− p3 = 0.

Then p3 is simply the L2-norm of the first solution component. In the first two runs p2 is fixed,
while p1 and p3 are free. In the third run p3 is fixed, while p1 and p2 are free.

AUTO -COMMAND ACTION
! mkdir lin create an empty work directory
cd lin change directory
demo(’lin’) copy the demo files to the work directory
run(c=’lin.1’) 1st run; compute the trivial solution branch and locate eigenvalues
sv(’lin’) save output-files as b.lin, s.lin, d.lin
run(c=’lin.2’,s=’lin’) 2nd run; compute a few steps along the

bifurcating branch. Constants changed :
IRS, ISW, DSMAX

ap(’lin’) append output-files to b.lin, s.lin, d.lin
run(c=’lin.3’,s=’lin’) 3rd run; compute a two-parameter curve of

eigenvalues. Constants changed : IRS,

ISW, ICP(2)

sv(’2p’) save the output-files as b.2p, s.2p, d.2p

Table 10.4: Commands for running demo lin.
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10.5 non : A Non-Autonomous BVP.

This demo illustrates the continuation of solutions to the non-autonomous boundary value prob-
lem

u′1 = u2,

u′2 = −p1e
x3u1,

(10.5)

with boundary conditions u1(0) = 0, u1(1) = 0. Here x is the independent variable. This system
is first converted to the following equivalent autonomous system :

u′1 = u2,

u′2 = −p1e
u3

3
u1 ,

u′3 = 1,
(10.6)

with boundary conditions u1(0) = 0, u1(1) = 0, u3(0) = 0. (For a periodically forced system
see demo frc).

AUTO -COMMAND ACTION
! mkdir non create an empty work directory
cd non change directory
demo(’non’) copy the demo files to the work directory
run(c=’non.1’) compute the solution branch
sv(’non’) save output-files as b.non, s.non, d.non

Table 10.5: Commands for running demo non.
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10.6 kar : The Von Karman Swirling Flows.

The steady axi-symmetric flow of a viscous incompressible fluid above an infinite rotating disk
is modeled by the following ODE boundary value problem (Equation (11) in Lentini & Keller
(1980) :

u′1 = Tu2,
u′2 = Tu3,
u′3 = T

[

−2γu4 + u2
2 − 2u1u3 − u2

4

]

,
u′4 = Tu5,
u′5 = T

[

2γu2 + 2u2u4 − 2u1u5

]

,

(10.7)

with left boundary conditions

u1(0) = 0, u2(0) = 0, u4(0) = 1 − γ,

and (asymptotic) right boundary conditions

[

f∞ + a(f∞, γ)
]

u2(1) + u3(1) − γ u4(1)
a(f∞,γ)

= 0,

a(f∞, γ)
b2(f∞,γ)

γ
u2(1) +

[

f∞ + a(f∞, γ)
]

u4(1) + u5(1) = 0,

u1(1) = f∞,

(10.8)

where
a(f∞, γ) = 1√

2

[

(f4
∞ + 4γ2)1/2 + f 2

∞

]1/2
,

b(f∞, γ) = 1√
2

[

(f4
∞ + 4γ2)1/2 − f 2

∞

]1/2
.

(10.9)

Note that there are five differential equations and six boundary conditions. Correspondingly,
there are two free parameters in the computation of a solution branch, namely γ and f∞. The
“period” T is fixed; T = 500. The starting solution is ui = 0, i = 1, · · · , 5, at γ = 1, f∞ = 0.

AUTO -COMMAND ACTION
! mkdir kar create an empty work directory
cd kar change directory
demo(’kar’) copy the demo files to the work directory
run(c=’kar.1’) computation of the solution branch
sv(’kar’) save output-files as b.kar, s.kar, d.kar

Table 10.6: Commands for running demo kar.
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10.7 spb : A Singularly-Perturbed BVP.

This demo illustrates the use of continuation to compute solutions to the singularly perturbed
boundary value problem

u′1 = u2,
u′2 = λ

ε

(

u1u2(u
2
1 − 1) + u1

)

,
(10.10)

with boundary conditions u1(0) = 3/2, u1(1) = γ. The parameter λ has been introduced into the
equations in order to allow a homotopy from a simple equation with known exact solution to the
actual equation. This is done in the first run. In the second run ε is decreased by continuation.
In the third run ε is fixed at ε = .001 and the solution is continued in γ. This run takes more
than 1500 continuation steps. For a detailed analysis of the solution behavior see Lorenz (1982).

AUTO -COMMAND ACTION
! mkdir spb create an empty work directory
cd spb change directory
demo(’spb’) copy the demo files to the work directory
run(c=’spb.1’) 1st run; homotopy from λ = 0 to λ = 1
sv(’1’) save output-files as b.1, s.1, d.1
run(c=’spb.2’,s=’1’) 2nd run; let ε tend to zero; restart from

s.1. constants changed : IRS, ICP(1),

NTST, DS

sv(’2’) save the output-files as b.2, s.2, d.2
run(c=’spb.3’,s=’2’) 3rd run; continuation in γ; ε =

0.001; restart from s.2. Constants
changed : IRS, ICP(1), RL0, ITNW,

EPSL, EPSU, NUZR

sv(’3’) save the output-files as b.3, s.3, d.3

Table 10.7: Commands for running demo spb.
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10.8 ezp : Complex Bifurcation in a BVP.

This demo illustrates the computation of a solution branch to the the complex boundary value
problem

u′1 = u2,
u′2 = −p1e

u1 ,
(10.11)

with boundary conditions u1(0) = 0, u1(1) = 0. Here u1 and u2 are allowed to be complex, while
the parameter p1 can only take real values. In the real case, this is Bratu’s equation, whose
solution branch contains a fold; see the demo exp. It is known (Henderson & Keller (1990))
that a simple quadratic fold gives rise to a pitch fork bifurcation in the complex equation. This
bifurcation is located in the first computation below. In the second and third run, both legs of
the bifurcating solution branch are computed. On it, both solution components u1 and u2 have
nontrivial imaginary part.

AUTO -COMMAND ACTION
! mkdir ezp create an empty work directory
cd ezp change directory
demo(’ezp’) copy the demo files to the work directory
run(c=’ezp.1’) 1st run; compute solution branch containing fold
sv(’ezp’) save output-files as p.ezp, s.ezp, d.ezp
run(c=’ezp.2’,s=’ezp’) 2nd run; compute bifurcating complex

solution branch. Constants changed :
IRS, ISW

ap(’ezp’) append output-files to p.ezp, s.ezp, d.ezp
run(c=’ezp.3’,s=’ezp’) 3rd run; compute 2nd leg of bifurcating

branch. constant changed : DS

ap(’ezp’) append output-files to p.ezp, s.ezp, d.ezp

Table 10.8: Commands for running demo ezp.
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Chapter 11

AUTO Demos : Parabolic PDEs.
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11.1 pd1 : Stationary States (1D Problem).

This demo uses Euler’s method to locate a stationary solution of a nonlinear parabolic PDE,
followed by continuation of this stationary state in a free problem parameter. The equation is

∂u

∂t
= D

∂2u

∂x2
+ p1 u (1 − u),

on the space interval [0, L], where L = PAR(11) = 10 is fixed throughout, as is the diffusion
constant D = PAR(15) = 0.1. The boundary conditions are u(0) = u(L) = 0 for all time.

In the first run the continuation parameter is the independent time variable, namely PAR(14),
while p1 = 1 is fixed. The AUTO -constants DS, DSMIN, and DSMAX then control the step size
in space-time, here consisting of PAR(14) and u(x). Initial data are u(x) = sin(πx/L) at time
zero. Note that in the subroutine stpnt the initial data must be scaled to the unit interval, and
that the scaled derivative must also be provided; see the equations-file pv1.c. In the second run
the continuation parameter is p1.

Euler time integration is only first order accurate, so that the time step must be sufficiently
small to ensure correct results. Indeed, this option has been added only as a convenience, and
should generally be used only to locate stationary states.

AUTO -COMMAND ACTION
! mkdir pd1 create an empty work directory
cd pd1 change directory
demo(’pd1’) copy the demo files to the work directory
run(c=’pd1.1’) time integration towards stationary state
sv(’1’) save output-files as b.1, s.1, d.1
run(c=’pd1.2’,s=’1’) continuation of stationary states; read

restart data from s.1. constants changed :
IPS, IRS, ICP, etc.

sv(’2’) save output-files as b.2, s.2, d.2

Table 11.1: Commands for running demo pd1.
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11.2 pd2 : Stationary States (2D Problem).

This demo uses Euler’s method to locate a stationary solution of a nonlinear parabolic PDE,
followed by continuation of this stationary state in a free problem parameter. The equations are

∂u1/∂t = D1 ∂
2u1/∂x

2 + p1 u (1 − u) − u1u2,
∂u2/∂t = D2 ∂

2u2/∂x
2 − u2 + u1u2,

(11.1)

on the space interval [0, L], where L = PAR(11) = 1 is fixed throughout, as are the diffusion
constants D1 = PAR(15) = 1 and D2 = PAR(16) = 1. The boundary conditions are u1(0) =
u1(L) = 0 and u2(0) = u2(L) = 1, for all time.

In the first run the continuation parameter is the independent time variable, namely PAR(14),
while p1 = 12 is fixed. The AUTO -constants DS, DSMIN, and DSMAX then control the step
size in space-time, here consisting of PAR(14) and (u1(x), u2(x)). Initial data at time zero are
u1(x) = sin(πx/L) and u2(x) = 1. Note that in the subroutine stpnt the initial data must
be scaled to the unit interval, and that the scaled derivatives must also be provided; see the
equations-file pv2.c. In the second run the continuation parameter is p1. A branch point is
located during this run.

Euler time integration is only first order accurate, so that the time step must be sufficiently
small to ensure correct results. Indeed, this option has been added only as a convenience, and
should generally be used only to locate stationary states.

AUTO -COMMAND ACTION
! mkdir pd2 create an empty work directory
cd pd2 change directory
demo(’pd2’) copy the demo files to the work directory
run(c=’pd2.1’) time integration towards stationary state
sv(’1’) save output-files as b.1, s.1, d.1
run(c=’pd2.2’,s=’1’) continuation of stationary states; read

restart data from s.1. constants changed :
IPS, IRS, ICP, etc.

sv(’2’) save output-files as b.2, s.2, d.2

Table 11.2: Commands for running demo pd2.
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11.3 wav : Periodic Waves.

This demo illustrates the computation of various periodic wave solutions to a system of coupled
parabolic partial differential equations on the spatial interval [0, 1]. The equations, that model
an enzyme catalyzed reaction (Doedel & Kernévez (1986b)) are :

∂u1/∂t = ∂2u1/∂x
2 − p1

[

p4R(u1, u2) − (p2 − u1)
]

,
∂u2/∂t = β∂2u2/∂x

2 − p1

[

p4R(u1, u2) − p7(p3 − u2)
]

.
(11.2)

All equation parameters, except p3, are fixed throughout.

AUTO -COMMAND ACTION
! mkdir wav create an empty work directory
cd wav change directory
demo(’wav’) copy the demo files to the work directory
run(c=’wav.1’) 1st run; stationary solutions of the system without diffusion
sv(’ode’) save output-files as b.ode, s.ode, d.ode
cp c.wav.2 c.wav constants changed : IPS

run(c=’wav.2’,s=’wav’) 2nd run; detect bifurcations to wave train
solutions. Constants changed : IPS

sv(’wav’) save output-files as b.wav, s.wav, d.wav
run(c=’wav.3’,s=’wav’) 3rd run; wave train solutions of fixed wave

speed. Constants changed : IRS, IPS,

NUZR, ILP

ap(’wav’) append output-files to b.wav, s.wav, d.wav
run(c=’wav.4’,s=’wav’) 4th run; wave train solutions of fixed wave

length. Constants changed : IRS, IPS,

NMX, ICP, NUZR

sv(’rng’) save output-files as b.rng, s.rng, d.rng
run(c=’wav.5’,s=’wav’) 5th run; time evolution computation. Con-

stants changed : IPS, NMX, NPR, ICP

sv(’tim’) save output-files as b.tim, s.tim, d.tim

Table 11.3: Commands for running demo wav.
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11.4 brc : Chebyshev Collocation in Space.

This demo illustrates the computation of stationary solutions and periodic solutions to systems of
parabolic PDEs in one space variable, using Chebyshev collocation in space. More precisely, the
approximate solution is assumed of the form u(x, t) =

∑n+1
k=0 uk(t)`k(x). Here uk(t) corresponds

to u(xk, t) at the Chebyshev points
{

xk

}n

k=1
with respect to the interval [0, 1]. The polynomials

{

`k(x)
}n+1

k=0
are the Lagrange interpolating coefficients with respect to points

{

xk

}n+1

k=0
, where

x0 = 0 and xn+1 = 1. The number of Chebyshev points in [0, 1], as well as the number of
equations in the PDE system, can be set by the user in the file brc.inc.

As an illustrative application we consider the Brusselator (Holodniok, Knedlik & Kub́ıček
(1987))

ut = Dx/L
2uxx + u2v − (B + 1)u+ A,

vt = Dy/L
2vxx − u2v +Bu,

(11.3)

with boundary conditions u(0, t) = u(1, t) = A and v(0, t) = v(1, t) = B/A.
Note that, given the non-adaptive spatial discretization, the computational procedure here is

not appropriate for PDEs with solutions that rapidly vary in space, and care must be taken to
recognize spurious solutions and bifurcations.

AUTO -COMMAND ACTION
! mkdir brc create an empty work directory
cd brc change directory
demo(’brc’) copy the demo files to the work directory
run(c=’brc.1’) compute the stationary solution branch with Hopf bifurcations
sv(’brc’) save output-files as b.brc, s.brc, d.brc
run(c=’brc.2’,s=’brc’) compute a branch of periodic solutions

from the first Hopf point. Constants
changed : IRS, IPS

ap(’brc’) append the output-files to b.brc, s.brc, d.brc
run(c=’brc.3’,s=’brc’) compute a solution branch from a sec-

ondary periodic bifurcation. Constants
changed : IRS, ISW

ap(’brc’) append the output-files to b.brc, s.brc, d.brc

Table 11.4: Commands for running demo brc.
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11.5 brf : Finite Differences in Space.

This demo illustrates the computation of stationary solutions and periodic solutions to systems of
parabolic PDEs in one space variable. A fourth order accurate finite difference approximation is
used to approximate the second order space derivatives. This reduces the PDE to an autonomous
ODE of fixed dimension which AUTO is capable of treating. The spatial mesh is uniform; the
number of mesh intervals, as well as the number of equations in the PDE system, can be set by
the user in the file brf.inc.

As an illustrative application we consider the Brusselator (Holodniok, Knedlik & Kub́ıček
(1987))

ut = Dx/L
2uxx + u2v − (B + 1)u+ A,

vt = Dy/L
2vxx − u2v +Bu,

(11.4)

with boundary conditions u(0, t) = u(1, t) = A and v(0, t) = v(1, t) = B/A.
Note that, given the non-adaptive spatial discretization, the computational procedure here is

not appropriate for PDEs with solutions that rapidly vary in space, and care must be taken to
recognize spurious solutions and bifurcations.

AUTO -COMMAND ACTION
! mkdir brf create an empty work directory
cd brf change directory
demo(’brf’) copy the demo files to the work directory
run(c=’brf.1’) compute the stationary solution branch with Hopf bifurcations
sv(’brf’) save output-files as b.brf, s.brf, d.brf
run(c=’brf.2’,s=’brf’) compute a branch of periodic solutions

from the first Hopf point. Constants
changed : IRS, IPS

ap(’brf’) append the output-files to b.brf, s.brf, d.brf
run(c=’brf.3’,s=’brf’) compute a solution branch from a sec-

ondary periodic bifurcation. Constants
changed : IRS, ISW

ap(’brf’) append the output-files to b.brf, s.brf, d.brf

Table 11.5: Commands for running demo brf.
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11.6 bru : Euler Time Integration (the Brusselator).

This demo illustrates the use of Euler’s method for time integration of a nonlinear parabolic PDE.
The example is the Brusselator (Holodniok, Knedlik & Kub́ıček (1987)), given by

ut = Dx/L
2uxx + u2v − (B + 1)u+ A,

vt = Dy/L
2vxx − u2v +Bu,

(11.5)

with boundary conditions u(0, t) = u(1, t) = A and v(0, t) = v(1, t) = B/A. All parameters are
given fixed values for which a stable periodic solution is known to exist.

The continuation parameter is the independent time variable, namely PAR(14). The AUTO -
constants DS, DSMIN, and DSMAX then control the step size in space-time, here consisting of
PAR(14) and (u(x), v(x)). Initial data at time zero are u(x) = A − 0.5 sin(πx) and v(x) =
B/A+ 0.7 sin(πx). Note that in the subroutine stpnt the space derivatives of u and v must also
be provided; see the equations-file bru.c.

Euler time integration is only first order accurate, so that the time step must be sufficiently
small to ensure correct results. This option has been added only as a convenience, and should
generally be used only to locate stationary states. Indeed, in the case of the asymptotic periodic
state of this demo, the number of required steps is very large and use of a better time integrator
is advisable.

AUTO -COMMAND ACTION
! mkdir bru create an empty work directory
cd bru change directory
demo(’bru’) copy the demo files to the work directory
run(c=’bru.1’) time integration
sv(’bru’) save output-files as b.bru, s.bru, d.bru

Table 11.6: Commands for running demo bru.
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Chapter 12

AUTO Demos : Optimization.
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12.1 opt : A Model Algebraic Optimization Problem.

This demo illustrates the method of successive continuation for constrained optimization problems
by applying it to the following simple problem : Find the maximum sum of coordinates on the
unit sphere in R5. Coordinate 1 is treated as the state variable. Coordinates 2-5 are treated as
control parameters. For details on the successive continuation procedure see Doedel, Keller &
Kernévez (1991a), Doedel, Keller & Kernévez (1991b).

AUTO -COMMAND ACTION
! mkdir opt create an empty work directory
cd opt change directory
demo(’opt’) copy the demo files to the work directory
run(c=’opt.1’) one free equation parameter
sv(’1’) save output-files as b.1, s.1, d.1
run(c=’opt.2’,s=’1’) two free equation parameters; read restart

data from s.1. Constants changed : IRS

sv(’2’) save output-files as b.2, s.2, d.2
run(c=’opt.3’,s=’2’) three free equation parameters; read

restart data from s.2. Constants changed
: IRS

sv(’3’) save output-files as b.3, s.3, d.3
run(c=’opt.4’,s=’3’) four free equation parameters; read restart

data from s.3. Constants changed : IRS

sv(’4’) save output-files as b.4, s.4, d.4

Table 12.1: Commands for running demo opt.
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12.2 ops : Optimization of Periodic Solutions.

This demo illustrates the method of successive continuation for the optimization of periodic
solutions. For a detailed description of the basic method see Doedel, Keller & Kernévez (1991b).
The illustrative system of autonomous ODEs, taken from Rodŕıguez-Luis (1991), is

x′(t) = [−λ4(x
3/3 − x) + (z − x)/λ2 − y]/λ1,

y′(t) = x− λ3,
z′(t) = −(z − x)/λ2,

(12.1)

with objective functional

ω =

∫ 1

0

g(x, y, z;λ1, λ2, λ3, λ4) dt,

where g(x, y, z;λ1, λ2, λ3, λ4) ≡ λ3. Thus, in this application, a one-parameter extremum of g
corresponds to a fold with respect to the problem parameter λ3, and multi-parameter extrema
correspond to generalized folds. Note that, in general, the objective functional is an integral along
the periodic orbit, so that a variety of optimization problems can be addressed.

