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Preface

This is a guide to the software padkage AUTO for cortinuation and bifurcation problemsin
ordinary di erential equations. Earlier versionsof AUTO weredescritedin Doedel(1981),Doedel
& Kernewez (19861), Doedel & Wang (1995), Wang & Doedel (1995). For a description of the
basic algorithms seeDoedel, Keller & Kernewez (1991q), Doedel, Keller & Kernewvez (1991)).
This versionof AUTO incorporatesthe HomCornt algorithms of Champneys& Kuznetsors (1994),
Champneys, Kuznetsor & Sandstede(1996) for the bifurcation analysis of homaclinic orbits.
The graphical user interface was written by Wang (1994). The Floquet multiplier algorithms
were written by Fairgrieve (1994), Fairgrieve & Jepson(1991).
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Chapter 1
Installing AUTO .

1.1 Typographical Conventions

This manual usesthe following convertions.

command| This font is usedfor commandswhich you cantype in.
PAR This font is usedfor AUTO parameters.

lename | This font is usedfor le and directory names.
variable | This font is usedfor ervironmert variable.

site This font is usedfor world wide web and ftp sites.
function | This font is usedfor function names.

1.2 Installation.

The AUTO les are available via HTTP from
http://www.ama.caltech.edu/ redrod/auto2000/distribution/.

bzipped Postscript manual auto2000-0.9.6.ps.bz2
gzipped Postscript manual auto2000-0.9.6.ps.gz
compressedPostscript manual auto2000-0.9.6.ps.Z

tarred and gzipped sourcecode auto2000-0.9.6.tgz
tarred and bzipped sourcecode auto2000-0.9.6.tbz2
tarred and compressedourcecode | auto2000-0.9.6.tar.Z
Zipped sourcecode auto2000-0.9.6.zip

Below it is assumedhat you areusingthe Unix shell cshandthat the le auto2000-0.9.6.taZ
is in your main directory.

While in your main directory, erter the commands uncompress auto2000-0.9.6.tar.Z
followed by tar xvfo auto2000-0.9.6.tar . This will result in a directory auto, with one
subdirectory, auto/2000. Type cd auto/2000 to changedirectory to auto/2000. Then type
configure , to chedk your system for required compilers and libraries. Once the con gure
script has nished you may then type maketo compile AUTO and its ancillary software. The
con gure script is designedto detect the details of your systemwhich AUTO requiresto compile
successfully If either the con gure script or the make commandshould fail, you may assistthe



con gure script by giving it various commandline options. Pleasetype configure --help for
more details. Upon compilation, you may type makeclean to remove unnecessaryles.

There is a new CLUI under dewelopmert which includes someof the capabilities of the old
GUI and will evertually be the recommendway to run AUTO. More information on the CLUI
may be found in Chapter 4. The new CLUI doesnot require any additional options to be passed
to the configure script.

To run the new Command Line User Interface (CLUI) and the old command languageyou
needto set your environment variables correctly. Assuming AUTO is installed in your home
directory, the following commandsset your ervironmernt variablessothat you will be ableto run
the AUTO commands,and may be placedinto your .login .prole, or .cshrc le, as appropri-
ate. If you are using a sh compatible shell, suc as sh, bash, ksh, or ash enter the command
source $HOME/auto/2000/cmdséauto. env. sh. On the other hand, if you are usinga csh com-
patible shell,such ascsh or tcsh , ernter the command source $HOME/auto/2000/cmd& ut 0. env.c sh.

Thereis an old and unsupported Graphical UserInterface(GUI) which requiresthe X-Window
systemand Motif, and it is not compiledby default. Note that AUTO canbe very e ectively run
in CommandMode, i.e., the GUI is not strictly necessaryTo compile AUTO with the old GUI,
type configure --enable-gui andthen malkein directory auto/2000

The PostScript conversioncommand @pswill be enabledif the con gure script detectsthe
appropriate software, but you may haveto enter the correctprinter namein auto/2000/cmds/@p.

To generatethe on-line manual, type makein auto/2000/doc.

To prepare AUTO for transfer to another macdine, type makesuperclean in directory
auto/2000 before creating the tar-le. This will remove all executable,object, and other non-
essehal les, and thereby reducethe sizeof the padkage.