For the case of periodic solutions, the extended optimality system can be generated automat-
ically, i.e., one need only define the vector field and the objective functional, as in done in the
file ops.c. For reference purpose it is convenient here to write down the full extended system in
its general form :

u′(t) = Tf
(

u(t), λ
)

, T ∈ R (period), u(·), f(·, ·) ∈ Rn, λ ∈ Rnλ,

w′(t) = −Tfu

(

u(t), λ
)∗
w(t) + κu′0(t) + γgu

(

u(t), λ
)∗
, w(·) ∈ Rn, κ, γ ∈ R,

u(1) − u(0) = 0, w(1) − w(0) = 0,

∫ 1

0
u(t)∗u′0(t) dt = 0,

∫ 1

0
ω − g

(

u(t), λ
)

dt = 0,

∫ 1

0
w(t)∗w(t) + κ2 + γ2 − α dt = 0, α ∈ R,

∫ 1

0
f
(

u(t), λ
)∗
w(t) − γgT

(

u(t), λ
)

− τ0 dt = 0, τ0 ∈ R,

∫ 1

0
Tfλi

(

u(t), λ
)∗
w(t) − γgλi

(

u(t), λ
)

− τi dt = 0, τi ∈ R, i = 1, · · · , nλ.

(12.2)

Above u0 is a reference solution, namely, the previous solution along a solution branch.
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In the computations below, the two preliminary runs, with IPS=1 and IPS=2, respectively,
locate periodic solutions. The subsequent runs are with IPS=15 and hence use the automatically
generated extended system.

- Run 1. Locate a Hopf bifurcation. The free system parameter is λ3.

- Run 2. Compute a branch of periodic solutions from the Hopf bifurcation.

- Run 3. This run retraces part of the periodic solution branch, using the full optimality
system, but with all adjoint variables, w(·), κ, γ, and hence α, equal to zero. The optimality
parameters τ0 and τ3 are zero throughout. An extremum of the objective functional with
respect to λ3 is located. Such a point corresponds to a branch point of the extended
system. Given the choice of objective functional in this demo, this extremum is also a fold
with respect to λ3.

- Run 4. Branch switching at the above-found branch point yields nonzero values of the
adjoint variables. Any point on the bifurcating branch away from the branch point can
serve as starting solution for the next run. In fact, the branch-switching can be viewed
as generating a nonzero eigenvector in an eigenvalue-eigenvector relation. Apart from the
adjoint variables, all other variables remain unchanged along the bifurcating branch.

- Run 5. The above-found starting solution is continued in two system parameters, here λ3

and λ2; i.e., a two-parameter branch of extrema with respect to λ3 is computed. Along this
branch the value of the optimality parameter τ2 is monitored, i.e., the value of the functional
that vanishes at an extremum with respect to the system parameter λ2. Such a zero of τ2 is,
in fact, located, and hence an extremum of the objective functional with respect to both λ2

and λ3 has been found. Note that, in general, τi is the value of the functional that vanishes
at an extremum with respect to the system parameter λi.

- Run 6. In the final run, the above-found two-parameter extremum is continued in three
system parameters, here λ1, λ2, and λ3, toward λ1 = 0. Again, given the particular choice
of objective functional, this final continuation has an alternate significance here : it also
represents a three-parameter branch of transcritical secondary periodic bifurcations points.

Although not illustrated here, one can restart an ordinary continuation of periodic solutions,
using IPS=2 or IPS=3, from a labeled solution point on a branch computed with IPS=15.
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The free scalar variables specified in the AUTO constants-files for Run 3 and Run 4 are shown
in Table 12.2.

Index 3 11 12 22 -22 -23 -31
Variable λ3 T α τ2 [λ2] [λ3] [T ]

Table 12.2: Runs 3 and 4 (files c.ops.3 and c.ops.4).

The parameter α, which is the norm of the adjoint variables, becomes nonzero after branch
switching in Run 4. The negative indices (-22, -23, and -31) set the active optimality functionals,
namely for λ2, λ3, and T , respectively, with corresponding variables τ2, τ3, and τ0, respectively.
These should be set in the first run with IPS=15 and remain unchanged in all subsequent runs.

Index 3 2 11 22 -22 -23 -31
Variable λ3 λ2 T τ2 [λ2] [λ3] [T ]

Table 12.3: Run 5 (file c.ops.5).

In Run 5 the parameter α, which has been replaced by λ2, remains fixed and nonzero. The
variable τ2 monitors the value of the optimality functional associated with λ2. The zero of τ2
located in this run signals an extremum with respect to λ2.

Index 3 2 1 11 -22 -23 -31
Variable λ3 λ2 λ1 T [λ2] [λ3] [T ]

Table 12.4: Run 6 (file c.ops.6).

In Run 6 τ2, which has been replaced by λ1, remains zero.
Note that τ0 and τ3 are not used as variables in any of the runs; in fact, their values remain zero

throughout. Also note that the optimality functionals corresponding to τ0 and τ3 (or, equivalently,
to T and λ3) are active in all runs. This set-up allows the detection of the extremum of the
objective functional, with T and λ3 as scalar equation parameters, as a bifurcation in the third
run.

The parameter λ4, and its corresponding optimality variable τ4, are not used in this demo.
Also, λ1 is used in the last run only, and its corresponding optimality variable τ1 is never used.
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AUTO -COMMAND ACTION
! mkdir ops create an empty work directory
cd ops change directory
demo(’ops’) copy the demo files to the work directory
run(c=’ops.1’) locate a Hopf bifurcation
sv(’0’) save output-files as b.0, s.0, d.0
run(c=’ops.2’,s=’0’) compute a branch of periodic solutions;

restart from s.0. Constants changed :
IPS, IRS, NMX, NUZR

ap(’0’) append the output-files to b.0, s.0, d.0
run(c=’ops.3’,s=’0’) locate a 1-parameter extremum as a bi-

furcation; restart from s.0. Constants
changed : IPS, IRS, ICP, · · ·

sv(’1’) save the output-files as b.1, s.1, d.1
run(c=’ops.4’,s=’1’) switch branches to generate optimality

starting data; restart from s.1. Constants
changed : IRS, ISP, ISW, NMX

ap(’1’) append the output-files to b.1, s.1, d.1
run(c=’ops.5’,s=’1’) compute 2-parameter branch of 1-

parameter extrema; restart from s.1.
Constants changed : IRS, ISW, ICP,

ISW, · · ·
sv(’2’) save the output-files as b.2, s.2, d.2
run(c=’ops.6’,s=’2’) compute 3-parameter branch of 2-

parameter extrema; restart from s.2.
Constants changed : IRS, ICP, EPSL,

EPSU, NUZR

sv(’3’) save the output-files as b.3, s.3, d.3

Table 12.5: Commands for running demo ops.
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12.3 obv : Optimization for a BVP.

This demo illustrates use of the method of successive continuation for a boundary value opti-
mization problem. A detailed description of the basic method, as well as a discussion of the
specific application considered here, is given in Doedel, Keller & Kernévez (1991b). The required
extended system is fully programmed here in the user-supplied subroutines in obv.c. For the case
of periodic solutions the optimality system can be generated automatically; see the demo ops.

Consider the system
u′1(t) = u2(t),
u′2(t) = −λ1e

p(u1,λ2,λ3),
(12.3)

where p(u1, λ2, λ3) ≡ u1 + λ2u
2
1 + λ3u

4
1, with boundary conditions

u1(0) = 0,
u1(1) = 0.

(12.4)

The objective functional is

ω =

∫ 1

0

(u1(t) − 1)2 dt+
1

10

3
∑

k=1

λ2
k.

The successive continuation equations are given by

u′1(t) = u2(t),
u′2(t) = −λ1e

p(u1,λ2,λ3),
w′

1(t) = λ1e
p(u1,λ2,λ3)pu1

w2(t) + 2γ(u1(t) − 1),
w′

2(t) = −w1(t),

(12.5)

where

pu1
≡ ∂p

∂u1

= 1 + 2λ2u1 + 4λ3u
3
1,

with
u1(0) = 0, w1(0) − β1 = 0, w2(0) = 0,
u1(1) = 0, w1(1) + β2 = 0, w2(1) = 0,

(12.6)

∫ 1

0

[

ω − (u1(t) − 1)2 − 1

10

3
∑

k=1

λ2
k

]

dt = 0,

∫ 1

0

[

w2
1(t) − α0

]

dt = 0,

∫ 1

0

[

−ep(u1,λ2,λ3)w2(t) − 1
5
γλ1

]

dt = 0,
∫ 1

0

[

−λ1e
p(u1,λ2,λ3)u1(t)

2w2(t) − 1
5
γλ2 − τ2

]

dt = 0,
∫ 1

0

[

−λ1e
p(u1,λ2,λ3)u1(t)

4w2(t) − 1
5
γλ3 − τ3

]

dt = 0.

(12.7)

In the first run the free equation parameter is λ1. All adjoint variables are zero. Three
extrema of the objective function are located. These correspond to branch points and, in the
second run, branch switching is done at one of these. Along the bifurcating branch the adjoint
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variables become nonzero, while state variables and λ1 remain constant. Any such non-trivial
solution point can be used for continuation in two equation parameters, after fixing the L2-norm
of one of the adjoint variables. This is done in the third run. Along the resulting branch several
two-parameter extrema are located by monotoring certain inner products. One of these is further
continued in three equation parameters in the final run, where a three-parameter extremum is
located.

AUTO -COMMAND ACTION
! mkdir obv create an empty work directory
cd obv change directory
demo(’obv’) copy the demo files to the work directory
run(c=’obv.1’) locate 1-parameter extrema as branch points
sv(’obv’) save output-files as b.obv, s.obv, d.obv
run(c=’obv.2’,s=’obv’) compute a few step on the first bifurcating

branch. Constants changed : IRS, ISW,

NMX

sv(’1’) save the output-files as b.1, s.1, d.1
run(c=’obv.3’,s=’1’) locate 2-parameter extremum; restart from

s.1. Constants changed : IRS, ISW,

NMX, ICP(3)

sv(’2’) save the output-files as b.2, s.2, d.2
run(c=’obv.4’,s=’2’) locate 3-parameter extremum; restart from

s.2. Constants changed : IRS, ICP(4)

sv(’3’) save the output-files as b.3, s.3, d.3

Table 12.6: Commands for running demo obv.

127



Chapter 13

AUTO Demos : Connecting orbits.
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13.1 fsh : A Saddle-Node Connection.

This demo illustrates the computation of travelling wave front solutions to the Fisher equation,

wt = wxx + f(w), −∞ < x <∞, t > 0,
f(w) ≡ w(1 − w).

(13.1)

We look for solutions of the form w(x, t) = u(x + ct), where c is the wave speed. This gives the
first order system

u′1(z) = u2(z),
u′2(z) = cu2(z) − f

(

u1(z)
)

.
(13.2)

Its fixed point (0, 0) has two positive eigenvalues when c > 2. The other fixed point, (1, 0), is a
saddle point. A branch of orbits connecting the two fixed points requires one free parameter; see
Friedman & Doedel (1991). Here we take this parameter to be the wave speed c.

In the first run a starting connecting orbit is computed by continuation in the period T . This
procedure can be used generally for time integration of an ODE with AUTO . Starting data in
stpnt correspond to a point on the approximate stable manifold of (1, 0), with T small. In this
demo the “free” end point of the orbit necessary approaches the unstable fixed point (0, 0). A
computed orbit with sufficiently large T is then chosen as restart orbit in the second run, where,
typically, one replaces T by c as continuation parameter. However, in the second run below, we
also add a phase condition, and both c and T remain free.

AUTO -COMMAND ACTION
! mkdir fsh create an empty work directory
cd fsh change directory
demo(’fsh’) copy the demo files to the work directory
run(c=’fsh.1’) continuation in the period T , with c fixed; no phase condition
sv(’0’) save output-files as b.0, s.0, d.0
run(c=’fsh.2’,s=’0’) continuation in c and T , with active phase

condition. Constants changed : IRS,

ICP, NINT, DS

sv(’fsh’) save output-files as b.fsh, s.fsh, d.fsh

Table 13.1: Commands for running demo fsh.
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13.2 nag : A Saddle-Saddle Connection.

This demo illustrates the computation of traveling wave front solutions to Nagumo’s equation,

wt = wxx + f(w, a), −∞ < x <∞, t > 0,
f(w, a) ≡ w(1 − w)(w − a), 0 < a < 1.

(13.3)

We look for solutions of the form w(x, t) = u(x + ct), where c is the wave speed. This gives the
first order system

u′1(z) = u2(z),
u′2(z) = cu2(z) − f

(

u1(z), a
)

,
(13.4)

where z = x + ct, and ′ = d/dz. If a = 1/2 and c = 0 then there are two analytically known
heteroclinic connections, one of which is given by

u1(z) =
e

1

2

√
2z

1 + e
1

2

√
2z
, u2(z) = u′1(z), −∞ < z <∞.

The second heteroclinic connection is obtained by reflecting the phase plane representation of the
first with respect to the u1-axis. In fact, the two connections together constitute a heteroclinic
cycle. One of the exact solutions is used below as starting orbit. To start from the second exact
solution, change SIGN=-1 in the subroutine stpnt in nag.c and repeat the computations below;
see also Friedman & Doedel (1991).

AUTO -COMMAND ACTION
! mkdir nag create an empty work directory
cd nag change directory
demo(’nag’) copy the demo files to the work directory
run(c=’nag.1’) compute part of first branch of heteroclinic orbits
sv(’nag’) save output-files as b.nag, s.nag, d.nag
run(c=’nag.2’,s=’nag’) compute first branch in opposite direction.

Constants changed : DS

ap(’nag’) append output-files to b.nag, s.nag, d.nag

Table 13.2: Commands for running demo nag.
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13.3 stw : Continuation of Sharp Traveling Waves.

This demo illustrates the computation of sharp traveling wave front solutions to nonlinear diffusion
problems of the form

wt = A(w)wxx +B(w)w2
x + C(w),

with A(w) = a1w+a2w
2, B(w) = b0+b1w+b2w

2, and C(w) = c0+c1w+c2w
2. Such equations can

have sharp traveling wave fronts as solutions, i.e., solutions of the form w(x, t) = u(x+ ct)
for which there is a z0 such that u(z) = 0 for z ≥ z0, u(z) 6= 0 for z < z0, and u(z) → constant as
z → −∞. These solutions are actually generalized solutions, since they need not be differentiable
at z0.

Specifically, in this demo a homotopy path will be computed from an analytically known exact
sharp traveling wave solution of

(1) wt = 2wwxx + 2w2
x + w(1 − w),

to a corresponding sharp traveling wave of

(2) wt = (2w + w2)wxx + ww2
x + w(1 − w).

This problem is also considered in Doedel, Keller & Kernévez (1991b). For these two special cases
the functions A,B,C are defined by the coefficients in Table 13.3.

a1 a2 b0 b1 b2 c0 c1 c2
Case (1) 2 0 2 0 0 0 1 -1
Case (2) 2 1 0 1 0 0 1 -1

Table 13.3: Problem coefficients in demo stw.

With w(x, t) = u(x+ ct), z = x+ ct, one obtains the reduced system

u′1(z) = u2,
u′2(z) =

[

cu2 − B(u1)u
2
2 − C(u1)

]

/A(u1).
(13.5)

To remove the singularity when u1 = 0, we apply a nonlinear transformation of the independent
variable (see Aronson (1980)), viz., d/dz̃ = A(u1)d/dz, which changes the above equation into

u′1(z̃) = A(u1)u2,
u′2(z̃) = cu2 −B(u1)u

2
2 − C(u1).

(13.6)

Sharp traveling waves then correspond to heteroclinic connections in this transformed system.
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Finally, we map [0, T ] → [0, 1] by the transformation ξ = z̃/T . With this scaling of the
independent variable, the reduced system becomes

u′1(ξ) = TA(u1)u2,
u′2(ξ) = T

[

cu2 −B(u1)u
2
2 − C(u1)

]

.
(13.7)

For Case 1 this equation has a known exact solution, namely,

u(ξ) =
1

1 + exp(Tξ)
, v(ξ) =

−1
2

1 + exp(−Tξ) .

This solution has wave speed c = 1. In the limit as T → ∞ its phase plane trajectory connects
the stationary points (1, 0) and (0,− 1

2
).

The sharp traveling wave in Case 2 can now be obtained using the following homotopy. Let
(a1, a2, b0, b1, b2) = (1 − λ)(2, 0, 2, 0, 0) + λ(2, 1, 0, 1, 0). Then as λ varies continuously from 0 to
1, the parameters (a1, a2, b0, b1, b2) vary continously from the values for Case 1 to the values for
Case 2.

AUTO -COMMAND ACTION
! mkdir stw create an empty work directory
cd stw change directory
demo(’stw’) copy the demo files to the work directory
run(c=’stw.1’) continuation of the sharp traveling wave
sv(’stw’) save output-files as b.stw, s.stw, d.stw

Table 13.4: Commands for running demo stw.
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Chapter 14

AUTO Demos : Miscellaneous.
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14.1 pvl : Use of the Subroutine pvls.

Consider Bratu’s equation
u′1 = u2,
u′2 = −p1e

u1 ,
(14.1)

with boundary conditions u1(0) = 0, u1(1) = 0. As in demo exp, a solution curve requires one
free parameter; here p1.

Note that additional parameters are specified in the user-supplied subroutine pvls in file
pvls.c, namely, p2 (the L2-norm of u1), p3 (the minimum of u2 on the space-interval [0, 1] ), p4

(the boundary value u2(0) ). These additional parameters should be considered as “solution
measures” for output purposes; they should not be treated as true continuation parameters.

Note also that four free parameters are specified in the AUTO -constants file c.pvl.1, namely,
p1, p2, p3, and p4. The first one in this list, p1, is the true continuation parameter. The parameters
p2, p3, and p4 are overspecified so that their values will appear in the output. However, it is
essential that the true continuation parameter appear first. For example, it would be an error to
specify the parameters in the following order : p2, p1, p3, p4.

In general, true continuation parameters must appear first in the parameter-specification in
the AUTO constants-file. Overspecified parameters will be printed, and can be defined in pvls,
but they are not part of the intrinsic continuation procedure.

As this demo also illustrates (see the UZR values in c.pvl.1), labeled solutions can also be
output at selected values of the overspecified parameters.

AUTO -COMMAND ACTION
! mkdir pvl create an empty work directory
cd pvl change directory
demo(’pvl’) copy the demo files to the work directory
run(c=’pvl.1’) compute a solution branch
sv(’pvl’) save output-files as b.pvl, s.pvl, d.pvl

Table 14.1: Commands for running demo pvl.
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14.2 ext : Spurious Solutions to BVB.

This demo illustrates the computation of spurious solutions to the boundary value problem

u′1 − u2 = 0,
u′2 + λ2π2 sin(u1 + u2

1 + u3
1) = 0, t ∈ [0, 1],

u1(0) = 0, u1(1) = 0.
(14.2)

Here the differential equation is discretized using a fixed uniform mesh. This results in spurious
solutions that disappear when an adaptive mesh is used. See the AUTO -constant IAD in
Section 5.3. This example is also considered in Beyn & Doedel (1981) and Doedel, Keller &
Kernévez (1991b).

AUTO -COMMAND ACTION
! mkdir ext create an empty work directory
cd ext change directory
demo(’ext’) copy the demo files to the work directory
run(c=’ext.1’) detect bifurcations from the trivial solution branch
sv(’ext’) save output-files as b.ext, s.ext, d.ext
run(c=’ext.2’,s=’ext’) compute a bifurcating branch containing

spurious bifurcations. Constants changed
: IRS, ISW, NUZR

ap(’ext’) append output-files to b.ext, s.ext, d.ext

Table 14.2: Commands for running demo ext.
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14.3 tim : A Test Problem for Timing AUTO .

This demo is a boundary value problem with variable dimension NDIM. It can be used to time
the performance of AUTO for various choices of NDIM (which must be even), NTST, and NCOL.
The equations are

u′i = ui,
v′i = −p1 e(ui),

(14.3)

i = 1, · · · , NDIM/2, with boundary conditions ui(0) = 0, ui(1) = 0. Here

e(u) =
n
∑

k=0

uk

k!
,

with n = 25. The computation requires 10 full LU -decompositions of the linearized system that
arises from Newton’s method for solving the collocation equations. The commands for running
the timing problem for a particular choice of NDIM, NTST, and NCOL are given below. (Note
that if NDIM is changed then NBC must be changed accordingly.)

AUTO -COMMAND ACTION
! mkdir tim create an empty work directory
cd tim change directory
demo(’tim’) copy the demo files to the work directory
run(c=’tim.1’) Timing run
sv(’tim’) save output-files as b.tim, s.tim, d.tim

Table 14.3: Commands for running demo tim.
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Chapter 15

HomCont.

15.1 Introduction.

HomCont is a collection of subroutines for the continuation of homoclinic solutions to ODEs in
two or more parameters. The accurate detection and multi-parameter continuation of certain
codimension-two singularities is allowed for, including all known cases that involve a unique
homoclinic orbit at the singular point. Homoclinic connections to hyperbolic and non-hyperbolic
equilibria are allowed as are certain heteroclinic orbits. Homoclinic orbits in reversible systems can
also be computed. The theory behind the methods used is explained in Champneys & Kuznetsov
(1994), Bai & Champneys (1996), Sandstede (1995b, 1995c), Champneys, Kuznetsov & Sandstede
(1996) and references therein. The final cited paper contains a concise description of the present
version.

The current implementation of HomCont must be considered as experimental, and updates
are anticipated. The HomCont subroutines are in the file auto/2000/src/autlib5.c. Expert users
wishing to modify the routines may look there. Note also that at present, HomCont can be run
only in AUTO Command Mode and not with the GUI.

15.2 HomCont Files and Subroutines.

In order to run HomCont one must prepare an equations file xxx.c, where xxx is the name of
the example, and two constants-files c.xxx and h.xxx. The first two of these files are in the
standard AUTO format, whereas the h.xxx file contains constants that are specific to homoclinic
continuation. The choice IPS=9 in c.xxx specifies the problem as being homoclinic continuation,
in which case h.xxx is required.

The equation-file kpr.c serves as a sample for new equation files. It contains the C subroutines
func, stpnt, pvls, bcnd, icnd and fopt. The final three are dummy subroutines which
are never needed for homoclinic continuation. Note a minor difference in stpnt and pvls with
other AUTO equation-files, in that the common block /BLHOM/ is required.

The constants-file c.xxx is identical in format to other AUTO constants-files. Note that the
values of the constants NBC and NINT are irrelevant, as these are set automatically by the
choice IPS=9. Also, the choice JAC=1 is strongly recommended, because the Jacobian is used
extensively for calculating the linearization at the equilibria and hence for evaluating boundary
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conditions and certain test functions. However, note that JAC=1 does not necessarily mean that
auto will use the analytically specified Jacobian for continuation.

15.3 HomCont-Constants.

An example for the additional file h.xxx is listed below:

1 2 1 1 1 NUNSTAB,NSTAB,IEQUIB,ITWIST,ISTART

0 NREV,(/,I,IREV(I)),I=1,NREV)

1 NFIXED,(/,I,IFIXED(I)),I=1,NFIXED)

13

1 NPSI,(/,I,IPSI(I)),I=1,NPSI)

9 10 13

The constants specified in h.xxx have the following meaning.

15.3.1 NUNSTAB

Number of unstable eigenvalues of the left-hand equilibrium (the equilibrium approached by the
orbit as t→ −∞).

15.3.2 NSTAB

Number of stable eigenvalues of the right-hand equilibrium (the equilibrium approached by the
orbit as t→ +∞).

15.3.3 IEQUIB

- IEQUIB=0 : Homoclinic orbits to hyperbolic equilibria; the equilibrium is specified explicitly
in pvls and stored in PAR(11+I), I=1,NDIM.

- IEQUIB=1 : Homoclinic orbits to hyperbolic equilibria; the equilibrium is solved for during
continuation. Initial values for the equilibrium are stored in PAR(11+I), I=1,NDIM in
stpnt.

- IEQUIB=2 : Homoclinic orbits to a saddle-node; initial values for the equilibrium are stored
in PAR(11+I), I=1,NDIM in stpnt.

- IEQUIB=-1 : Heteroclinic orbits to hyperbolic equilibria; the equilibria are specified explic-
itly in pvls and stored in PAR(11+I), I=1,NDIM (left-hand equilibrium) and PAR(11+I),
I=NDIM+1,2*NDIM (right-hand equilibrium).

- IEQUIB=-2 : Heteroclinic orbits to hyperbolic equilibria; the equilibria are solved for during
continuation. Initial values are specified in stpnt and stored in PAR(11+I), I=1,NDIM

(left-hand equilibrium), PAR(11+I), I=NDIM+1,2*NDIM (right-hand equilibrium).
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15.3.4 ITWIST

- ITWIST=0 : the orientation of the homoclinic orbit is not computed.

- ITWIST=1 : the orientation of the homoclinic orbit is computed. For this purpose, the
adjoint variational equation is solved for the unique bounded solution. If IRS = 0, an
initial solution to the adjoint equation must be specified as well. However, if IRS>0 and
ITWIST has just been increased from zero, then AUTO will automatically generate the
initial solution to the adjoint. In this case, a dummy Newton-step should be performed, see
Section 15.7 for more details.

15.3.5 ISTART

- ISTART=1 : This option is obsolete in the current version. It may be used as a flag that
a solution is to be restarted from a previously computed point or from numerical data
converted into AUTO format using us. In this case IRS>0.

- ISTART=2 : If IRS=0, an explicit solution must be specified in the subroutine stpnt in the
usual format.

- ISTART=3 : The “homotopy” approach is used for starting, see Section 15.7 for more details.
Note that this is not available with the choice IEQUIB=2.

- ISTART=4 : A phase-shift is performed for homoclinic orbits to let the equilibrium (either
fixed or non-fixed, depending on IEQUIB) correspond to t = 0 and t = 1. This is necessary
if a periodic orbit that is close to a homoclinic orbit is continued into a homoclinic orbit.

- ISTART=-N, N = 1, 2, 3, . . . : Homoclinic branch switching: this description is for reference
only and we refer to Chapter 22 to see how this can be used in actual practice and to
Oldeman, Champneys & B. (2001) for theory and background.

The orbit is split into N + 1 parts and AUTO sees it as an (N + 1)×NDIM-dimensional
object. The first part u0 goes from the equilibrium to the point x0 that is furthest from
the equilibrium. Then follow N − 1 shifted copies of the orbit, which travel from the point
x0 back to the point x0. The last part UN goes from the point x0 back to the equilibrium.
The derivatives ẋ0 with respect to time of the point that is furthest from the equilibrium
are stored at the parameters par[NPARX-NDIM...NPARX-1].

If ITWIST=1, and this was also the case in the preceding run, then a copy of the adjoint vector
Ψ at x0 is stored at the parameters par[NPARX-NDIM*2...NPARX-NDIM-1] and Lin’s method
can be used to do homoclinic branch switching. To be more precise, the individual parts ui

and ui+1 are at distances εi away from each other, along the Lin vector Psi, at the left- and
right-hand end points. These gaps εi are at parameters par[19+2*i]. Moreover, each part
(except uN+1) ends at at a Poincaré section which goes through x0 and is perpendicular to
ẋ0.

The times Ti that each part ui takes are stored as follows: T0 =par[9], TN =par[10] and
Ti =par[18+2*i] for i = 1 . . . N − 1. Through a continuation in problem parameters, gaps
εi, and times Ti it is possible to switch from a 1-homoclinic to an N -homoclinic orbit.
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If ITWIST=0, the adjoint vector is not computed and Lin’s method is not used. Instead,
AUTO produces a gap ε=par[21] at the right-hand end point p of uN+1, measuring the
distance between the stable manifold of the equilibrium and p. This technique can also be
used to find 2-homoclinic orbits, by varying in ε and T1, similar to the method described
before, but only if the unstable manifold in one-dimensional. Because this method is more
limited than the method using Lin vectors, we do not recommend it for normal usage.

To switch back to a normal homoclinic orbit, set ISTART back to a positive value such as
1. Now HomCont has lost all the information about the adjoint, so if ITWIST is set to 0,
HomCont does a normal continuation without the adjoint, and if ITWIST is set to 1, one
needs to do a Newton dummy step first to recalculate the adhoint.

15.3.6 NREV, IREV

If NREV=1 then it is assumed that the system is reversible under the transformation t→ −t and
U(i) → −U(i) for all i with IREV(i)>0. Then only half the homoclinic solution is solved for with
right-hand boundary conditions specifying that the solution is symmetric under the reversibility
(see Champneys & Spence (1993)). The number of free parameters is then reduced by one.
Otherwise IREV=0.

15.3.7 NFIXED, IFIXED

Number and labels of test functions that are held fixed. E.g., with NFIXED=1 one can compute
a locus in one extra parameter of a singularity defined by test function PSI(IFIXED(1))=0.

15.3.8 NPSI, IPSI

Number and labels of activated test functions for detecting homoclinic bifurcations, see Sec-
tion 15.6 for a list. If a test function is activated then the corresponding parameter ( IPSI(I)+20)
must be added to the list of continuation parameters NICP,(ICP(I),I=1 NICP) and zero of this
parameter added to the list of user-defined output points NUZR, (/,I,PAR(I)),I=1, NUZR in
c.xxx.

15.4 Restrictions on HomCont Constants.

Note that certain combinations of these constants are not allowed in the present implementation.
In particular,

- The computation of orientation ITWIST=1 is not implemented for IEQUIB<0 (heteroclinic
orbits), IEQUIB=2 (saddle-node homoclinics), IREV=1 (reversible systems), ISTART=3

(homotopy method for starting), or if the equilibrium contains complex eigenvalues in its
linearization.

- The homotopy method ISTART=3 is not fully implemented for heteroclinic connections
IEQUIB<0, saddle-node homoclinic orbits IEQUIB=2 or reversible systems IREV=1.
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- Certain test functions are not valid for certain forms of continuation (see Section 15.6
below); for example PSI(13) and PSI(14) only make sense if ITWIST=1 and PSI(15)

and PSI(16) only apply to IEQUIB=2.

15.5 Restrictions on the Use of PAR.

The parameters PAR(1) – PAR(9) can be used freely by the user. The other parameters are
used as follows :

- PAR(11) : The value of PAR(11) equals the length of the time interval over which a
homoclinic solution is computed. Also referred to as “period”. This must be specified in
stpnt.

- PAR(10) : If ITWIST=1 then PAR(10) is used internally as a dummy parameter so that
the adjoint equation is well-posed.

- PAR(12)-PAR(20) : These are used for specifying the equilibria and (if ISTART=3) the
artificial parameters of the homotopy method (see Section 15.7 below).

- PAR(21)-PAR(36) : These parameters are used for storing the test functions (see Sec-
tion 15.6).

The output is in an identical format to AUTO except that additional information at each
computed point is written in fort.9. This information comprises the eigenvalues of the (left-
hand) equilibrium, the values of each activated test function and, if ITWIST=1, whether the
saddle homoclinic loop is orientable or not. Note that the statement about orientability is only
meaningful if the leading eigenvalues are not complex and the homoclinic solution is not in a flip
configuration, that is, none of the test functions ψi for i = 11, 12, 13, 14 is zero (or close to zero),
see Section 15.6. Finally, the values of the NPSI activated test functions are written.

15.6 Test Functions.

Codimension-two homoclinic orbits are detected along branches of codim 1 homoclinics by lo-
cating zeroes of certain test functions ψi. The test functions that are “switched on” during
any continuation are given by the choice of the labels i, and are specified by the parameters
NPSI,(/,I,IPSI(I)),I=1,NPSI) in h.xxx. Here NPSI gives the number of activated test func-
tions and IPSI(1),. . .,IPSI(NPSI) give the labels of the test functions (numbers between 1 and
16). A zero of each labeled test function defines a certain codimension-two homoclinic singular-
ity, specified as follows. The notation used for eigenvalues is the same as that in Champneys &
Kuznetsov (1994) or Champneys et al. (1996).

- i = 1: Resonant eigenvalues (neutral saddle); µ1 = −λ1.

- i = 2: Double real leading stable eigenvalues (saddle to saddle-focus transition); µ1 = µ2.
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- i = 3: Double real leading unstable eigenvalues (saddle to saddle-focus transition);
λ1 = λ2.

- i = 4: Neutral saddle, saddle-focus or bi-focus (includes i = 1); Re(µ1) = −Re(λ1).

- i = 5: Neutrally-divergent saddle-focus (stable eigenvalues complex);
Re(λ1) = −Re(µ1) − Re(µ2).

- i = 6: Neutrally-divergent saddle-focus (unstable eigenvalues complex);
Re(µ1) = −Re(λ1) − Re(λ2).

- i = 7: Three leading eigenvalues (stable); Re(λ1) = −Re(µ1) − Re(µ2).

- i = 8: Three leading eigenvalues (unstable); Re(µ1) = −Re(λ1) − Re(λ2).

- i = 9: Local bifurcation (zero eigenvalue or Hopf): number of stable eigenvalues decreases;
Re(µ1) = 0.

- i = 10: Local bifurcation (zero eigenvalue or Hopf): number of unstable eigenvalues de-
creases; Re(λ1) = 0.

- i = 11: Orbit flip with respect to leading stable direction (e.g., 1D unstable manifold).

- i = 12: Orbit flip with respect to leading unstable direction, (e.g., 1D stable manifold).

- i = 13: Inclination flip with respect to stable manifold (e.g., 1D unstable manifold).

- i = 14: Inclination flip with respect to unstable manifold (e.g., 1D stable manifold).

- i = 15: Non-central homoclinic to saddle-node (in stable manifold).

- i = 16: Non-central homoclinic to saddle-node (in unstable manifold).

Expert users may wish to add their own test functions by editing the function PSIHO in
autlib5.c.

It is important to remember that, in order to specify activated test functions, it is required
to also add the corresponding label +20 to the list of continuation parameters and a zero of this
parameter to the list of user-defined output points. Having done this, the corresponding parameters
are output to the screen and zeros are accurately located.

15.7 Starting Strategies.

There are four possible starting procedures for continuation.

(i) Data can be read from a previously-obtained output point from AUTO (e.g., from continu-
ation of a periodic orbit up to large period; note that if the end-point of the data stored is
not close to the equilibrium, a phase shift must be performed by setting ISTART=4). These
data can be read from fort.8 (saved to s.xxx) by making IRS correspond to the label of
the data point in question.
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(ii) Data from numerical integration (e.g., computation of a stable periodic orbit, or an approx-
imate homoclinic obtained by shooting) can be read in from a data file using the general
AUTO utility us (see earlier in the manual). The numerical data should be stored in a file
xxx.dat, in multi-column format according to the read statement

READ(...,*) T(J),(U(I,J),I=1,NDIM)

where T runs in the interval [0, 1]. After running us the restart data is stored in the format
of a previously computed solution in s.dat. When starting from this solution IRS should
be set to 1 and the value of ISTART is irrelevant.

(iii) By setting ISTART=2, an explicit homoclinic solution can be specified in the routine stpnt
in the usual AUTO format, that is U = ...(T ) where T is scaled to lie in the interval[0, 1].

(iv) The choice ISTART=3, allows for a homotopy method to be used to approach a homoclinic
orbit starting from a small approximation to a solution to the linear problem in the unstable
manifold (Doedel, Friedman & Monteiro 1993). For details of implementation, the reader is
referred to Section 5.1.2. of Champneys & Kuznetsov (1994), under the simplification that
we do not solve for the adjoint u(t) here. The basic idea is to start with a small solution
in the unstable manifold, and perform continuation in PAR(11)=2T and dummy initial-
condition parameters ξi in order to satisfy the correct right-hand boundary conditions, which
are defined by zeros of other dummy parameters ωi. More precisely, the left-hand end point
is placed in the tangent space to the unstable manifold of the saddle and is characterized
by NUNSTAB coordinates ξi satisfying the condition

ξ2
1 + ξ2

2 + . . . + ξ2
NUNSTAB

= ε20,

where ε0 is a user-defined small number. At the right-hand end point, NUNSTUB values ωi

measure the deviation of this point from the tangent space to the stable manifold of the
saddle.

Suppose that IEQUIB=0,1 and set IP=12+IEQUIB*NDIM. Then

PAR(IP) : ε0
PAR(IP+i) : ξi, i=1,2,...,NUNSTAB

PAR(IP+NUNSTAB+i) : ωi, i=1,2,...,NUNSTAB

Note that to avoid interference with the test functions (i.e. PAR(21)-PAR(36)), one must
have IP+2*NUNSTAB < 21.

If an ωi is vanished, it can be frozen while another dummy or system parameter is allowed
to vary in order to make consequently all ωi = 0. The resulting final solution gives the
initial homoclinic orbit provided the right-hand end point is sufficiently close to the saddle.
See Chapter 18 for an example, however, we recommend the homotopy method only for
“expert users”.
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To compute the orientation of a homoclinic orbit (in order to detect inclination-flip bifur-
cations) it is necessary to compute, in tandem, a solution to the modified adjoint variational
equation, by setting ITWIST=1. In order to obtain starting data for such a computation when
restarting from a point where just the homoclinic is computed, upon increasing ITWIST to 1,
AUTO generates trivial data for the adjoint. Because the adjoint equations are linear, only a
single step of Newton’s method is required to enable these trivial data to converge to the correct
unique bounded solution. This can be achieved by making a single continuation step in a trivial
parameter (i.e. a parameter that does not appear in the problem).

Decreasing ITWIST to 0 automatically deletes the data for the adjoint from the continuation
problem.

15.8 Notes on Running HomCont Demos.

HomCont demos are given in the following chapters. To copy all files of a demo xxx (for example,
san), move to a clean directory and type demo(’xxx’). Simply typing make or make all will then
automatically execute all runs of the demo. At each step, the user is encouraged to plot the data
saved by using the command plot (e.g., plot(’1’) plots the data saved in b.1 and s.1).

Of course, in a real application, the runs will not have been prepared in advance, and AUTO -
commands must be used. Such commands can be found in a table at the end of each chapter. A
sequence of detailed AUTO -commands will be given in these tables as illustrated in Table 15.1
and Table 15.2 for two representative runs of HomCont demo san.

The user is encouraged to copy the format of one of these demos when constructing new
examples.

The output of the HomCont demos reproduced in the following chapters is somewhat machine
dependent, as already noted in Section 7.4. In exceptional circumstances, AUTO may reach its
maximum number of steps NMX before a certain output point, or the label of an output point may
change. In such case the user may have to make appropriate changes in the AUTO constants-files.

COMMAND ACTION
ld(’san’) load the problem defition
run(c=’san.1’,h=’san.1’) get the HomCont constants-file and run AUTO /HomCont
sv(’6’) save output-files as b.6, s.6, d.6

Table 15.1: An example of AUTO -Commands.

COMMAND ACTION
run(c=’san.9’,h=’san.9’,s=’6’) get the HomCont constants-file and run

AUTO /HomCont; restart solution read
from s.6

ap(’6’) append output-files to b.6, s.6, d.6

Table 15.2: Another example of AUTO -Commands.
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Chapter 16

HomCont Demo : san.

16.1 Sandstede’s Model.

Consider the system (Sandstede 1995a)

ẋ = a x+ b y − a x2 + (µ̃− α z)x (2 − 3x)
ẏ = b x+ a y − 3

2
b x2 − 3

2
a x y − (µ̃− α z) 2 y

ż = c z + µx+ γ x y + αβ (x2 (1 − x) − y2)
(16.1)

as given in the file san.c. Choosing the constants appearing in (16.1) appropriately allows for
computing inclination and orbit flips as well as non-orientable resonant bifurcations, see (Sand-
stede 1995a) for details and proofs. The starting point for all calculations is a = 0, b = 1 where
there exists an explicit solution given by

(x(t), y(t), z(t)) =

(

1 −
(

1 − et

1 + et

)2

, 4 et 1 − et

(1 + et)3
, 0

)

.