AUTO can be tested by typing make > TEST& in directory auto/2000/test. This will
executea selectionof demosfrom auto/2000/demosand write a summary of the computationsin
the le TEST. The cortents of TEST canthen be comparedto other test result les in directory
auto/2000/test. Note that minor di erences are to be expecteddue to architecture and compiler
di erences.

SomeEISPACK routines usedby AUTO for computing eigervaluesand Floquet multipliers
are included in the padage (Smith, Boyle, Dongarra, Garbow, Ikebe, Klema & Moler (1976)).

1.3 Restrictions on Problem Size.

There are sizerestrictions in the le auto/2000/src/auto_c.h on the following AUTO -constarns :
the e ective number of equation parameters NPARand the number of stored branch points
NBIF for algebraicproblems. SeeChapter 5 for the signi cance theseconstarts. Their maxima
are denoted by the correspnding constart followed by an X. For example, NPARX auto.c.h
denotesthe maximum value of NPARIf the maxima of NBIFis exceededn an AUTO -run then
a messagewill be printed. On the other hand, the maximum value of NPARIif exceededmay
lead to unreported errors. Upon installation NPARX36; it should never be decreasedelow that
value; seealso Section6.1. Sizerestrictions can be changedby editing auto.c.h. This must be
followed by recompilation by typing makein directory auto/2000/src

Note that in certain caseghe e ective dimensiormay be greaterthan the userdimension. For
example,for the cortinuation of folds, the e ectivedimensionis2 NDIM1 for algebraicequations,

10



and 2 NDIMor ordinary di erential equations,respectively. Similarly, for the cortinuation of Hopf
bifurcations, the e ective dimensionis 3 NDIM2.

1.4 Compatibility with Older Versions.

There are two changescomparedto early versionsof AUTO 94 : The user-suppliedequations-
les must cortain the subroutine pvls. For an example of use of pvils seethe demo pvl in
Section14.1. Thereis alsoa small changein the g.xxxdata- le. If necessaryolder AUTO 94 les
can be corverted usingthe @94to9tommand;seeSectionA. Data les from AUTO 97 are fully
compatible with AUTO 2000, but asAUTO 2000is written in C userde ned function les from
AUTO 97, which are generallyin Fortran, must be rewritten.

1.5 Parallel Version.

AUTO 2000contains codewhich allowsit to run in onvarioustypesof parallel computers. Namely,
it canuseeither the Pthreadslibrary for running on shared-memorymulti-pro cessorspr the MPI
messag@assinglibrary. Whenthe con gurescriptisrun it will try to nd the abovetwo libraries,
and if it is successfult will include their functionality into AUTO 2000. To forcethe con gure
script not to use either of the above libraries, one may type configure --without-mpi or
configure --without-pthreads , and then type make One may even precludeboth by typing
configure --without-mpi  --without-pthreads  and then typing make On the other hand,
unlessthere is someparticular di cult y, we recommendthat that the con gure script be used
without argumerts, sincethe parallel versionof AUTO 2000may easily be cortrolled, and even
run in a serial mode, through the use of commandline options at run time. The commandline
options are listed in Table 1.1.

-v | Give verboseoutput.

-m | Usethe MessagePassinginterface library for parallelization.
Usethe Pthreadslibrary for parallelization. This option

takesone of three argumerts.

conpar parallelizesthe condensationof parametersrou-
tine.

setubv parallelizesthe Jacobiansetup routine.
both parallelizesboth routines.

In generalthe recommendedoption is 'both'.
The number of processingunits to use (currently only

usedwith the -t option).

Table 1.1: Commandline options.

For example,to run the AUTO 2000executable auto.exen serialmodeyoujust type auto.exe
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To run the samecommandin parallel usingthe Pthreadslibrary on 4 processoryoutype auto.exe
-t both -# 4. If you wereto try and run the above commandon a macdine which did not have
the Pthreads library, the commandwould exit with an error and inform you that the Pthreads
library is not available.

Running the MPI versionis somewhatmore complexbecauseof the fact that MPI normally
usessomeexternal program for starting the computational processesThe exact nameand com-
mand line options of this external program dependson your MPI installation. A commonname
for this MPI external programis mpirun and a commoncommandline option which de nes the
number of computational processess -np. Accordingly, if you wanted to run the MPI version
of AUTO 2000o0n four processorswith the above external program, you would type mpirun-np
4 auto.exe-m. Pleaseseeyour local MPI documertation for more detail. As with the Pthreads
library, if you wereto try and run the above commandon a madine which did not have MPI,
the commandwould exit with an error and inform you that MPI is not available.