This solution is specified in the routine stpnt.

16.2 Inclination Flip.

We start by copying the demo to the current work directory and running the first step

@dm san

make first

This computation starts from the analytic solution above with a = 0, b = 1, c = −2, α = 0, β = 1
and γ = µ = µ̃ = 0. The homoclinic solution is followed in the parameters (a, µ̃) =(PAR(1),

PAR(8)) up to a = 0.25. The output is summarised on the screen as

BR PT TY LAB PAR(1) L2-NORM PAR(8)

1 1 EP 1 0.000000E+00 4.000000E-01 ... 0.000000E+00

1 5 UZ 2 2.500000E-01 4.030545E-01 ... -3.620329E-11

1 10 EP 3 7.384434E-01 4.339575E-01 ... -9.038826E-09
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and saved in more detail as b.1, s.1 and d.1.
Next we want to add a solution to the adjoint equation to the solution obtained at a = 0.25.

This is achieved by making the change ITWIST = 1 saved in h.san.2, and IRS = 2, NMX =

2 and ICP(1) = 9 saved in c.san.2. We also disable any user-defined functions NUZR=0. The
computation so-defined is a single step in a trivial parameter PAR(9) (namely a parameter that
does not appear in the problem). The effect is to perform a Newton step to enable AUTO to
converge to a solution of the adjoint equation.

make second

The output is stored in b.2, s.2 and d.2.
We can now continue the homoclinic plus adjoint in (α, µ̃) =(PAR(4), PAR(8)) by changing

the constants (stored in c.san.3) to read IRS = 4, NMX = 50 and ICP(1) = 4. We also add
PAR(10) to the list of continuation parameters NICP,(ICP(I),I=1 NICP). Here PAR(10) is a
dummy parameter used in order to make the continuation of the adjoint well posed. Theoretically,
it should be zero if the computation of the adjoint is successful (Sandstede 1995a). The test
functions for detecting resonant bifurcations ( ISPI(1)=1) and inclination flips ( ISPI(1)=13)
are also activated. Recall that this should be specified in three ways. First we add PAR(21) and
PAR(33) to the list of continuation parameters in c.san.3, second we set up user defined output at
zeros of these parameters in the same file, and finally we set NPSI=2 (IPSI(1),IPSI(2))=1,13

in h.san.3. We also add to c.san.3 another user zero for detecting when PAR(4)=1.0. Running

make third

reads starting data from s.2 and outputs to the screen

BR PT TY LAB PAR(4) ... PAR(8) PAR(10) ... PAR(33)

1 20 5 7.847219E-01 ... -3.001440E-11 -4.268884E-09 ... -1.441124E+01

1 27 UZ 6 1.000000E+00 ... -3.844872E-11 -4.460769E-09 ... -5.701675E+00

1 35 UZ 7 1.230857E+00 ... -5.833977E-11 -4.530541E-09 ... 9.434843E-06

1 40 8 1.383969E+00 ... -8.133899E-11 -4.671817E-09 ... 1.348810E+00

1 50 EP 9 1.695209E+00 ... -1.386324E-10 -5.098460E-09 ... 5.311065E-01

Full output is stored in b.3, s.3 and d.3. Note that the artificial parameter ε = PAR(10) is zero
within the allowed tolerance. At label 7, a zero of test function ψ13 has been detected which
corresponds to an inclination flip with respect to the stable manifold. That the orientation of the
homoclinic loop changes as the branch passes through this point can be read from the information
in d.3. However in d.3, the line

ORIENTABLE ( 0.2982090775D-03)

at PT=35 would seems to contradict the detection of the inclination flip at this point. Nonetheless,
the important fact is the zero of the test function; and note that the value of the variable indicating
the orientation is small compared to its value at the other regular points. Data for the adjoint
equation at LAB= 5, 7 and 9 at and on either side of the inclination flip are presented in Fig.
16.1. The switching of the solution between components of the leading unstable left eigenvector is
apparent. Finally, we remark that the Newton step in the dummy parameter PAR(20) performed
above is crucial to obtain convergence. Indeed, if instead we try to continue the homoclinic orbit
and the solution of the adjoint equation directly by setting
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ITWIST = 1 IRS = 2 NMX = 50 ICP(1) = 4 NPUSZR = 0

(as saved in c.san.4) and running

make fourth

we obtain a no convergence error.

16.3 Non-orientable Resonant Eigenvalues.

Inspecting the output saved in the third run, we observe the existence of a non-orientable homo-
clinic orbit at label 7 corresponding to N=40. We restart at this label, with the first continuation
parameter being once again a = PAR(1), by changing constants and storing them in c.san.5 ac-
cording to

IRS = 7 DS = -0.05D0 NMX = 20 ICP(1) = 1

Running,

make fifth

the output at label 10

BR PT TY LAB PAR(1) PAR(8) PAR(10) PAR(21)

1 8 UZ 10 -1.304570E-07 ... 3.874816E-12 -1.468457E-09 -2.609139E-07

indicates that AUTO has detected a zero of PAR(21), implying that a non-orientable resonant
bifurcation occurred at that point.

16.4 Orbit Flip.

In this section we compute an orbit flip. To this end we restart from the original explicit so-
lution, without computing the orientation. We begin by separately performing continuation in
(α, µ̃), (β, µ̃), (a, µ̃), (b, µ̃) and (µ, µ̃) in order to reach the parameter values (a, b, α, β, µ) =
(0.5, 3, 1, 0, 0.25). The sequence of continuations up to the desired parameter values are run via

make sixth
make seventh
make eighth
make ninth
make tenth

with appropriate continuation parameters and user output values set in the corresponding files
c.san.xx. All the output is saved to s.6.

The final saved point LAB=10 contains a homoclinic solution at the desired parameter values.
From here we perform continuation in the negative direction of (µ, µ̃) = ( PAR(7),PAR(8)) with
the test function ψ11 for orbit flips with respect to the stable manifold activated.
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make eleventh

The output detects an inclination flip (by a zero of PAR(31)) at PAR(7)=0

BR PT TY LAB PAR(7) ... PAR(8) PAR(31)

1 5 UZ 12 2.394737E-07 ... 6.434492E-08 -4.133994E-06

at which parameter value the homoclinic orbit is contained in the (x, y)-plane (see Fig. 16.2).
Finally, we demonstrate that the orbit flip can be continued as three parameters ( PAR(6),

PAR(7), PAR(8)) are varied.

make twelfth

BR PT TY LAB PAR(7) ... PAR(8) PAR(6)

1 5 14 -5.374538E-19 ... -1.831991E-10 -3.250000E-01

1 10 15 -6.145911E-19 ... -2.628607E-10 -8.250001E-01

1 15 16 -4.947133E-19 ... -2.361151E-10 -1.325000E+00

1 20 EP 17 -5.792940E-19 ... -3.075527E-10 -1.825000E+00

The orbit flip continues to be defined by a planar homoclinic orbit at PAR(7)=PAR(8)=0.
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16.5 Detailed AUTO -Commands.

AUTO -COMMAND ACTION
! mkdir san create an empty work directory
cd san change directory
demo(’san’) copy the demo files to the work directory
run(c=’san.1’,h=’san.1’) continuation in PAR(1)

sv(’1’) save output-files as b.1, s.1, d.1
run(c=’san.2’,h=’san.2’,s=’1’) generate adjoint variables; restart from s.1
sv(’2’) save output-files as b.2, s.2, d.2
run(c=’san.3’,h=’san.3’,s=’2’) continue homoclinic orbit and adjoint; restart from s.2
sv(’3’) save output-files as b.3, s.3, d.3
run(c=’san.4’,h=’san.4’,s=’1’) no convergence without dummy step; restart from s.1
sv(’4’) save output-files as b.4, s.4, d.4
run(c=’san.5’,h=’san.5’,s=’3’) continue non-orientable orbit; restart from s.3
sv(’5’) save output-files as b.5, s.5, d.5

Table 16.1: Detailed AUTO -Commands for running demo san.
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AUTO -COMMAND ACTION
run(c=’san.6’,h=’san.6’,s=’san’) restart and homotopy to PAR(4)=1.0
sv(’6’) save output-files as b.6, s.6, d.6
run(c=’san.7’,h=’san.7’,s=’6’) homotopy to PAR(5)=0.0; restart from s.6
ap(’6’) append output-files to b.6, s.6, d.6
run(c=’san.8’,h=’san.8’,s=’6’) homotopy to PAR(1)=0.5; restart from s.6
ap(’6’) append output-files to b.6, s.6, d.6
run(c=’san.9’,h=’san.9’,s=’6’) homotopy to PAR(2)=3.0; restart from s.6
ap(’6’) append output-files to b.6, s.6, d.6
run(c=’san.10’,h=’san.10’,s=’6’) homotopy to PAR(7)=0.25; restart from s.6
ap(’6’) append output-files to b.6, s.6, d.6
run(c=’san.11’,h=’san.11’,s=’6’) continue in PAR(7) to detect orbit flip; restart from s.6
sv(’11’) save output-files as b.11, s.11, d.11
run(c=’san.12’,h=’san.12’,s=’11’) three-parameter continuation of orbit flip; restart from s.11
sv(’12’) save output-files as b.12, s.12, d.12

Table 16.2: Detailed AUTO -Commands for running demo san.
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Figure 16.1: Second versus third component of the solution to the adjoint equation at labels 5, 7
and 9
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Figure 16.2: Orbits on either side of the orbit flip bifurcation. The critical orbit is contained in
the (x, y)-plane
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Chapter 17

HomCont Demo : mtn.

17.1 A Predator-Prey Model with Immigration.

Consider the following system of two equations (Scheffer 1995)

Ẋ = RX

(

1 − X

K

)

− A1XY

B1 +X
+D0K

Ẏ = E1
A1XY

B1 +X
−D1Y − A2ZY

2

B2
2 + Y 2

.
(17.1)

The values of all parameters except (K,Z) are set as follows :

R = 0.5, A1 = 0.4, B1 = 0.6, D0 = 0.01, E1 = 0.6, A2 = 1.0, B2 = 0.5, D1 = 0.15.

The parametric portrait of the system (17.1) on the (Z,K)-plane is presented in Figure 17.1. It
contains fold (t1,2) and Hopf (H) bifurcation curves, as well as a homoclinic bifurcation curve
P . The fold curves meet at a cusp singular point C, while the Hopf and the homoclinic curves
originate at a Bogdanov-Takens point BT . Only the homoclinic curve P will be considered
here, the other bifurcation curves can be computed using AUTO or, for example, locbif (Khibnik,
Kuznetsov, Levitin & Nikolaev 1993).

17.2 Continuation of Central Saddle-Node Homoclinics.

Local bifurcation analysis shows that at K = 6.0, Z = 0.06729762 . . ., the system has a saddle-
node equilibrium

(X0, Y 0) = (5.738626 . . . , 0.5108401 . . .),

with one zero and one negative eigenvalue. Direct simulations reveal a homoclinic orbit to this
saddle-node, departing and returning along its central direction (i.e., tangent to the null-vector).

Starting from this solution, stored in the file mtn.dat, we continue the saddle-node central
homoclinic orbit with respect to the parameters K and Z by copying the demo and running it

@dm mtn
make first
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The file mtn.c contains approximate parameter values

K = PAR(1) = 6.0, Z = PAR(2) = 0.06729762,

as well as the coordinates of the saddle-node

X0 = PAR(12) = 5.738626, Y 0 = PAR(13) = 0.5108401,

and the length of the truncated time-interval

T0 = PAR(11) = 1046.178 .

Since a homoclinic orbit to a saddle-node is being followed, we have also made the choices

IEQUIB = 2 NUNSTAB = 0 NSTAB = 1

in h.mtn.1. The two test-functions, ψ15 and ψ16, to detect non-central saddle-node homoclinic
orbits are also activated, which must be specified in three ways. Firstly, in h.mtn.1, NPSI is
set to 2 and the active test functions IPSI(I),I=1,2 are chosen as 15 and 16. This sets up the
monitoring of these test functions. Secondly, in c.mtn.1 user-defined functions (NUZR=2) are set
up to look for zeros of the parameters corresponding to these test functions. Recall that the
parameters to be zeroed are always the test functions plus 20. Finally, these parameters are
included in the list of continuation parameters (NICP,(ICP(I),I=1 NICP)).

Among the output there is a line

BR PT TY LAB PAR(1) ... PAR(2) PAR(35) PAR(36)

1 27 UZ 5 6.10437E+00 ... 6.932475E-02 -6.782898E-07 8.203437E-02

indicating that a zero of the test function IPSI(1)=15 This means that at

D1 = (K1, Z1) = (6.6104 . . . , 0.069325 . . .)

the homoclinic orbit to the saddle-node becomes non-central, namely, it returns to the equilibrium
along the stable eigenvector, forming a non-smooth loop. The output is saved in b.1, s.1 and
d.1. Repeating computations in the opposite direction along the curve, IRS=1, DS=-0.01 in
c.mtn.2,

make second

one obtains

BR PT TY LAB PAR(1) ... PAR(2) PAR(35) PAR(36)

1 34 UZ 9 5.180323E+00 ... 6.385506E-02 3.349720E-09 9.361957E-02

which means another non-central saddle-node homoclinic bifurcation occurs at

D2 = (K2, Z2) = (5.1803 . . . , 0.063855 . . .).

Note that these data were obtained using a smaller value of NTST than the original computation
(compare c.mtn.1 with c.mtn.2). The high original value of NTST was only necessary for the
first few steps because the original solution is specified on a uniform mesh.
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17.3 Switching between Saddle-Node and Saddle Homo-

clinic Orbits.

Now we can switch to continuation of saddle homoclinic orbits at the located codim 2 points D1

and D2.

make third

starts from D1. Note that now

NUNSTAB = 1 IEQUIB = 1

has been specified in h.mtn.3. Also, test functions ψ9 and ψ10 have been activated in order to
monitor for non-hyperbolic equilibria along the homoclinic locus. We get the following output

BR PT TY LAB PAR(1) ... PAR(2) PAR(29) PAR(30)

1 10 11 7.114523E+00 ... 7.081751E-02 -4.649861E-01 3.183429E-03

1 20 12 9.176810E+00 ... 7.678731E-02 -4.684912E-01 1.609294E-02

1 30 13 1.210834E+01 ... 8.543468E-02 -4.718871E-01 3.069638E-02

1 40 EP 14 1.503788E+01 ... 9.428036E-02 -4.743794E-01 4.144558E-02

The fact that PAR(29) and PAR(30) do not change sign indicates that there are no further
non-hyperbolic equilibria along this branch. Note that restarting in the opposite direction with
IRS=11, DS=-0.02

make fourth

will detect the same codim 2 point D1 but now as a zero of the test-function ψ10

BR PT TY LAB PAR(1) ... PAR(2) PAR(29) PAR(30)

1 10 UZ 15 6.610459E+00 ... 6.932482E-02 -4.636603E-01 1.725013E-09

Note that the values of PAR(1) and PAR(2) differ from that at label 4 only in the sixth significant
figure.

Actually, the program runs further and eventually computes the point D2 and the whole lower
branch of P emanating from it, however, the solutions between D1 and D2 should be considered
as spurious1, therefore we do not save these data. The reliable way to compute the lower branch
of P is to restart computation of saddle homoclinic orbits in the other direction from the point
D2

make fifth

This gives the lower branch of P approaching the BT point (see Figure 17.1)

1 The program actually computes the saddle-saddle heteroclinic orbit bifurcating from the non-central saddle-
node homoclinic at the point D1, see Champneys et al. (1996, Fig. 2), and continues it to the one emanating from
D2.
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BR PT TY LAB PAR(1) ... PAR(2) PAR(29) PAR(30)

1 10 15 4.966429E+00 ... 6.298418E-02 -4.382426E-01 4.946824E-03

1 20 16 4.925379E+00 ... 7.961214E-02 -3.399102E-01 3.288447E-02

1 30 17 7.092267E+00 ... 1.587114E-01 -1.692842E-01 3.876291E-02

1 40 EP 18 1.101819E+01 ... 2.809825E-01 -3.482651E-02 2.104384E-02

The data are appended to the stored results in b.1, s.1 and d.1. One could now display all data
using the AUTO command @p 1 to reproduce the curve P shown in Figure 17.1.

It is worthwhile to compare the homoclinic curves computed above with a curve T0 = const
along which the system has a limit cycle of constant large period T0 = 1046.178, which can
easily be computed using AUTO or locbif. Such a curve is plotted in Figure 17.2. It obviously
approximates well the saddle homoclinic loci of P , but demonstrates much bigger deviation from
the saddle-node homoclinic segment D1D2. This happens because the period of the limit cycle
grows to infinity while approaching both types of homoclinic orbit, but with different asymptotics:
as − ln ‖α− α∗‖, in the saddle homoclinic case, and as ‖α− α∗‖−1 in the saddle-node case.

17.4 Three-Parameter Continuation.

Finally, we can follow the curve of non-central saddle-node homoclinic orbits in three parame-
ters. The extra continuation parameter is D0=PAR(3). To achieve this we restart at label 4,
corresponding to the codim 2 point D1. We return to continuation of saddle-node homoclinics,
NUNSTAB=0,IEQUIB=2, but append the defining equation ψ15 = 0 to the continuation problem (via
NFIXED=1, IFIXED(1)=15). The new continuation problem is specified in c.mtn.6 and h.mtn.6.

make sixth

Notice that we set ILP=1 and choose PAR(3) as the first continuation parameter so that AUTO can
detect limit points with respect to this parameter. We also make a user-defined function (NUZR=1)
to detect intersections with the plane D0 = 0.01. We get among other output

BR PT TY LAB PAR(3) L2-NORM ... PAR(1) PAR(2)

1 22 LP 19 1.081212E-02 5.325894E+00 ... 5.673631E+00 6.608184E-02

1 31 UZ 20 1.000000E-02 4.819681E+00 ... 5.180317E+00 6.385503E-02

the first line of which represents the D0 value at which the homoclinic curve P has a tangency
with the branch t2 of fold bifurcations. Beyond this value of D0, P consists entirely of saddle
homoclinic orbits. The data at label 20 reproduce the coordinates of the point D2. The results of
this computation and a similar one starting from D1 in the opposite direction (with DS=-0.01)
are displayed in Figure 17.3.
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17.5 Detailed AUTO -Commands.

AUTO -COMMAND ACTION
! mkdir mtn create an empty work directory
cd mtn change directory
demo(’mtn’) copy the demo files to the work directory
us(’mtn’) use the starting data in mtn.dat to create s.dat

run(c=’mtn.1’,h=’mtn.1’,s=’dat’) continue saddle-node homoclinic orbit
sv(’1’) save output-files as b.1, s.1, d.1

run(c=’mtn.2’,h=’mtn.2’,s=’1’) continue in opposite direction; restart from s.1

ap(’1’) append output-files to b.1, s.1, d.1

run(c=’mtn.3’,h=’mtn.3’,s=’1’) switch to saddle homoclinic orbit ; restart from s.1

ap(’1’) append output-files to b.1, s.1, d.1

run(c=’mtn.4’,h=’mtn.4’,s=’1’) continue in reverse direction; restart from s.1

sv(’4’) save output-files as b.4, s.4, d.4

run(c=’mtn.5’,h=’mtn.5’,s=’1’) other saddle homoclinic orbit branch; restart from s.1

ap(’1’) append output-files to b., s.1, d.1

run(c=’mtn.6’,h=’mtn.6’,s=’1’) 3-parameter non-central saddle-node homoclinic.
sv(’6’) save output-files as b.6, s.6, d.6

Table 17.1: Detailed AUTO -Commands for running demo mtn.
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Figure 17.1: Parametric portrait of the predator-prey system

Figure 17.2: Approximation by a large-period cycle
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Figure 17.3: Projection onto the (K,D0)-plane of the three-parameter curve of non-central saddle-
node homoclinic orbit
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Chapter 18

HomCont Demo : kpr.

18.1 Koper’s Extended Van der Pol Model.

The equation-file kpr.c contains the equations

ẋ = ε−1
1 (k y − x3 + 3 x− λ)

ẏ = x− 2 y + z
ż = ε2(y − z),

(18.1)

with ε1 = 0.1 and ε2 = 1 (Koper 1995).
To copy across the demo kpr and compile we type

@dm kpr

18.2 The Primary Branch of Homoclinics.

First, we locate a homoclinic orbit using the homotopy method. The file kpr.c already con-
tains approximate parameter values for a homoclinic orbit, namely λ = PAR(1)=-1.851185, k =
PAR(2)=-0.15. The files c.kpr.1 and h.kpr.1 specify the appropriate constants for continuation
in 2T =PAR(11) (also referred to as PERIOD) and the dummy parameter ω1= PAR(17) starting
from a small solution in the local unstable manifold;

make first

Among the output there is the line

BR PT TY LAB PERIOD L2-NORM ... PAR(17) ...

1 29 UZ 2 1.900184E+01 1.693817E+00 ... 4.433433E-09 ...

which indicates that a zero of the artificial parameter ω1 has been located. This means that the
right-hand end point of the solution belongs to the plane that is tangent to the stable manifold
at the saddle. The output is stored in files b.1, s.1, d.1. Upon plotting the data at label 2

(see Figure 18.1) it can be noted that although the right-hand projection boundary condition is
satisfied, the solution is still quite away from the equilibrium.
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Figure 18.1: Projection on the (x, y)-plane of solutions of the boundary value problem with
2T = 19.08778.
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Figure 18.2: Projection on the (x, y)-plane of solutions of the boundary value problem with
2T = 60.0.
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The right-hand endpoint can be made to approach the equilibrium by performing a further
continuation in T with the right-hand projection condition satisfied ( PAR(17) fixed) but with λ
allowed to vary.

make second

the output at label 4, stored in kpr.2,

BR PT TY LAB PERIOD L2-NORM ... PAR(1) ...

1 35 UZ 4 6.000000E+01 1.672806E+00 ... -1.851185E+00 ...

provides a good approximation to a homoclinic solution (see Figure 18.2).
The second stage to obtain a starting solution is to add a solution to the modified adjoint

variational equation. This is achieved by setting both ITWIST and ISTART to 1 (in h.kpr.3),
which generates a trivial guess for the adjoint equations. Because the adjoint equations are linear,
only a single Newton step (by continuation in a trivial parameter) is required to provide a solution.
Rather than choose a parameter that might be used internally by AUTO , in c.kpr.3 we take the
continuation parameter to be PAR(11), which is not quite a trivial parameter but whose affect
upon the solution is mild.

make third

The output at the second point (label 6) contains the converged homoclinic solution (variables
( U(1), U(2), U(3)) and the adjoint ( U(4), U(5), U(6))). We now have a starting solution
and are ready to perform two-parameter continuation.

The fourth run

make fourth

continues the homoclinic orbit in PAR(1) and PAR(2). Note that several other parameters
appear in the output. PAR(10) is a dummy parameter that should be zero when the adjoint
is being computed correctly; PAR(29), PAR(30), PAR(33) correspond to the test functions
ψ9,ψ10 and ψ13. That these test functions were activated is specified in three places in c.kpr.4
and h.kpr.4 as described in Section 15.6.

Note that at the end-point of the branch (reached when after NMX=50 steps) PAR(29) is
approximately zero which corresponds to a zero of ψ9, a non-central saddle-node homoclinic
orbit. We shall return to the computation of this codimension-two point later. Before reaching
this point, among the output we find two zeroes of PAR(33) (test function ψ13) which gives the
accurate location of two inclination-flip bifurcations,

BR PT TY LAB PAR(1) ... PAR(2) PAR(10) ... PAR(33)

1 6 UZ 10 -1.801662E+00 ... -2.002660E-01 -7.255434E-07 ... -1.425714E-04

1 12 UZ 11 -1.568756E+00 ... -4.395468E-01 -2.156353E-07 ... 4.514073E-07

That the test function really does have a regular zero at this point can be checked from the
data saved in b.3, plotting PAR(33) as a function of PAR(1) or PAR(2). Figure 18.3 presents
solutions φ(t) of the modified adjoint variational equation (for details see Champneys et al. (1996))
at parameter values on the homoclinic branch before and after the first detected inclination
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Figure 18.5: Computed homoclinic orbits approaching the BT point

flip. Note that these solutions were obtained by choosing a smaller step DS and more output
(smaller NPR) in c.kpr.4. A blow-up of the region close to the origin of this figure is shown in
Figure 18.4. It illustrates the flip of the solutions of the adjoint equation while moving through
the bifurcation point. Note that the data in this figure were plotted after first performing an
additional continuation of the solutions with respect to PAR(11).

Continuing in the other direction

make fifth

we approach a Bogdanov-Takens point

BR PT TY LAB PAR(1) ... PAR(10) ... PAR(33)

1 50 EP 13 -1.938276E+00 ... -7.523344E+00 ... 6.310810E+01

Note that the numerical approximation has ceased to become reliable, since PAR(10) has now
become large. Phase portraits of homoclinic orbits between the BT point and the first inclination
flip are depicted in Figure 18.5. Note how the computed homoclinic orbits approaching the BT
point have their endpoints well away from the equilibrium. To follow the homoclinic orbit to the
BT point with more precision, we would need to first perform continuation in T ( PAR(11)) to
obtain a more accurate homoclinic solution.

18.3 More Accuracy and Saddle-Node Homoclinic Orbits.

Continuation in T in order to obtain an approximation of the homoclinic orbit over a longer
interval is necessary for parameter values near a non-hyperbolic equilibrium (either a saddle-node
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or BT) where the convergence to the equilibrium is slower. First, we start from the original
homoclinic orbit computed via the homotopy method, label 4, which is well away from the non-
hyperbolic equilibrium. Also, we shall no longer be interested in in inclination flips so we set
ITWIST=0 in c.kpr.6, and in order to compute up to PAR(11)=1000, we set up a user-defined
function for this. Running AUTO with PAR(11) and PAR(2) as free parameters

make sixth

we obtain among the output

BR PT TY LAB PERIOD L2-NORM ... PAR(2)

1 35 UZ 6 1.000000E+03 1.661910E+00 ... -1.500000E-01

We can now repeat the computation of the branch of saddle homoclinic orbits in PAR(1) and
PAR(2) from this point with the test functions ψ9 and ψ10 for non-central saddle-node homoclinic
orbits activated

make seventh

The saddle-node point is now detected at

BR PT TY LAB PAR(1) ... PAR(2) PAR(29) PAR(30)

1 30 UZ 8 1.765003E-01 ... -2.405345E+00 2.743361E-06 2.309317E+01

which is stored in s.7. That PAR(29) (ψ9) is zeroed shows that this is a non-central saddle-node
connecting the centre manifold to the strong stable manifold. Note that all output beyond this
point, although a well-posed solution to the boundary-value problem, is spurious in that it no
longer represents a homoclinic orbit to a saddle equilibrium (see Champneys et al. (1996)). If we
had chosen to, we could continue in the other direction in order to approach the BT point more
accurately by reversing the sign of DS in c.kpr.7.

The files c.kpr.9 and h.kpr.9 contain the constants necessary for switching to continuation of
the central saddle-node homoclinic curve in two parameters starting from the non-central saddle-
node homoclinic orbit stored as label 8 in s.7.

make eighth

In this run we have activated the test functions for saddle to saddle-node transition points along
curves of saddle homoclinic orbits (ψ15 and ψ16). Among the output we find

BR PT TY LAB PAR(1) ... PAR(2) PAR(35) PAR(36)

1 38 UZ 13 1.765274E-01 ... -2.405284E+00 9.705426E-03 -5.464784E-07

which corresponds to the branch of homoclinic orbits leaving the locus of saddle-nodes in a second
non-central saddle-node homoclinic bifurcation (a zero of ψ16).

Note that the parameter values do not vary much between the two codimension-two non-
central saddle-node points (labels 8 and 13). However, Figure 18.6 shows clearly that between
the two codimension-two points the homoclinic orbit rotates between the two components of the
1D stable manifold, i.e. between the two boundaries of the center-stable manifold of the saddle
node. The overall effect of this process is the transformation of a nearby “small” saddle homoclinic
orbit to a “big” saddle homoclinic orbit (i.e. with two extra turning points in phase space).

Finally, we can switch to continuation of the big saddle homoclinic orbit from the new codim
2 point at label 13.
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Figure 18.6: Two non-central saddle-node homoclinic orbits, 1 and 3; and, 2, a central saddle-
node homoclinic orbit between these two points
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Figure 18.7: The big homoclinic orbit approaching a figure-of-eight
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make ninth

Note that AUTO takes a large number of steps near the line PAR(1)=0, while PAR(2) approaches
−2.189 . . . (which is why we chose such a large value NMX=500 in c.kpr.9). This particular
computation ends at

BR PT TY LAB PAR(1) L2-NORM ... PAR(2)

1 500 EP 24 -1.218988E-05 2.181205E-01 ... -2.189666E+00

By plotting phase portraits of orbits approaching this end point (see Figure 18.7) we see a “canard-
like” like transformation of the big homoclinic orbit to a pair of homoclinic orbits in a figure-of-
eight configuration. That we get a figure-of-eight is not a surprise because PAR(1)=0 corresponds
to a symmetry in the differential equations (Koper 1994); note also that the equilibrium, stored as
( PAR(12), PAR(13), PAR(14)) in d.9, approaches the origin as we approach the figure-of-eight
homoclinic.

18.4 Three-Parameter Continuation.

We now consider curves in three parameters of each of the codimension-two points encountered
in this model, by freeing the parameter ε = PAR(3). First we continue the first inclination flip
stored at label 7 in s.3

make tenth

Note that ITWIST=1 in h.kpr.10, so that the adjoint is also continued, and there is one fixed
condition IFIXED(1)=13 so that test function ψ13 has been frozen. Among the output there is
a codimension-three point (zero of ψ9) where the neutrally twisted homoclinic orbit collides with
the saddle-node curve

BR PT TY LAB PAR(1) ... PAR(2) PAR(3) PAR(29) ...

1 28 UZ 14 1.282702E-01 ... -2.519325E+00 5.744770E-01 -4.347113E-09 ...

The other detected inclination flip (at label 8 in s.3) is continued similarly

make eleventh

giving among its output another codim 3 saddle-node inclination-flip point

BR PT TY LAB PAR(1) ... PAR(2) PAR(3) PAR(29) ...

1 27 UZ 14 1.535420E-01 ... -2.458100E+00 1.171705E+00 -1.933188E-07 ...

Output beyond both of these codim 3 points is spurious and both computations end in an MX

point (no convergence).
To continue the non-central saddle-node homoclinic orbits it is necessary to work on the data

without the solution φ(t). We restart from the data saved at LAB=8 and LAB=13 in s.7 and
s.8 respectively. We could continue these codim 2 points in two ways, either by appending the
defining condition ψ16 = 0 to the continuation of saddle-node homoclinic orbits (with IEQUIB=2,
etc.), or by appending ψ9 = 0 to the continuation of a saddle homoclinic orbit (with IEQUIB=1.
The first approach is used in the example mtn, for contrast we shall adopt the second approach
here.
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make twelfth

make thirteenth

The projection onto the (ε, k)-plane of all four of these codimension-two curves is given in Figure
18.8. The intersection of the inclination-flip lines with one of the non-central saddle-node homo-
clinic lines is apparent. Note that the two non-central saddle-node homoclinic orbit curves are
almost overlaid, but that as in Figure 18.6 the orbits look quite distinct in phase space.

18.5 Detailed AUTO -Commands.

AUTO -COMMAND ACTION
! mkdir kpr create an empty work directory
cd kpr change directory
demo(’kpr’) copy the demo files to the work directory
run(c=’kpr.1’,h=’kpr.1’) continuation in the time-length parameter PAR(11)

sv(’1’) save output-files as b.1, s.1, d.1
run(c=’kpr.2’,h=’kpr.2’,s=’1’) locate the homoclinic orbit; restart from s.1
sv(’2’) save output-files as b.2, s.2, d.2
run(c=’kpr.3’,h=’kpr.3’,s=’2’) generate adjoint variables ; restart from s.2
sv(’3’) save output-files as b.3, s.3, d.3
run(c=’kpr.4’,h=’kpr.4’,s=’3’) continue the homoclinic orbit; restart from s.3
ap(’3’) append output-files to b.3, s.3, d.3
run(c=’kpr.5’,h=’kpr.5’,s=’3’) continue in reverse direction; restart from s.3
ap(’3’) append output-files to b.3, s.3, d.3
run(c=’kpr.6’,h=’kpr.6’,s=’2’) increase the period; restart from s.2
sv(’6’) save output-files as b.6, s.6, d.6

Table 18.1: Detailed AUTO -Commands for running demo kpr.
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AUTO -COMMAND ACTION
run(c=’kpr.7’,h=’kpr.7’,s=’6’) recompute the branch of homoclinic orbits; restart from s.6
sv(’7’) save output-files as b.7, s.7, d.7
run(c=’kpr.8’,h=’kpr.8’,s=’7’) continue central saddle-node homoclinics; restart from s.7
sv(’8’) save output-files as b.8, s.8, d.8
run(c=’kpr.9’,h=’kpr.9’,s=’8’) continue homoclinics from codim-2 point; restart from s.8
sv(’9’) save output-files as b.9, s.9, d.9
run(c=’kpr.10’,h=’kpr.10’,s=’3’) 3-parameter curve of inclination-flips; restart from s.3
sv(’10’) save output-files as b.10, s.10, d.10
run(c=’kpr.11’,h=’kpr.11’,s=’3’) another curve of inclination-flips; restart from s.3
sv(’11’) save output-files as b.11, s.11, d.11
run(c=’kpr.12’,h=’kpr.12’,s=’7’) continue non-central saddle-node homoclinics; restart from s.7
sv(’12’) save output-files as b.12, s.12, d.12
run(c=’kpr.13’,h=’kpr.13’,s=’8’) continue non-central saddle-node homoclinics; restart from s.8
ap(’12’) append output-files to b.12, s.12, d.12

Table 18.2: Detailed AUTO -Commands for running demo kpr.
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Chapter 19

HomCont Demo : cir.

19.1 Electronic Circuit of Freire et al.

Consider the following model of a three-variable electronic circuit (Freire, Rodŕıguez-Luis, Gamero
& Ponce 1993)







ẋ = [−(β + ν)x+ βy − a3x
3 + b3(y − x)3] /r,

ẏ = βx− (β + γ)y − z − b3(y − x)3,
ż = y.

(19.1)

These autonomous equations are also considered in the AUTO demo tor.
First, we copy the demo into a new directory and compile

@dm cir

The system is contained in the equation-file cir.c and the initial run-time constants are stored in
c.cir.1 and h.cir.1. We begin by starting from the data from cir.dat for a saddle-focus homoclinic
orbit at ν = −0.721309, β = 0.6, γ = 0, r = 0.6, A3 = 0.328578 and B3 = 0.933578, which was
obtained by shooting over the time interval 2T = PAR(11)= 36.13. We wish to follow the branch
in the (β, ν)-plane, but first we perform continuation in (T, ν) to obtain a better approximation
to a homoclinic orbit.

make first

yields the output

BR PT TY LAB PERIOD L2-NORM ... PAR(1)

1 21 UZ 2 1.000000E+02 1.286637E-01 ... -7.213093E-01

1 42 UZ 3 2.000000E+02 9.097899E-02 ... -7.213093E-01

1 50 EP 4 2.400000E+02 8.305208E-02 ... -7.213093E-01

Note that ν = PAR(1) remains constant during the continuation as the parameter values do not
change, only the the length of the interval over which the approximate homoclinic solution is
computed. Note from the eigenvalues, stored in d.1 that this is a homoclinic orbit to a saddle-
focus with a one-dimensional unstable manifold.

We now restart at LAB=3, corresponding to a time interval 2T = 200, and change the principal
continuation parameters to be (ν, β). The new constants defining the continuation are given in
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c.cir.2 and h.cir.2. We also activate the test functions pertinent to codimension-two singularities
which may be encountered along a branch of saddle-focus homoclinic orbits, viz. ψ2, ψ4, ψ5, ψ9

and ψ10. This must be specified in three ways: by choosing NPSI=5 and appropriate IPSI(I)

in h.cir.2, by adding the corresponding parameter labels to the list of continuation parameters
ICP(I) in c.cir.2 (recall that these parameter indices are 20 more than the corresponding ψ
indices), and finally adding USZR functions defining zeros of these parameters in c.cir.2. Running

make second

results in

BR PT TY LAB PAR(1) ... PAR(2) ... PAR(25) PAR(29)

1 17 UZ 5 -7.256925E-01 ... 4.535645E-01 ... -1.765251E-05 -2.888436E-01

1 75 UZ 6 -1.014704E+00 ... 9.998966E-03 ... 1.664509E+00 -5.035997E-03

1 78 UZ 7 -1.026445E+00 ... -2.330391E-05 ... 1.710804E+00 1.165176E-05

1 81 UZ 8 -1.038012E+00 ... -1.000144E-02 ... 1.756690E+00 4.964621E-03

1 100 EP 9 -1.164160E+00 ... -1.087732E-01 ... 2.230329E+00 5.042736E-02

with results saved in b.2, s.2, d.2. Upon inspection of the output, note that label 5, where
PAR(25)≈ 0, corresponds to a neutrally-divergent saddle-focus, ψ5 = 0. Label 7, where PAR(29)≈
0 corresponds to a local bifurcation, ψ9 = 0, which we note from the eigenvalues stored in d.2
corresponds to a Shil’nikov-Hopf bifurcation. Note that PAR(2) is also approximately zero at
label 7, which accords with the analytical observation that the origin of (19.1) undergoes a Hopf
bifurcation when β = 0. Labels 6 and 8 are the user-defined output points, the solutions at which
are plotted in Fig. 19.1. Note that solutions beyond label 7 (e.g., the plotted solution at label 8)
do not correspond to homoclinic orbits, but to point-to-cycle heteroclinic orbits (c.f. Section 2.2.1
of Champneys et al. (1996)).

We now continue in the other direction along the branch. It turns out that starting from the
initial point in the other direction results in missing a codim 2 point which is close to the starting
point. Instead we start from the first saved point from the previous computation (label 5 in s.2):

make third

The output

BR PT TY LAB PAR(1) ... PAR(2) PAR(22) PAR(24)

1 9 UZ 10 -7.204001E-01 ... 5.912315E-01 -1.725669E+00 -3.295862E-05

1 18 UZ 11 -7.590583E-01 ... 7.428734E-01 3.432139E-05 -2.822988E-01

1 26 UZ 12 -7.746686E-01 ... 7.746147E-01 5.833163E-01 1.637611E-07

1 28 EP 13 -7.746628E-01 ... 7.746453E-01 5.908902E-01 1.426214E-04

contains a neutral saddle-focus (a Belyakov transition) at LAB=10 (ψ4 = 0), a double real
leading eigenvalue (saddle-focus to saddle transition) at LAB =11 (ψ2 = 0) and a neutral saddle
at LAB=12 (ψ4 = 0). Data at several points on the complete branch are plotted in Fig. 19.2. If
we had continued further (by increasing NMX), the computation would end at a no convergence
error TY=MX owing to the homoclinic branch approaching a Bogdanov-Takens singularity at small
amplitude. To compute further towards the BT point we would first need to continue to a higher
value of PAR(11).
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Figure 19.1: Solutions of the boundary value problem at labels 6 and 8, either side of the
Shil’nikov-Hopf bifurcation
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Figure 19.2: Phase portraits of three homoclinic orbits on the branch, showing the saddle-focus
to saddle transition
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19.2 Detailed AUTO -Commands.