The commandsin the auto/2000/cmdsdirectory and descrikedin Chapter 3 may be usedwith
the parallel versionaswell, by settingthe AUTO_-COMMAND_PREFIXand AUTO_-COMMAND_ARGS
ervironment variables. For example,to the run AUTO 2000in parallel using the Pthreads li-
brary on 4 processorgust type setenv AUTGCOMMANMBGS -t both -# 4" and then use
the commandsin auto/2000/cmdsnormally. Torun AUTO 97in parallel usingthe MPI library on
4 processorgust type setenv AUTGCOMMAMBGS -m" and setenv AUTCCOMMARBEFIX
“mpirun  -np 4" , and then usethe commandsin auto/2000/cmdsnormally. The previousex-
amplesassumedyou are using the csh shell or the tcsh shell, for other shellsyou should modify
the commandsappropriately.
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Chapter 2

Overview of Capabillities.

2.1 Summary.

AUTO cando a limited bifurcation analysisof algebraicsystems

flu,p) =0, f(,),u2R", (2.1)
and of systemsof ordinary di erential equation (ODES) of the form
W) = f(u(®),p), (., ),u() 2R, (2.2)

Here p denotesone or more free parameters.
It can also do certain stationary solution and wave calculations for the partial di erential
equation (PDE)
ur = Dugy + f(u,p),  f(, ) u() 2 R, (2.3)

where D denotesa diagonal matrix of diusion constarts. The basic algorithms usedin the
padkage, as well as related algorithms, can be found in Keller (1977), Keller (1986), Doedel,
Keller & Kernewez (1991s), Doedel,Keller & Kernewez(19915).

Below, the basiccapabilitiesof AUTO are speci ed in moredetail. Somerepresemative demos
are alsoindicated.

2.2  Algebraic Systems.
Speci cally, for (2.1) the programcan:

- Compute solution branches.
(Demo aby Run 1.)

- Locate branch points and automatically compute bifurcating branches.
(Demo pp2 Run 1.)

- Locate Hopf bifurcation points and cortinue thesein two parameters.
(Demo ab; Runs1 and5.)
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- Locate folds (limit points) and continue thesein two parameters.
(Demo ab; Runs 1,3,4.)

- Do ead of the above for xed points of the discretedynamical systemu*+9 = f(u*) p)
(Demo dd2)

- Find extrema of an objective function along solution branches and successigly cortinue
sud extremain more parameters.
(Demo opt.)

2.3 Ordinary Differential Equations.
For the ODE (2.2) the program can :

- Compute branchesof stable and unstable periodic solutionsand computethe Floquet mul-
tipliers, that determine stability, along thesebranches. Starting data for the computation
of periodic orbits are generatedautomatically at Hopf bifurcation points.

(Demo ab; Run 2.)

- Locate folds, branch points, period doubling bifurcations, and bifurcations to tori, along
branchesof periodic solutions. Branch switching is possibleat branch points and at period
doubling bifurcations.

(Demos tor, lor.)

- Continue folds and period-doubling bifurcations, in two parameters.
(Demos plp, pp3) The cortinuation of orbits of xed period is also possible. This is the
simplestway to compute curvesof homaclinic orbits, if the period is su cien tly large.
(Demo pp2)

- Do ead of the above for rotations, i.e., when someof the solution componerts are periodic
modulo a phasegain of a multiple of 2.
(Demo pen)

- Follow curves of homaclinic orbits and detect and cortinue various codimension-2 bifur-
cations, using the HomCort algorithms of Champneys& Kuznetsos (1994), Champneys,
Kuznetsosr & Sandstede(1996).

(Demos san mnt, kpr, cir, she rev)

- Locate extrema of an integral objective functional along a branch of periodic solutionsand
successigly cortinue sud extremain more parameters.
(Demo ops)

- Compute curves of solutionsto (2.2) on [0, 1], subject to generalnonlinear boundary and
integral conditions. The boundary conditions neednot be separated,i.e., they may involve
both «(0) and u(1) simultaneously The side conditions may also depend on parameters.
The number of boundary conditions plus the number of integral conditions neednot equal
the dimensionof the ODE, providedthereis a correspnding number of additional parameter
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2.4

variables.
(Demos exp int.)

Determine folds and branch points along solution branchesto the above boundary value
problem. Branch switching is possibleat branch points. Curvesof folds can be computed
in two parameters.
(Demos bvp, int.)

Parabolic PDEs.

For (2.3) the programcan:

Trace out branches of spatially homogeneoussolutions. This amourts to a bifurcation
analysis of the algebraicsystem(2.1). Howewer, AUTO usesa related systeminstead, in
order to enablethe detection of bifurcations to wave train solutions of given wave speed.
More precisely bifurcations to wave trains are detected as Hopf bifurcations along xed
point branchesof the related ODE

u'(2) = v(2),
V()= D! [c v(z) + f(u(z),p)], (2.4)

wherez = = ¢t , with the wave speedc speci ed by the user.
(Demo wav;, Run 2.)

Traceout branchesof periodic wave solutionsto (2.3) that emanatefrom a Hopf bifurcation
point of Equation 2.4. The wave speedc is xed alongsud a branch, but the wave length
L, i.e., the period of periodic solutionsto (2.4), will normally vary. If the wave length L
becomedarge, i.e., if a homaclinic orbit of Equation 2.4is approaded, then the wave tends
to a solitary wave solution of (2.3).

(Demo wav;, Run 3.)

Trace out branchesof wavesof xed wave length L in two parameters. The wave speedc
may be chosenas one of these parameters. If L is large then sud a corntinuation givesa
branch of appraximate solitary wave solutionsto (2.3).

(Demo wayv, Run 4.)

Do time ewlution calculations for (2.3), given periodic initial data on the interval [0, L].
The initial data must be speci ed on [0, 1] and L. must be set separatelybecauseof internal
scaling. The initial data may be givenanalytically or obtained from a previouscomputation
of wave trains, solitary waves, or from a previous ewlution calculation. Conversely if an
ewlution calculation results in a stationary wave then this wave can be used as starting
data for a wave cortinuation calculation.

(Demo wav, Run 5.)

Do time ewlution calculationsfor (2.3) subject to user-sgeci ed boundary conditions. As
above, the initial data must be speci ed on [0, 1] and the spaceinterval length L must be
speci ed separately Time ewlution computationsof (2.3) are adaptive in spaceandin time.
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Discretization in time is not very accurate: only implicit Euler. Indeed, time integration
of (2.3) hasonly beenincluded as a corvenienceand it is not very e cient. (Demos pdl,
pd2.)

- Compute curves of stationary solutions to (2.3) subject to user-spgeci ed boundary con-
ditions. The initial data may be given analytically, obtained from a previous stationary
solution computation, or from a time ewlution calculation.

(Demos pdl, pd2)

In connectionwith periodic waves, note that (2.4) is just a special caseof (2.2) and that its
xed point analysisis a special caseof (2.1). One advantage of the built-in capacity of AUTO to
deal with problem (2.3) is that the userneedonly specify f, D, and c. Another advantageis the
compatibility of output data for restart purposes.This allows switching badk and forth between
ewlution calculations and wave computations.

2.5 Discretization.

AUTO discretizes ODE boundary value problems (which includes periodic solutions) by the
method of orthogonal collocation using piecewisepolynomials with 2-7 collocation points per
meshinterval (de Boor & Swartz (1973)). The mesh automatically adapts to the solution to
equidistribute the local discretization error (Russell& Christiansen(1978)). The number of mesh
intervals and the number of collocation points remain constart during any given run, although
they may be changedat restart points. The implemertation is AUTO -speci c. In particular, the
choice of local polynomial basisand the algorithm for solving the linearized collocation systems
were speci cally designedfor usein numerical bifurcation analysis.
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Chapter 3
How to Run AUTO .

3.1 User-Supplied Files.

The user must preparethe two les descrited below. This can be donewith the GUI descriked
in Chapter 4, or independerily.

3.1.1 The equations-file XxXxX.c

A source le xxx.ccortaining the C subroutines func, stpnt, bcnd, icnd, fopt, and pvis.

Here xxxstandsfor a user-selectedchame. If any of thesesubroutinesis irrelevant to the problem
then its body neednot be completed. Examplesare in auto/2000/demos where, e.g., the le

ab/ab.c de nes a two-dimensionaldynamical system,and the le exp/exp.cde nes a boundary
value problem. The simplestway to createa new equations- le is to copy an appropriate demo
le. In GUI mode, this le can be directly loaded with the GUI-button Equations/New; see
SectionC.2.