AUTO -COMMAND ACTION
! mkdir cir create an empty work directory
cd cir change directory
demo(’cir’) copy the demo files to the work directory
us(’cir’) use the starting data in cir.dat to create s.dat
run(c=’cir.1’,h=’cir.1’,s=’dat’) increase the truncation interval; restart from s.dat
sv(’1’) save output-files as b.1, s.1, d.1
run(c=’cir.2’,h=’cir.2’,s=’1’) continue saddle-focus homoclinic orbit; restart from s.1
sv(’2’) save output-files as b.2, s.2, d.2
run(c=’cir.3’,h=’cir.3’,s=’2’) generate adjoint variables ; restart from s.2
ap(’2’) append output-files as b.2, s.2, d.2

Table 19.1: Detailed AUTO -Commands for running demo cir.
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Chapter 20

HomCont Demo : she.

20.1 A Heteroclinic Example.

The following system of five equations Rucklidge & Mathews (1995)

ẋ = µx+ x y − z u,
ẏ = −y − x2,
ż = (4σ xu+ 4σ µ z − 9σ z + 4xu+ 4µ z)/4(1 + σ)
u̇ = −σu/4 − σQv/4π2 + 3(1 + σ)xz/4σ
v̇ = ζu/4 − ζv/4

(20.1)

has been used to describe shearing instabilities in fluid convection. The equations possess a rich
structure of local and global bifurcations. Here we shall reproduce a single curve in the (σ, µ)-
plane of codimension-one heteroclinic orbits connecting a non-trivial equilibrium to the origin
for Q = 0 and ζ = 4. The defining problem is contained in equation-file she.c1, and starting
data for the orbit at (σ, µ) = (0.5, 0.163875) are stored in she.dat, with a truncation interval of
PAR(11)=85.07.

We begin by computing towards µ = 0 with the option IEQUIB=-2 which means that both
equilibria are solved for as part of the continuation process.

@dm she

make first

This yields the output

BR PT TY LAB PAR(3) L2-NORM ... PAR(1)

1 5 2 4.528332E-01 3.726787E-01 ... 1.364973E-01

1 10 3 3.943370E-01 3.303798E-01 ... 1.044119E-01

1 15 4 3.358942E-01 2.873213E-01 ... 7.515570E-02

1 20 5 2.772726E-01 2.433403E-01 ... 4.952636E-02

1 25 6 2.181955E-01 1.981358E-01 ... 2.845849E-02

1 30 EP 7 1.581633E-01 1.512340E-01 ... 1.292975E-02

1The last parameter used to store the equilibria ( PAR(21)) is overlaped here with the first test-function. In
this example, it is harmless since the test functions are irrelevant for heteroclinic continuation.
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Alternatively, for this problem there exists an analytic expression for the two equilibria. This is
specified in the subroutine pvls of she.c. Re-running with IEQUIB=-1

make second

we obtain the output

BR PT TY LAB PAR(3) L2-NORM ... PAR(1)

1 5 2 4.432015E-01 3.657716E-01 ... 1.310559E-01

1 10 3 3.723085E-01 3.142439E-01 ... 9.300982E-02

1 15 4 3.008842E-01 2.611556E-01 ... 5.933966E-02

1 20 5 2.286652E-01 2.062194E-01 ... 3.179939E-02

1 25 6 1.555409E-01 1.491652E-01 ... 1.239897E-02

1 30 EP 7 8.107462E-02 9.143108E-02 ... 2.386616E-03

This output is similar to that above, but note that it is obtained slightly more efficiently because
the extra parameters PAR(12-21) representing the coordinates of the equilibria are no longer
part of the continuation problem. Also note that AUTO has chosen to take slightly larger steps
along the branch. Finally, we can continue in the opposite direction along the branch from the
original starting point (again with IEQUIB=-1).

make third

BR PT TY LAB PAR(3) L2-NORM ... PAR(1)

1 5 8 4.997590E-01 4.060153E-01 ... 1.637322E-01

1 10 9 5.705299E-01 4.551872E-01 ... 2.065264E-01

1 15 10 6.416439E-01 5.031844E-01 ... 2.507829E-01

1 20 11 7.133301E-01 5.500668E-01 ... 2.959336E-01

1 25 12 7.857688E-01 5.958712E-01 ... 3.415492E-01

1 30 13 8.590970E-01 6.406182E-01 ... 3.872997E-01

1 35 EP 14 9.334159E-01 6.843173E-01 ... 4.329270E-01

The results of both computations are presented in Figure 20.1, from which we see that the orbit
shrinks to zero as PAR(1)=µ→ 0.
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20.2 Detailed AUTO -Commands.

AUTO -COMMAND ACTION
! mkdir she create an empty work directory
cd she change directory
demo(’she’) copy the demo files to the work directory
us(’she’) use the starting data in she.dat to create s.dat
run(c=’she.1’,h=’she.1’,s=’dat’) continue heteroclinic orbit; restart from s.dat
sv(’1’) save output-files as b.1, s.1, d.1
run(c=’she.2’,h=’she.2’,s=’dat’) repeat with IEQUIB=-1

sv(’2’) save output-files as b.2, s.2, d.2
run(c=’she.3’,h=’she.3’,s=’2’) continue in reverse direction ; restart from s.2
ap(’2’) append output-files to b.2, s.2, d.2

Table 20.1: Detailed AUTO -Commands for running demo she.
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Figure 20.1: Projections into (x, y, z)-space of the family of heteroclinic orbits.
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Chapter 21

HomCont Demo : rev.

21.1 A Reversible System.

The fourth-order differential equation

u′′′′ + Pu′′ + u− u3 = 0

arises in a number of contexts, e.g., as the travelling-wave equation for a nonlinear-Schrödinger
equation with fourth-order dissipation (Buryak & Akhmediev 1995) and as a model of a strut on
a symmetric nonlinear elastic foundation (Hunt, Bolt & Thompson 1989). It may be expressed
as a system















u̇1 = u2

u̇2 = u3

u̇3 = u4

u̇4 = −Pu3 − u1 + u3
1

(21.1)

Note that (21.1) is invariant under two separate reversibilities

R1 : (u1, u2, u3, u4, t) 7→ (u1,−u2, u3,−u4,−t) (21.2)

and
R2 : (u1, u2, u3, u4, t) 7→ (−u1, u2,−u3, u4,−t) (21.3)

First, we copy the demo into a new directory

@dm rev

For this example, we shall make two separate starts from data stored in equation and data files
rev.c.1, rev.dat.1 and rev.c.3, rev.dat.3 respectively. The first of these contains initial data for a
solution that is reversible under R1 and the second for data that is reversible under R2.

21.2 An R1-Reversible Homoclinic Solution.

The first run

make first
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starts by copying the files rev.c.1 and rev.dat.1 to rev.c and rev.dat. The orbit contained in the
data file is a “primary” homoclinic solution for P = 1.6, with truncation (half-)interval PAR(11)

= 39.0448429. which is reversible under R1. Note that this reversibility is specified in h.rev.1 via
NREV=1, (IREV(I), I=1,NDIM) = 0 1 0 1. Note also, from c.rev.1 that we only have one free
parameter PAR(1) because symmetric homoclinic orbits in reversible systems are generic rather
than of codimension one. The first run results in the output

BR PT TY LAB PAR(1) L2-NORM MAX U(1) ...

1 7 UZ 2 1.700002E+00 2.633353E-01 4.179794E-01

1 12 UZ 3 1.800000E+00 2.682659E-01 4.806063E-01

1 15 UZ 4 1.900006E+00 2.493415E-01 4.429364E-01

1 20 EP 5 1.996247E+00 1.111306E-01 1.007111E-01

which is consistent with the theoretical result that the solution tends uniformly to zero as P → 0.
Note, by plotting the data saved in s.1 that only “half” of the homoclinic orbit is computed up
to its point of symmetry. See Figure 21.1.

The second run continues in the other direction of PAR(1), with the test function ψ2 activated
for the detection of saddle to saddle-focus transition points

make second

The output

BR PT TY LAB PAR(1) L2-NORM MAX U(1) ... PAR(22)

1 11 UZ 6 1.000005E+00 2.555446E-01 1.767149E-01 ... -3.000005E+00

1 22 UZ 7 -1.198325E-07 2.625491E-01 4.697314E-02 ... -2.000000E+00

1 33 UZ 8 -1.000000E+00 2.741483E-01 4.316007E-03 ... -1.000000E+00

1 44 UZ 9 -2.000000E+00 2.873838E-01 1.245735E-11 ... 2.318248E-08

1 55 EP 10 -3.099341E+00 3.020172E-01 -2.749454E-11 ... 1.099341E+00

shows a saddle to saddle-focus transition (indicated by a zero of PAR(22)) at PAR(1)=-2.
Beyond that label the first component of the solution is negative and (up to the point of symmetry)
monotone decreasing. See Figure 21.2.

21.3 An R2-Reversible Homoclinic Solution.

make third

Copies the files rev.c.3 and rev.dat.3 to rev.c and rev.dat, and runs them with the constants
stored in c.rev.3 and h.rev.3. The orbit contained in the data file is a “multi-pulse” homoclinic
solution for P = 1.6, with truncation (half-)interval PAR(11) = 47.4464189. which is reversible
under R2. This reversibility is specified in h.rev.1 via NREV=1, (IREV(I), I=1,NDIM) = 1 0

1 0. The output

BR PT TY LAB PAR(1) L2-NORM MAX U(1) ...

1 15 UZ 2 1.700000E+00 3.836401E-01 4.890015E-01

1 16 LP 3 1.711574E+00 3.922135E-01 5.442385E-01
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Figure 21.1: R1-Reversible homoclinic solutions on the half-interval x/T ∈ [0, 1] where T =
39.0448429 for P approaching 2 (solutions with labels 1-5 respectively have decreasing ampli-
tude)
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Figure 21.2: R1-reversible homoclinic orbits with oscillatory decay as x → −∞ (corresponding
to label 6) and monotone decay (at label 10)
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1 19 UZ 4 1.600000E+00 4.329404E-01 7.769491E-01

1 31 UZ 5 1.000000E+00 4.808488E-01 1.083298E+00

1 86 UZ 6 -9.664802E-10 5.158463E-01 1.258650E+00

contains the label of a limit point ( ILP was set to 1 in c.rev.3, which corresponds to a “coa-
lescence” of two reversible homoclinic orbits. The two solutions on either side of this limit point
are displayed in Figure 21.3. The computation ends in a no-convergence point. The solution here
is depicted in Figure 21.4. The lack of convergence is due to the large peak and trough of the
solution rapidly moving to the left as P → −2 (cf. Champneys & Spence (1993)).

Continuing from the initial solution in the other parameter direction

make fourth

we obtain the output

BR PT TY LAB PAR(1) L2-NORM MAX U(1) ...

1 7 UZ 8 1.600000E+00 3.701709E-01 3.836833E-01

1 33 UZ 9 9.999980E-01 3.614405E-01 1.775035E-01

1 93 UZ 10 -7.819855E-06 3.713007E-01 4.698309E-02

which again ends at a no convergence error for similar reasons.
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Figure 21.3: Two R2-reversible homoclinic orbits at P = 1.6 corresponding to labels 1 (smaller
amplitude) and 5 (larger amplitude)
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Figure 21.4: An R2-reversible homoclinic orbit at label 8

181



21.4 Detailed AUTO -Commands.

AUTO -COMMAND ACTION
! mkdir rev create an empty work directory
cd rev change directory
demo(’rev’) copy the demo files to the work directory
cp rev.c.1 rev.c get equations file to rev.c
cp rev.dat.1 rev.dat get the starting data to rev.dat
us(’rev’) use the starting data in rev.dat to create s.dat
run(c=’rev.1’,h=’rev.1’,s=’dat’) increase PAR(1)

sv(’1’) save output-files as b.1, s.1, d.1
run(c=’rev.2’,h=’rev.2’,s=’1’) continue in reverse direction; restart from s.1
ap(’1’) append output-files to b.1, s.1, d.1
cp rev.c.3 rev.c get equations file with new value of PAR(11)

cp rev.dat.3 rev.dat get starting data with different reversibility
us(’rev’) use the starting data in rev.dat to create s.dat
run(c=’rev.3’,h=’rev.3’,s=’dat’) restart with different reversibility
sv(’3’) save output-files as b.3, s.3, d.3
run(c=’rev.4’,h=’rev.4’,s=’3’) continue in reverse direction; restart from s.3
ap(’3’) append output-files to b.3, s.3, d.3

Table 21.1: Detailed AUTO -Commands for running demo rev.
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Chapter 22

HomCont Demo : Homoclinic branch
switching.

This demo illustrates homoclinic branch switching, which is an implementation of Lin’s method
(Lin 1990, Sandstede 1993, C. 2001) as described in Oldeman et al. (2001). We use a direct
branch switching method to switch from 1- to 2- and 3-homoclinic orbits near an inclination flip
bifurcation in a model due to Sandstede, which was introduced in Chapter 16. This also shows how
to obtain a homoclinic orbit through continuation of a periodic orbit born at a Hopf bifurcation.
Thereafter, we illustrate homoclinic branch switching for the FitzHugh-Nagumo equations and a
5th-order Korteweg-De Vries model.

22.1 Branch switching at an inclination flip in Sand-

stede’s model.

Consider the system (Sandstede 1995a)

ẋ = ax+ by − ax2 − αzx(2 − 3x),
ẏ = bx+ ay − 3

2
x(bx+ ay) + αz2y,

ż = cz + µx+ 3xz + α(x2(1 − x) − y2).
(22.1)

as given in the file sib.c, where for simplicity we have set µ̃ = 0, β = 1 and γ = 3.
We study an inclination flip that exists for a = 0.375, b = 0.625 and c = −0.75. This

corresponds to the situation where the eigenvalues of the equilibrium at the origin are a+ b = 1,
a − b = −0.25 and c = −0.75. Hence, the corresponding bifurcation diagram consists of a
complicated structure involving a fan of infinitely many n-periodic and n-homoclinic orbits for
arbitrary n and a region with horseshoe dynamics; see also Homburg & Krauskopf (2000) and
the references therein.

This computation starts from an equilibrium at (2/3, 0, 0), which exists for a = µ = α = 0.
Also, b is set to 0.625 (the value we would like it to be) and c is set to −2.5 in stpnt. Choosing
c = −2 at this stage leads to convergence problems. This equilibrium is not the one corresponding
to the homoclinic orbit, but it is an equilibrium with complex eigenvalues, that we can follow
until it reaches a Hopf bifurcation. A periodic orbit emanates from this Hopf bifurcation and can
be followed to the homoclinic orbit. However, first we need to change a from 0 to 0.375.
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All the following commands, except for demo(’sib’) are contained within the file ’sib.auto’
which you can either execute in a batch mode by entering
> auto sib.auto

or step by step using
AUTO> demofile(’sib.auto’).

We start by copying the demo to the current work directory and running the first step

demo(’sib’)

ld(’sib’)

rn()

sv(’1’)

The equilibrium is followed in a until a (or PAR(1)) is at our desired value, 0.375.

BR PT TY LAB PAR(1) ... U(1) U(2) U(3)

1 1 EP 1 0.000000E+00 ... 6.666667E-01 0.000000E+00 0.000000E+00

1 6 EP 2 3.750000E-01 ... 6.666667E-01 -1.333333E-01 0.000000E+00

The output is saved in the files b.1, s.1 and d.1. Next we continue in α (PAR(4)) until a Hopf
bifurcation is found:

rn(c=’sib.2’,s=’1’)

sv(’2’)

or, alternatively,

cc("IRS",2)

cc("ICP",[4])

rn(s=’1’)

sv(’2’)

BR PT TY LAB PAR(4) ... U(1) U(2) U(3)

1 18 HB 3 3.184290E-01 ... 6.543750E-01 -1.347543E-01 7.701025E-02

The output is saved in the files b.2, s.2 and d.2. This Hopf bifurcation can then be continued
into a periodic orbit. The periodic orbit eventually reaches a homoclinic bifurcation. We continue
in µ=PAR(5) and PAR(10), which corresponds to the period, and stop when the period is equal
to 35.

rn(c=’sib.3’,s=’2’)

sv(’3’)

BR PT TY LAB PAR(5) L2-NORM ... PERIOD

3 5 5 -2.418809E-03 6.705689E-01 ... 1.089749E+01

...

3 40 8 -1.294950E-02 6.145469E-01 ... 1.412970E+01

...

3 81 EP 13 -1.046566E-04 4.018291E-01 ... 3.499999E+01
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The output is saved in the files b.3, s.3 and d.3. Note that µ first decreases and then increases
towards 0, which is precisely what we expect in this model, as homoclinic orbits occur on the line
µ = 0 in the (α, µ)-plane. It is now instructive to look at a phase space diagram to see what is
going on.

plot(’3’)

Selecting ’solution’ for Type, [5,6,7,8,9,10,11,12,13] for Label, [0] for X and [1] for Y, we obtain
the diagram depicted in Figure 22.1(a), where the periodic orbit grows from the Hopf equilibrium
to a homoclinic orbit.
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Figure 22.1: Periodic orbit growing from a Hopf bifurcation to a homoclinic orbit (a). The
unshifted homoclinic orbit (b).

Note however, that the homoclinic orbit has the wrong left-hand and right-hand end points.
This can be seen by plotting the solution corresponding to Label [13] using ’t’ vs. ’x’ (coordinate
[0]), as depicted in Figure 22.1(b).

Hence, in order to continue this as a real homoclinic we have to give HomCont special instruc-
tions, to do a phase-shift in time. This can be done by setting ISTART=4. Moreover, since we
have not specified the value of the equilibrium at the origin in sib.c, we need to set IEQUIB=1 to
let HomCont detect the equilibrium. Note that in this case this is not strictly necessary; however,
we do this for instructional purposes.

Now we use HomCont to continue the homoclinic orbit in c and µ (PAR(3), PAR(5)), to get
the desired value c = −2.0.

rn(c=’sib.4’,h=’sib.shift’,s=’3’)

sv(’4’)

BR PT TY LAB PAR(3) L2-NORM ... PAR(5)

3 15 EP 14 -2.000000E+00 4.018899E-01 ... 2.661459E-09

The output is saved in the files b.4, s.4 and d.4. Note that PAR(5)=µ remains zero, which is
exactly what we expect.
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Next we want to add a solution to the adjoint equation to this solution. This is achieved by
making the change ITWIST = 1 saved in h.sib.twist. Also, we set ISTART to 1 to tell HomCont
that it is should not try to shift the orbit anymore.

rn(c=’sib.5’,h=’sib.twist’,s=’4’)

sv(’5’)

or, alternatively,

cc("IRS",14)

cc("ICP",[5,8])

cc("NMX",2)

chc("ITWIST",1)

chc("ISTART",1)

rn(s=’4’)

sv(’5’)

where chc means “change HomCont constant”. The output is stored in b.5, s.5 and d.5.

BR PT TY LAB PAR(5) L2-NORM ... PAR(8)

3 2 EP 15 2.550843E-09 4.018898E-01 ... -1.000000E-02

Here PAR(8) is a dummy (unused) parameter and µ just stays where it is. Now that we have
obtained the solution of the adjoint equation, we are able to detect inclination flips. This can be
achieved by setting NPSI to 1, IPSI(1) to 13, and monitoring PAR(32).

rn(c=’sib.6’,h=’sib.if’,s=’5’)

sv(’6’)

BR PT TY LAB PAR(4) L2-NORM ... PAR(5) PAR(32)

3 11 UZ 16 7.117745E-02 4.018899E-01 ... 1.243774E-11 -2.366987E-07

The output is stored in b.6, s.6 and d.6. Hence an inclination flip was found at α = 0.7117745.
Now we are ready to perform homoclinic branch switching, using the techniques described in

(Oldeman et al. 2001). Our first aim is to find a 2-homoclinic orbit. The ingredients we need
are: a homoclinic orbit where n-homoclinic orbits are close by, and the solution to the adjoint
equation to obtain the Lin vector. Since both ingredients are there, we can now continue in µ, ε1

and T1, to obtain the initial Lin gap. Recall from Chapter 15 that the Lin gaps εi correspond to
PAR(19+i*2) and the time intervals Ti correspond to PAR(20+i*2). We stop when ε1 = 0.2. We
need to specify ITWIST=2, to tell HomCont we aim to find a 2-homoclinic orbit, so that it will
split it up in three parts with two potential Lin gaps. We effectively have a 9-dimensional system
at this point.

rn(c=’sib.7’,h=’sib.hbs2’,s=’6’)

sv(’7’)
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BR PT TY LAB PAR(20) L2-NORM ... PAR(21) PAR(5)

3 10 18 3.458968E+01 4.468176E-01 ... 7.877123E-07 -1.558861E-11

3 20 19 2.736992E+01 4.468176E-01 ... 2.911187E-05 -1.639739E-09

3 30 20 1.737196E+01 4.468171E-01 ... 4.422734E-03 -3.101671E-05

3 38 EP 21 1.014512E+01 4.467963E-01 ... 2.000000E-01 -1.486151E-02

The output is stored in b.7, s.7 and d.7. Here we see that T1, the time it takes to make the first
loop with respect to the Poincaré section, decreases. This is illustrated in Figure 22.2. Next we
are ready to close this gap, by continuing in α, µ, and ε1, while keeping T1 at a constant value.
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Figure 22.2: Behaviour of the second piece of the ‘broken homoclinic orbit’ when creating a Lin
gap (a). Projection of the “broken homoclinic orbit” onto the (x, y)-plane, where ε1 = 0.2. To
include all the pieces necessary to obtain this figure, the “X” box must contain [0,3,6] and the
“Y” box must contain [1,4,7] (b).

rn(c=’sib.8’,h=’sib.hbs2’,s=’7’)

ap(’6’)

BR PT TY LAB PAR(4) L2-NORM ... PAR(5) PAR(21)

3 3 UZ 22 7.399999E-02 4.467807E-01 ... -1.431624E-02 1.937464E-01

3 32 EP 23 1.992281E-01 4.465901E-01 ... -6.054949E-03 2.292996E-06

The output is appended to b.6, s.6 and d.6. Now we have obtained a 2-homoclinic orbit at label
24. However, the homoclinic orbit is still split in three parts. We can switch back to a normal
orbit by setting ITWIST back to 0 and continuing in the usual way. Here we continue back to the
inclination flip point in α and µ.

rn(c=’sib.8’,h=’sib.hom’,s=’6’)

ap(’6’)

BR PT TY LAB PAR(4) L2-NORM ... PAR(5)

3 7 UZ 24 1.499999E-01 4.944903E-01 ... -3.602482E-03

3 30 EP 25 7.614033E-02 4.987463E-01 ... -2.648395E-06
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So the 2-homoclinic orbit converges back to the 1-homoclinic orbit at the inclination flip bifur-
cation. The output is appended to b.6, s.6 and d.6. The resulting 2-homoclinic orbits can be
seen using

plot(’6’)

and is depicted in Figure 22.3(a).
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Figure 22.3: The 2-homoclinic orbit as a is changed (a). The two different 3-homoclinic orbits
(b).

Next, we aim to find a 3-homoclinic orbit. To do so, we restart at the inclination flip point
at label 16 and set ITWIST=3. Moreover, we need to continue in one more gap, ε2=PAR(23) and,
once again, stop when ε1=PAR(21)=0.2. Note that the dimension of the boundary value problem
we continue is now equal to 12. This is not to be confused with the setting of NDIM=3 in the
parameter file, because HomCont handles this internally.

rn(c=’sib.10’,h=’sib.hbs3’,s=’6’)

sv(’10’)

BR PT TY LAB PAR(20) ... PAR(21) PAR(23) PAR(5)

3 10 26 3.458963E+01 ... 7.878940E-07 6.421573E-07 -1.062630E-11

3 20 27 2.736987E+01 ... 2.911260E-05 6.515911E-07 -1.636554E-09

3 30 28 1.737189E+01 ... 4.422894E-03 1.440898E-04 -3.101882E-05

3 38 EP 29 1.014512E+01 ... 2.000000E-01 6.974453E-02 -1.486151E-02

The output is stored in b.10, s.10 and d.10. Now we need to subsequently close the Lin gaps.
Our strategy is to keep T1 fixed. We first continue in α, µ, ε1 and ε2 until ε1 = 0.

rn(c=’sib.11’,h=’sib.hbs3’,s=’10’)

ap(’6’)
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BR PT TY LAB PAR(4) ... PAR(5) PAR(21) PAR(23)

3 6 UZ 30 8.199998E-02 ... -1.297904E-02 1.769949E-01 6.371836E-02

3 32 EP 31 1.984145E-01 ... -6.054949E-03 2.307164E-06 3.624489E-02

The output is appended to b.6, s.6 and d.6. Note that this continuation is very similar to
the one where we found a 2-homoclinic orbit. In fact we have now found a 2-homoclinic orbit
(numerically) followed by a ‘broken’ 1-homoclinic orbit; only the mesh is not aligned.

The next step is to close the gap corresponding to ε2 to obtain a 3-homoclinic orbit. We
replace the continuation parameter ε1 by T2, because T2 (PAR(22)) still has to be decreased from
its high value (35) and ε1 needs to stay at 0.

rn(c=’sib.12’,h=’sib.hbs3’,s=’6’)

ap(’6’)

BR PT TY LAB PAR(4) ... PAR(5) PAR(22) PAR(23)

3 16 UZ 32 1.983953E-01 ... -6.055361E-03 2.013107E+01 1.824909E-08

3 24 UZ 33 1.800000E-01 ... -6.502928E-03 1.275539E+01 -3.142935E-02

3 30 UZ 34 1.669900E-01 ... -6.892692E-03 9.417449E+00 -1.031790E-06

3 32 EP 35 1.781716E-01 ... -6.553641E-03 9.502999E+00 -7.203666E-02

The output is appended to b.6, s.6 and d.6. Note that we have found two zeros of PAR(23),
at labels 32 and 34, respectively. The two zeros correspond to two different 3-homoclinic orbits,
which, when followed from periodic orbits, both emanate from from the same saddle-node bifur-
cation. These two 3-homoclinic orbits are depicted in Figure 22.3(b). We can follow both of these
back to the inclination flip point, by setting ITWIST back to 0:

rn(c=’sib.13’,h=’sib.hom’,s=’6’)

ap(’6’)

BR PT TY LAB PAR(4) L2-NORM ... PAR(5)

3 13 UZ 36 1.299993E-01 5.048071E-01 ... -2.339037E-03

3 30 EP 37 9.272363E-02 5.065599E-01 ... -2.767140E-04

rn(c=’sib.14’,h=’sib.hom’,s=’6’)

ap(’6’)

BR PT TY LAB PAR(4) L2-NORM ... PAR(5)

3 4 UZ 37 1.449997E-01 5.473471E-01 ... -4.794005E-03

3 30 EP 39 8.394009E-02 5.526047E-01 ... -7.367526E-05

All the output is appended to b.6, s.6 and d.6. The bifurcation diagram and the paths we
followed when closing the Lin gaps are depicted in Figure 22.4. It is possible and straightforward
to obtain 4, 5, 6, . . . -homoclinic orbits by extending the above strategy.
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Figure 22.4: Parameter space diagram near an inclination flip. The curve through label 17
corresponds to a 1-homoclinic orbit. The opening of the Lin gaps occurs along the vertical
line from label 16 to label 23. The curves through labels 23 and 30 denote the path that is
followed when closing the Lin gaps. The (approximately overlaid) curves though labels 25 and
35 correspond to the 2- and one of the 3-homoclinic orbits. Finally, the curve through label 37
corresponds to the other 3-homoclinic orbit, which was obtained for PAR(22)=T2 = 12.03201.

22.2 Branch switching for a Shil’nikov type homoclinic

orbit in the FitzHugh-Nagumo equations.

The FitzHugh-Nagumo (FHN) equations (FitzHugh 1961, Nagumo, Arimoto & Yoshizawa 1962)
are a simplified version of the Hodgkin-Huxley equations (Hodgkin & Huxley 1952). They model
nerve axon dynamics and are given by

ut = uxx − fa(u) − w,

wt = ε(u− γw),
(22.2)

where
fa(u) = u(u− a)(u− 1).

Travelling wave solutions of the form (u,w)(x, t) = (u,w)(ξ), where ξ = x + ct are solutions
of the following ODE system:

u̇ = v,

v̇ = cv + fa(u) + w,

ẇ =
ε

c
(u− γw).

(22.3)

In particular we consider solitary wave solutions of (22.2). These correspond to orbits homoclinic
to (u, v, w) = 0 in system (22.3). In our numerical example we keep γ = 0.
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We aim to find a 2-homoclinic orbit at a Shil’nikov bifurcation. All the commands given
here are in the file fnb.auto. First we obtain a homoclinic orbit using a homotopy technique (see
Friedman, Doedel & Monteiro (1994)), using ISTART=3, for the parameter values c = 0.21, a =
0.2, ε = 0.0025.

demo(’sib’)

ld(’fnb’)

rn()

sv(’1’)

Among the output we see:

BR PT TY LAB PERIOD L2-NORM ... PAR(16)

1 20 UZ 3 2.922565E+01 2.379162E-01 ... -1.680003E-09

and a zero of PAR(16) means that a zero of an artificial parameter has been located and the
right-hand end point of the corresponding solution belongs to the plane that is tangent to the
stable manifold at the saddle. This point still needs to come closer to the equilibrium, which we
can achieve by further increasing the period to 300, while keeping PAR(16) at 0:

rn(c=’fnb.2’,h=’fnb.1’,s=’1’)

sv(’2’)

BR PT TY LAB PERIOD L2-NORM ... PAR(1)

1 190 UZ 10 3.000000E+02 7.379317E-02 ... 1.792864E-01

Next we stop using the homotopy technique and increase the period even further, to 1000.

rn(c=’fnb.3’,h=’fnb.3’,s=’2’)

sv(’3’)

BR PT TY LAB PERIOD L2-NORM ... PAR(1)

1 80 UZ 13 1.000000E+03 4.041827E-02 ... 1.792865E-01

A continuation in PAR(1)=a and PAR(0)=c needs to be performed to arrive at the place where
we wish to find a 2-homoclinic orbit: a = 0. At the same time we monitor PAR(21) to locate
Belyakov points.

rn(c=’fnb.4’,h=’fnb.4’,s=’3’)

sv(’4’)

BR PT TY LAB PAR(1) L2-NORM ... PAR(0) PAR(21)

1 6 UZ 15 1.318124E-01 3.287104E-02 ... 2.171656E-01 -6.312189E-06

1 23 UZ 19 -8.545741E-08 1.561579E-02 ... 2.742181E-01 -9.887718E-02

Hence, there exists a Belyakov point at (a, c) = (0.1318124, 0.217656). At label 19 we have a lower
value of a than at the Belyakov point, and by inspection of the file d.4 we can observe that the
equilibrium has one positive eigenvalue and a complex conjugate pair of eigenvalues with negative
real part, and conclude that this orbit is of Shil’nikov type. Before starting the homoclinic branch
switching, we calculate the adjoint to obtain a ‘Lin vector’:
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rn(c=’fnb.5’,h=’fnb.5’,s=’4’)

sv(’5’)

BR PT TY LAB PAR(8) L2-NORM ... PAR(2)

1 2 EP 28 -1.000000E+00 1.561579E-02 ... 2.500000E-03

Next, we continue in the time T1 (PAR(20)), the gap ε1 (PAR(21)) and c (PAR(0)), and by setting
ISTART=-2 we try to locate a 2-homoclinic orbit:

rn(c=’fnb.6’,h=’fnb.6’,s=’5’)

sv(’6’)

In fact we find many of them, exactly as is predicted by the theory:

BR PT TY LAB PAR(20) ... PAR(0) PAR(21)

...

1 175 UZ 45 1.647952E+02 ... 2.742181E-01 -2.313522E-11

1 179 UZ 46 1.448063E+02 ... 2.742181E-01 1.481383E-11

1 183 UZ 47 1.248379E+02 ... 2.742181E-01 2.171338E-16

1 188 UZ 48 1.048192E+02 ... 2.742181E-01 5.215295E-11

1 192 UZ 49 8.487422E+01 ... 2.742181E-01 3.106887E-15

1 197 UZ 50 6.463349E+01 ... 2.742181E-01 -1.803730E-10

Each of these homoclinic orbits differ by about 20 in the value T1. This is about the time it takes
to make one half-turn close to and around the equilibrium, so that orbits differ by the number of
half turns around the equilibrium before a big excursion in phase space. Note that the variation
of c is so small that it does not appear.

A plot of T1 vs. ε1 gives insight into how the gap is opened and closed in the continuation
process. This is depicted in Figure 22.5. We are now in a position to continue each of these orbits
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Figure 22.5: A plot of ε1 as a function of T1 during our computation of Shil’nikov-type two-
homoclinic orbits. Each zero corresponds to a different orbit.

as a normal homoclinic orbit by setting ISTART=1 and ITWIST=0. We leave this as an exercise to
the reader.
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22.3 Branch switching to a 3-homoclinic orbit in a

5th-order Korteweg-De Vries model

In Champneys & Groves (1997) the following water wave model was considered:

2

15
r′′′′ − br′′ + ar +

3

2
r2 − 1

2
(r′)2 + [rr′]′ = 0. (22.4)

It represents solitary-wave solutions r(x+ at), r → 0 as x→ ±∞ of the 5th-order PDE

rt +
2

15
rxxxx − brxxx + 3rrx + 2rxrxx + rrxxx=0,

where a is the wave speed. The ODE corresponds to a Hamiltonian system with Hamiltonian

H = −1

2
q3
1 −

1

2
aq2

1 + p1q2 −
1

2
bq2

2 +
15

4
p2

2 +
1

2
q2
2q1

and

q1 = r, q2 = r′, p1 = − 2

15
r′′′ + br′ − rr′, p2 =

2

15
r′′.

System (22.4) is also reversible under the transformation

t 7→ −t, (q1, q2, p1, p2) 7→ (q1,−q2,−p1, p2),

but we do not exploit the reversible structure (IREV=0), and instead use it as an example of
Hamiltonian system. This system exhibits an orbit flip for a reversible Hamiltonian system. In
Hamiltonian systems, homoclinic orbits are codimension-zero phenomena, and we have to add
an additional parameter λ that breaks the Hamiltonian structure in this system, by introducing
artificial friction. Thus, the actual system of equations that is used for continuation is

ẋ = (λI + J)∇H(x),

where x = (q1, q2, p1, p2) and J is the usual skew symmetric matrix in R
4. It is now possible to

continue a homoclinic orbit in HomCont in two parameters (λ and either a or b); see also Beyn
(1990).

An explicit solution exists for a = 3/5(2b+ 1)(b− 2), b ≥ −1/2, and it is given by

r(t) = 3(b+
1

2
)sech2

(

[
3

4
(2b+ 1)]1/2t

)

.

It corresponds to a reversible orbit flip for b > 2 (a > 0) We start from this explicit solution,
using ISTART=2, for a = 3 and b = (

√
65 + 3)/4:

demo(’kdv’)

ld(’kdv’)

rn()

sv(’1’)
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BR PT TY LAB PAR(0) L2-NORM ... PAR(2)

1 1 EP 1 3.000000E+00 5.565438E+00 ... 0.000000E+00

1 2 EP 2 3.049592E+00 5.491407E+00 ... 1.807155E-17

Here PAR(0)=a, PAR(1)=b, and PAR(2)=λ. We have only done a very small continuation to
give AUTO a chance to create a good mesh and avoid convergence problems later. Next, we set
ITWIST=1 and calculate the adjoint:

rn(c=’kdv.2’,h=’kdv.2’,s=’1’)

sv(’2’)

BR PT TY LAB PAR(1) L2-NORM ... PAR(8)

1 2 EP 3 2.765575E+00 5.491418E+00 ... -6.250114E-04

We now need to move back to the orbit flip at a = 3:

rn(c=’kdv.3’,h=’kdv.3’,s=’2’)

sv(’3’)

BR PT TY LAB PAR(0) L2-NORM ... PAR(2)

1 14 UZ 5 3.000000E+00 5.476133E+00 ... 1.483821E-09

Now all preparations are done to start homoclinic branch switching. This is very similar to the
technique used in Sandstede’s model in Section 22.1; to find a 3-homoclinic orbit, we open 2 Lin
gaps, until T1 = 3.5, while also varying λ=PAR(2).

rn(c=’kdv.4’,h=’kdv.4’,s=’3’)

sv(’4’)

BR PT TY LAB PAR(2) ... PAR(20) PAR(21) PAR(23)

1 10 8 5.797610E-10 ... 1.672717E+01 -8.381610E-08 -6.988443E-07

1 19 UZ 9 1.399137E-09 ... 1.012493E+01 6.452744E-12 1.379764E-07

1 20 10 2.122922E-09 ... 9.001030E+00 1.032750E-07 4.022729E-07

1 29 EP 11 2.154196E-06 ... 3.499999E+00 7.959776E-04 3.999453E-04

We then look for an orbit with a < 3 and close the gap corresponding to ε1=PAR(21), for
decreasing a.

rn(c=’kdv.5’,h=’kdv.5’,s=’4’)

sv(’5’)

BR PT TY LAB PAR(1) ... PAR(2) PAR(21) PAR(23)

1 10 12 2.579042E+00 ... 2.154861E-06 7.659464E-04 3.829183E-04

1 13 UZ 13 2.320452E+00 ... 3.933752E-11 1.088379E-10 1.552594E-08

1 20 EP 14 -1.906119E-01 ... -1.022044E-03 -7.600151E-01 -3.446967E-01

and finally close the gap corresponding to ε2=PAR(23),
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rn(c=’kdv.6’,h=’kdv.6’,s=’5’)

sv(’6’)

BR PT TY LAB PAR(1) ... PAR(2) PAR(22) PAR(23)

1 23 UZ 15 2.320450E+00 ... 2.198310E-12 1.487623E+01 -4.392295E-10

1 30 16 2.320380E+00 ... -1.004669E-09 1.027163E+01 -5.060989E-07

1 51 UZ 17 2.336952E+00 ... 2.374866E-07 3.482932E+00 1.195914E-04

1 58 UZ 18 3.080847E+00 ... 2.673602E-12 3.500044E+00 -1.934478E-10

1 60 EP 19 3.134237E+00 ... -5.614124E-07 3.778288E+00 -3.398845E-04

so that a three-homoclinic orbit is found. Here the zero at label 17 is the one we are looking
for. Label 15 is a false positive since T2=PAR(22) is still too high. At label 18, a=PAR(1) has
changed considerably to the extend that a > 3 and a second 3-homoclinic orbit is found. Note
that for all zeros of PAR(23)=ε2, the parameter λ=PAR(2) is also zero (within AUTO accuracy),
which it has to be to remain within the original Hamiltonian system. Setting ISTART=1, a normal
“trivial” continuation (with NMX=1) of the orbit corresponding to label 17 lets HomCont produce
a proper concatenated 3-homoclinic orbit:

rn(c=’kdv.7’,h=’kdv.7’,s=’6’)

sv(’7’)

BR PT TY LAB PAR(1) L2-NORM ... PAR(2)

1 2 EP 20 2.336952E+00 7.505830E+00 ... 2.374866E-07

This 3-homoclinic orbit is depicted in Figure 22.6.
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Figure 22.6: A 3-homoclinic orbit in a 5th-order Hamiltonian Korteweg-De Vries model.
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Appendix A

Running AUTO using Command Mode.