3.1.2 The constants-file C.XxX

AUTO -constarts for xxx.carenormally expectedin a correspnding le c.xxx Speci c examples
include ab/c.aband exp/c.expin auto/2000/demos SeeChapter 5 for the signi cance of eah
constart.
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3.2 User-Supplied Subroutines.
The purposeof eat of the user-suppliedsubroutinesin the le xxx.cis described below.

- func : de nesthe function f(u,p) in (2.1), (2.2), or (2.3).

- stpnt : This subroutineis calledonly if IRS=0 (seeSection5.8.5for IRYS), which typically
is the casefor the rst run. It de nes a starting solution (u, p) of (2.1) or (2.2). The starting
solution should not be a branch point.

(Demos ab, exp frc, lor.)

- bend @ A subroutine bcend that de nes the boundary conditions.
(Demo exp kar.)

- icnd : A subroutine icnd that de nes the integral conditions.
(Demos int, lin.)

- fopt : A subroutine fopt that de nes the objective functional.
(Demos opt, ops)

- pvils : A subroutine pvis for de ning \solution measures".
(Demo pvl.)

3.3 Arguments of stpnt.

Note that the argumerts of stpnt depend on the solution type:

- When starting from a xed point or an analytically or numerically known space-depndert
solution, stpnt must have four argumerts, namely, (NDIM,U,PAR,]. Here T is the inde-
penden spacevariable which takesvaluesin the interval [0, 1]. T is ignoredin the caseof
xed points.

(Demosexpand ah.)

- Similarly, when starting from an analytically known time-periodic solution or rotation, the
argumerns of stpnt are (NDIM,U,PAR,}, where T denotesthe independert time variable
which takesvaluesin the interval [0, 1]. In this caseone must also specify the period in
PAR(11)

(Demostfrc, lor, pen)

- When using the @fccommand (Section A) for corversionof numerical data, stpnt must
have four argumerts, namely, (NDIM,U,PAR,T. In this caseonly the parametervaluesneed
to bede ned in stpnt. (Demoslor and pen)
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3.4 User-Supplied Derivatives.

If AUTO -constart JACequalsO then derivativesneednot be specied in func, bcnd, icnd,
and fopt ; seeSection5.2.4. If JAC=1lthen derivativesmust be given. This may be necessaryor
sensitive problems,and is recommendedor computationsin which AUTO generatesan extended
system. Examplesof user-suppliedderivatives can be found in demos dd2, int, plp, opt, and
ops

3.5 Output Files.

AUTO writes four output- les :

- fort.6 : A summary of the computation is written in fort.6, which usually correspndsto
the window in which AUTO is run. Only special, labeledsolution points are noted, namely
thoselisted in Table 3.1. The letter codesin the Table are usedin the screenoutput. The
numerical codesare usedinternally andin the fort.7 and fort.8 output- les describedbelow.

BP | (1) | Branch point (algebraic systems)

LP | (2) | Fold (algebraic systems)

HB | (3) | Hopf bifurcation

(4) | User-speci ed regular output point

UZ | (-4) | Output at user-speci ed parametervalue
LP | (5) | Fold (di erential equations)

BP | (6) | Branch point (di erential equations)
PD | (7) | Period doubling bifurcation

TR | (8) | Torus bifurcation

EP | (9) | End point of branch; normal termination
MX | (-9) | Abnormal termination; no convergence

Table 3.1: Solution Types.

- fort.7 : The fort.7 output- le cortains the bifurcation diagram. Its format is the sameas
the fort.6 (screen)output, but the fort.7 output is more extensiwe, as every solution point
has an output line printed.

- fort.8 : The fort.8 output- le cortains complete graphics and restart data for selected,
labeled solutions. The information per solution is generallymuch more extensiwe than that
in fort.7. The fort.8 output should normally be kept to a minimum.

- fort.9 : Diagnostic messages;ornvergencehistory, eigervalues,and Floquet multipliers are
written in fort.9. It is strongly recommendedhat this output be habitually inspected. The
amourt of diagnosticdata canbe cortrolled via the AUTO -constart 1ID ; seeSection5.9.2.