AUTO can be run with the interface described in Chapter 4 or with the commands described
below. The AUTO aliases must have been activated; see Section 1.2; and an equations-file xxx.c
and a corresponding constants-file c.xxx (see Section 3.1) must be in the current user directory.
Do not run AUTO in the directory auto/2000 or in any of its subdirectories.

A.0.1 Basic commands.

@r : Type @r xxx to run AUTO . Restart data, if needed, are expected in s.xxx, and AUTO -
constants in c.xxx. This is the simplest way to run AUTO .

- Type @r xxx yyy to run AUTO with equations-file xxx.c and restart data-file s.yyy.
AUTO -constants must be in c.xxx.

- Type @r xxx yyy zzz to run AUTO with equations-file xxx.c, restart data-file s.yyy and
constants-file c.zzz.

@R : The command @R xxx is equivalent to the command @r xxx above.

- Type @R xxx i to run AUTO with equations-file xxx.c, constants-file c.xxx.i and, if
needed, restart data-file s.xxx.

- Type @R xxx i yyy to run AUTO with equations-file xxx.c, constants-file c.xxx.i and
restart data-file s.yyy.

@sv : Type @sv xxx to save the output-files fort.7, fort.8, fort.9, as b.xxx, s.xxx, d.xxx,
respectively. Existing files by these names will be deleted.

@ap : Type @ap xxx to append the output-files fort.7, fort.8, fort.9, to existing data-files
b.xxx, s.xxx, d.xxx, resp.

- Type @ap xxx yyy to append b.xxx, s.xxx, d.xxx, to b.yyy, s.yyy, d.yyy, resp.
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A.0.2 Plotting commands.

@p : Type @p xxx to run the graphics program PLAUT (See Chapter B) for the graphical
inspection of the data-files b.xxx and s.xxx.

- Type @p to run the graphics program PLAUT for the graphical inspection of the output-
files fort.7 and fort.8.

@ps : Type @ps fig.x to convert a saved PLAUT figure fig.x from compact PLOT10 format
to PostScript format. The converted file is called fig.x.ps. The original file is left unchanged.

@pr : Type @pr fig.x to convert a saved PLAUT figure fig.x from compact PLOT10 format
to PostScript format and send it to the printer. The converted file is called fig.x.ps. The
original file is left unchanged.

A.0.3 File-manipulation.

@cp : Type @cp xxx yyy to copy the data-files b.xxx, s.xxx, d.xxx, c.xxx to b.yyy, s.yyy,
d.yyy, c.yyy, respectively.

@mv : Type @mv xxx yyy to move the data-files b.xxx, s.xxx, d.xxx, c.xxx, to b.yyy, s.yyy,
d.yyy, c.yyy, respectively.

@df : Type @df to delete the output-files fort.7, fort.8, fort.9.

@cl : Type @cl to clean the current directory. This command will delete all files of the form
fort.*, *.o, and *.exe.

@dl : Type @dl xxx to delete the data-files b.xxx, s.xxx, d.xxx.

A.0.4 Diagnostics.

@lp : Type @lp to list the value of the “limit point function” in the output-file fort.9. This
function vanishes at a limit point (fold).

- Type @lp xxx to list the value of the “limit point function” in the data-file d.xxx. This
function vanishes at a limit point (fold).

@bp : Type @bp to list the value of the “branch-point function” in the output-file fort.9. This
function vanishes at a branch point.

- Type @bp xxx to list the value of the “branch-point function” in the data-file d.xxx. This
function vanishes at a branch point.

@hb : Type @hb to list the value of the “Hopf function” in the output-file fort.9. This function
vanishes at a Hopf bifurcation point.

- Type @hb xxx to list the value of the “Hopf function” in the data-file d.xxx. This function
vanishes at a Hopf bifurcation point.
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@sp : Type @sp to list the value of the “secondary-periodic bifurcation function” in the output-
file fort.9. This function vanishes at period-doubling and torus bifurcations.

- Type @sp xxx to list the value of the “secondary-periodic bifurcation function” in the
data-file d.xxx. This function vanishes at period-doubling and torus bifurcations.

@it : Type @it to list the number of Newton iterations per continuation step in fort.9.

- Type @it xxx to list the number of Newton iterations per continuation step in d.xxx.

@st : Type @st to list the continuation step size for each continuation step in fort.9.

- Type @st xxx to list the continuation step size for each continuation step in d.xxx.

@ev : Type @ev to list the eigenvalues of the Jacobian in fort.9. (Algebraic problems.)

- Type @ev xxx to list the eigenvalues of the Jacobian in d.xxx. (Algebraic problems.)

@fl : Type @fl to list the Floquet multipliers in the output-file fort.9. (Differential equations.)

- Type @fl xxx to list the Floquet multipliers in the data-file d.xxx. (Differential equations.)

A.0.5 File-editing.

@e7 : To use the vi editor to edit the output-file fort.7.

@e8 : To use the vi editor to edit the output-file fort.8.

@e9 : To use the vi editor to edit the output-file fort.9.

@j7 : To use the SGI jot editor to edit the output-file fort.7.

@j8 : To use the SGI jot editor to edit the output-file fort.8.

@j9 : To use the SGI jot editor to edit the output-file fort.9.

A.0.6 File-maintenance.

@lb : Type @lb to run an interactive utility program for listing, deleting and relabeling
solutions in the output-files fort.7 and fort.8. The original files are backed up as ∼fort.7
and ∼fort.8.

- Type @lb xxx to list, delete and relabel solutions in the data-files b.xxx and s.xxx. The
original files are backed up as ∼b.xxx and ∼s.xxx.

- Type @lb xxx yyy to list, delete and relabel solutions in the data-files b.xxx and s.xxx.
The modified files are written as b.yyy and s.yyy.
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@fc : Type @fc xxx to convert a user-supplied data file xxx.dat to AUTO format. The
converted file is called s.dat. The original file is left unchanged. AUTO automatically sets
the period in PAR(11). Other parameter values must be set in stpnt. (When necessary,
PAR(11) may also be redefined there.) The constants-file file c.xxx must be present, as the
AUTO -constants NTST and NCOL (Sections 5.3.1 and 5.3.2) are used to define the new
mesh. For examples of using the @fc command see demos lor and pen.

@94to97 : Type @94to97 xxx to convert an old AUTO 94 data-file s.xxx to new AUTO 97 format.
The original file is backed up as ∼s.xxx. This conversion is only necessary for files from
early versions of AUTO 94 .

A.0.7 HomCont commands.

@h : Use @h instead of @r when using HomCont, i.e., when IPS=9 (see Chapter 15).
Type @h xxx to run AUTO /HomCont. Restart data, if needed, are expected in s.xxx,
AUTO -constants in c.xxx and HomCont-constants in h.xxx.

- Type @h xxx yyy to run AUTO /HomCont with equations-file xxx.c and restart data-file
s.yyy. AUTO -constants must be in c.xxx and HomCont-constants in h.xxx.

- Type @h xxx yyy zzz to run AUTO /HomCont with equations-file xxx.c, restart data-file
s.yyy and constants-files c.zzz and h.zzz.

@H : The command @H xxx is equivalent to the command @h xxx above.

- Type @H xxx i in order to run AUTO /HomCont with equations-file xxx.c and constants-
files c.xxx.i and h.xxx.i and, if needed, restart data-file s.xxx.

- Type @H xxx i yyy to run AUTO /HomCont with equations-file xxx.c, constants-files
c.xxx.i and h.xxx.i, and restart data-file s.yyy.

A.0.8 Copying a demo.

@dm : Type @dm xxx to copy all files from auto/2000/demos/xxx to the current user directory.
Here xxx denotes a demo name; e.g., abc. Note that the @dm command also copies a
Makefile to the current user directory. To avoid the overwriting of existing files, always run
demos in a clean work directory.

A.0.9 Pendula animation.

@pn : Type @pn xxx to run the pendula animation program with data-file s.xxx. (On SGI
machine only; see demo pen in Section 9.10 and the file auto/2000/pendula/README.)

A.0.10 Viewing the manual.

@mn : Use Ghostview to view the PostScript version of this manual.
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Appendix B

The Graphics Program PLAUT.

PLAUT can be used to extract graphical information from the AUTO output-files fort.7 and
fort.8, or from the corresponding data-files b.xxx and s.xxx. To invoke PLAUT, use the the @p
command defined in Section A. The PLAUT window (a Tektronix window) will appear, in which
PLAUT commands can be entered. FIXME: This is not correct anymore For examples of using
PLAUT see the tutorial demo ab, in particular, Sections 7.7 and 7.10. See also demo pp2 in
Section 9.3.

B.1 Basic PLAUT-Commands.

The principal PLAUT-commands are

bd0 : This command is useful for an initial overview of the bifurcation diagram as stored in
fort.7. If you have not previously selected one of the default options d0, d1, d2, d3, or d4
described below then you will be asked whether you want solution labels, grid lines, titles,
or labeled axes.

bd : This command is the same as the bd0 command, except that you will be asked to enter the
minimum and the maximum of the horizontal and vertical axes. This is useful for blowing
up portions of a previously displayed bifurcation diagram.

ax : With the ax command you can select any pair of columns of real numbers from fort.7
as horizontal and vertical axis in the bifurcation diagram. (The default is columns 1 and
2). To determine what these columns represent, one can look at the screen ouput of the
corresponding AUTO run, or one can inspect the column headings in fort.7.

2d : Upon entering the 2d command, the labels of all solutions stored in fort.8 will be listed
and you can select one or more of these for display. The number of solution components is
also listed and you will be prompted to select two of these as horizontal and vertical axis
in the display. Note that the first component is typically the independent time or space
variable scaled to the interval [0,1].

sav : To save the displayed plot in a file. You will be asked to enter a file name. Each plot
must be stored in a separate new file. The plot is stored in compact PLOT10 format,
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which can be converted to PostScript format with the AUTO -commands @ps and @pr;
see Section B.4.

cl : To clear the graphics window.

lab : To list the labels of all solutions stored in fort.8. Note that PLAUT requires all labels
to be distinct. In case of multiple labels you can use the AUTO command @lb to relabel
solutions in fort.7 and fort.8.

end : To end execution of PLAUT.

B.2 Default Options.

After entering the commands bd0, bd, or 2d, you will be asked whether you want solution labels,
grid lines, titles, or axes labels. For quick plotting it is convenient to bypass these selections.
This can be done by the default commands d0, d1, d2, d3, or d4 below. These can be entered
as a single command or they can be entered as prefixes in the bd0 and bd commands. Thus, for
example, one can enter the command d1bd0.

d0 : Use solid curves, showing solution labels and symbols.

d1 : Use solid curves, except use dashed curves for unstable solutions and for solutions of
unknown stability. Show solution labels and symbols.

d2 : As d1, but with grid lines.

d3 : As d1, except for periodic solutions use solid circles if stable, and open circles if unstable
or if the stability is unknown.

d4 : Use solid curves, without labels and symbols.

If no default option d0, d1, d2, d3, or d4 has been selected or if you want to override a default
feature, then the the following commands can be used. These can be entered as individual
commands or as prefixes. For example, one can enter the command sydpbd0.

sy : Use symbols for special solution points, for example, open square = branch point, solid
square = Hopf bifurcation.

dp : “Differential Plot”, i.e., show stability of the solutions. Solid curves represent stable
solutions. Dashed curves are used for unstable solutions and for solutions of unknown
stability. For periodic solutions use solid/open circles to indicate stability/instability (or
unknown stability).

st : Set up titles and axes labels.

nu : Normal usage (reset special options).
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B.3 Other PLAUT-Commands.

The full PLAUT program has several other capabilities, for example,

scr : To change the diagram size.

rss : To change the size of special solution point symbols.

B.4 Printing PLAUT Files.

@ps : Type @ps fig.1 to convert a saved PLAUT file fig.1 to PostScript format in fig.1.ps.

@pr : Type @pr fig.1 to convert a PLAUT file fig.1 to PostScript format and to print the
resulting file fig.1.ps.
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Appendix C

Graphical User Interface.

C.1 General Overview.

Please note: as of July 30, 2002 the GUI is being updated, so the documentation is this chapter
is not being actively maintained. The old GUI is provided with this release of AUTO , but it is
unsupported and may not be included in future releases.

The AUTO 97 graphical user interface (GUI) is a tool for creating and editing equations-files
and constants-files; see Section 3.1 for a description of these files. The GUI can also be used to
run AUTO and to manipulate and plot output-files and data-files; see Section A for corresponding
commands. To use the GUI for a new equation, change to an empty work directory. For an existing
equations-file, change to its directory. ( Do not activate the GUI in the directory auto/2000 or
in any of its subdirectories.) Then type

@ auto,
or its abbreviation @ a. Here we assume that the AUTO aliases have been activated; see

Section 1.2. The GUI includes a window for editing the equations-file, and four groups of buttons,
namely, the Menu Bar at the top of the GUI, the Define Constants-buttons at the center-left,
the Load Constants-buttons at the lower left, and the Stop- and Exit-buttons.

Note : Most GUI buttons are activated by point-and-click action with the left mouse
button. If a beep sound results then the right mouse button must be used.

C.1.1 The Menu bar.

It contains the main buttons for running AUTO and for manipulating the equations-file, the
constants-file, the output-files, and the data-files. In a typical application, these buttons are used
from left to right. First the Equations are defined and, if necessary, Edited, before being
Written. Then the AUTO -constants are Defined. This is followed by the actual Run of
AUTO . The resulting output-files can be Saved as data-files, or they can be Appended to
existing data-files. Data-files can be Plotted with the graphics program PLAUT, and various
file operations can be done with the Files-button. Auxiliary functions are provided by the
Demos-, Misc-, and Help-buttons. The Menu Bar buttons are described in more detail in
Section C.2.
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C.1.2 The Define-Constants-buttons.

These have the same function as the Define-button on the Menu Bar, namely to set and change
AUTO -constants. However, for the Define-button all constants appear in one panel, while for
the Define Constants-buttons they are grouped by function, as in Chapter 5, namely Problem

definition constants, Discretization constants, convergence Tolerances, continuation Step

Size, diagram Limits, designation of free Parameters, constants defining the Computation,
and constants that specify Output options.

C.1.3 The Load-Constants-buttons.

The Previous-button can be used to load an existing AUTO -constants file. Such a file is also
loaded, if it exists, by the Equations-button on the Menu Bar. The Default-button can be
used to load default values of all AUTO -constants. Custom editing is normally necessary.

C.1.4 The Stop- and Exit-buttons.

The Stop-button can be used to abort execution of an AUTO -run. This should be done only
in exceptional circumstances. Output-files, if any, will normally be incomplete and should be
deleted. Use the Exit-button to end a session.

C.2 The Menu Bar.

C.2.1 Equations-button.

This pull-down menu contains the items Old, to load an existing equations-file, New, to load a
model equations-file, and Demo, to load a selected demo equations-file. Equations-file names are
of the form xxx.c. The corresponding constants-file c.xxx is also loaded if it exists. The equation
name xxx remains active until redefined.

C.2.2 Edit-button.

This pull-down menu contains the items Cut and Copy, to be performed on text in the GUI
window highlighted by click-and-drag action of the mouse, and the item Paste, which places
editor buffer text at the location of the cursor.

C.2.3 Write-button.

This pull-down menu contains the item Write, to write the loaded files xxx.c and c.xxx, by the
active equation name, and the item Write As to write these files by a selected new name, which
then becomes the active name.
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C.2.4 Define-button.

Clicking this button will display the full AUTO -constants panel. Most of its text fields can be
edited, but some have restricted input values that can be selected with the right mouse button.
Some text fields will display a subpanel for entering data. To actually apply changes made in the
panel, click the OK- or Apply-button at the bottom of the panel.

C.2.5 Run-button.

Clicking this button will write the constants-file c.xxx and run AUTO . If the equations-file has
been edited then it should first be rewritten with the Write-button.

C.2.6 Save-button.

This pull-down menu contains the item Save, to save the output-files fort.7, fort.8, fort.9, as
b.xxx, s.xxx, d.xxx, respectively. Here xxx is the active equation name. It also contains the item
Save As, to save the output-files under another name. Existing data-files with the selected name,
if any, will be overwritten.

C.2.7 Append-button.

This pull-down menu contains the item Append, to append the output-files fort.7, fort.8, fort.9,
to existing data-files b.xxx, s.xxx, d.xxx, respectively. Here xxx is the active equation name. It
also contains the item Append To, to append the output-files to other existing data-files.

C.2.8 Plot-button.

This pull-down menu contains the items Plot, to run the plotting program PLAUT for the
data-files b.xxx and s.xxx, where xxx is the active equation name, and the item Name, to run
PLAUT with other data-files.

C.2.9 Files-button.

This pull-down menu contains the item Restart, to redefine the restart file. Normally, when
restarting from a previously computed solution, the restart data is expected in the file s.xxx, where
xxx is the active equation name. Use the Restart-button to read the restart data from another
data-file in the immediately following run. The pull-down menu also contains the following items :

- Copy, to copy b.xxx, s.xxx, d.xxx, c.xxx, to b.yyy, s.yyy, d.yyy, c.yyy, resp.;

- Append, to append data-files b.xxx, s.xxx, d.xxx, to b.yyy, s.yyy, d.yyy, resp.;

- Move, to move b.xxx, s.xxx, d.xxx, c.xxx, to b.yyy, s.yyy, d.yyy, c.yyy, resp.;

- Delete, to delete data-files b.xxx, s.xxx, d.xxx;

- Clean, to delete all files of the form fort.*, *.o, and *.exe.
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C.2.10 Demos-button.

This pulldown menu contains the items Select, to view and run a selected AUTO demo in the
demo directory, and Reset, to restore the demo directory to its original state. Note that demo
files can be copied to the user work directory with the Equations/Demo-button.

C.2.11 Misc.-button.

This pulldown menu contains the items Tek Window and VT102 Window, for opening windows;
Emacs and Xedit, for editing files, and Print, for printing the active equations-file xxx.c.

C.2.12 Help-button.

This pulldown menu contains the items AUTO -constants, for help on AUTO -constants, and
User Manual, for viewing the user manual; i.e., this document.

C.3 Using the GUI.

AUTO -commands are described in Section A and illustrated in the demos. In Table C.1 we list
the main AUTO -commands together with the corresponding GUI button.

@r Run

@sv Save

@ap Append

@p Plot

@cp Files/Copy

@mv Files/Move

@cl Files/Clean

@dl Files/Delete

@dm Equations/Demo

Table C.1: Command Mode - GUI correspondences.

The AUTO -command @r xxx yyy is given in the GUI as follows : click Files/Restart

and enter yyy as data. Then click Run. As noted in Section A, this will run AUTO with the
current equations-file xxx.c and the current constants-file c.xxx, while expecting restart data in
s.yyy. The AUTO -command @ap xxx yyy is given in the GUI by clicking Files/Append.

C.4 Customizing the GUI.

C.4.1 Print-button.

The Misc/Print-button on the Menu Bar can be customized by editing the file GuiConsts.h in
directory auto/2000/include.
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C.4.2 GUI colors.

GUI colors can be customized by creating an X resource file. Two model files can be found in
directory auto/2000/gui, namely, Xdefaults.1 and Xdefaults.2. To become effective, edit one of
these, if desired, and copy it to .Xdefaults in your home directory. Color names can often be
found in the system file /usr/lib/X11/rgb.txt.

C.4.3 On-line help.

The file auto/2000/include/GuiGlobal.h contains on-line help on AUTO -constants and demos.
The text can be updated, subject to a modifiable maximum length. On SGI machines this is
10240 bytes, which can be increased, for example, to 20480 bytes, by replacing the line CC =

cc -Wf, -XNl10240 -O in auto/2000/gui/Makefile by CC = cc -Wf, -XNl20480 -O On other
machines, the maximum message length is the system defined maximum string literal length.
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