The userhassomecortrol over the fort.6 (screen)and fort.7 output via the AUTO -constart
IPLT (Section5.9.3). Furthermore, the subroutine pvls canbeusedto de ne \solution measures"
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which canthen be printed by \parameter overspeci cation”; seeSection5.7.10. For an example
seedemo pvl.

The AUTO -commands @sy @apand @dfcan be usedto manipulate the output- les
fort.7, fort.8, and fort.9. Furthermore, the AUTO -command @Ibcan be usedto delete and
relabel solutions simultaneouslyin fort.7 and fort.8. For details seeSectionA.

The graphicsprogram PLAUT canbe usedto graphically inspectthe datain fort.7 and fort.8;
seeChapter B.
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Chapter 4

Command Line User Interface.

4.1 Typographical Conventions

This chapter usesthe following corvertions. All code exampleswill be in in the following font.

AUTO>copydemo("ab™)
Copying demoab ... done

To distinguish commandswhich are typed to the Unix shell from those which are typed to
the AUTO 2000commandline userinterface (CLUI) we will usethe following two prompts.
> Commandswhich follow this prompt are for the Unix shell.
AUTO>» Commandswhich follow this prompt are for the AUTO 2000CLUI.

4.2 General Overview.

The AUTO 2000command line user interface (CLUI) is similar to the command languagede-
scribed in Section A in that it facilitates the interactive creating and editing of equations- les
and constarts- les. It di ers from the other commandlanguagein that it is basedon the object-
oriented scripting languagePython (seelutz (1996)) and provides extensive programming ca-
pabilities. This chapter will provide documerntation for the AUTO 2000 CLUI commands,but
is not intended as a tutorial for the Python language. We will attempt to make this chapter
self contained by describingall Python constructs that we usein the examples,but for more
extensive documertation on the Python language,including tutorials and pointers to further
documertation, pleaseseelutz (1996) or the web page http://www.python.org which contains
an excellen tutorial at http://www.python.org/doc/current/tut/tut.html.

To usethe CLUI for a newequation,changeto an empty directory. For an existing equations-
le, changeto its directory. (Do not activate the CLUI in the directory auto/2000 or in any of
its subdirectories.) Then type

auto.

If your command seart path has been correctly set (see Section 1.2), this command will
start the AUTO 2000CLUI interactive interpretor and provide you with the AUTO 2000CLUI
prompt.
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> auto

Initializing

Python 1.5.2 (1, Feb 1 2000, 16:32:16) [GCCegcs-2.91.66 19990314/Linux
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
(AUTOlInteractiveConsol e)

AUTO>

Figure 4.1: Typing auto at the Unix shell prompt starts the AUTO 2000CLUI.

In addition to the examplesin the following sectionsthere are se\eral examplescripts which
can be found in auto/2000/demos/python and are listed in Table 4.1. These scripts are fully
annotated and provide good examplesof how AUTO 2000CLUI scripts are written. The scripts
in auto/2000/demos/python/n-body are esyially lucid examplesand preform variousrelated parts
of a calculation involving the gravitional N-body problem. Scripts which endin the sux .auto
are called\basic" scripts and canbe run by typing auto scripthname.auto . The scripts shav in
Section4.3and Section4.5 are examplesof basicscripts. Scripts which endin the su x .xautoare
called \expert" scripts and can be run by typing autox scriptname.xauto . More information
on expert scripts can be found in Section4.6. Seethe README le in that directory for more
information.

4.3 First Example

We beginwith a simple exampleof the AUTO 2000CLUI. In this examplewe copy the ab demo
from the AUTO 2000installation directory and run it. For moreinformation on the ab demosee
Section7.2. The commandslisted in Table4.2will copy the demo les to your work directory and
run the rst part of the demo. The results of running thesecommandsare showvn in Figure 4.2.

Let usexaminemorecloselywhat action eat of the commandsperforms. First, copydemo(‘ab’)
(Section4.13.7in the reference)copiesthe les in $AUTO_DIR/demo/abinto the work directory.

Next, load(equation="ab")  (Section4.13.33in the reference)informs the AUTO 2000CLUI
that the name of the userde ned function le is ab.c The commandload is one of the most
commonlyusedcommandsin the AUTO 2000CLUI, sinceit readsand parsesthe user les which
are manipulated by other commands.The AUTO 2000CLUI storesthis setting until it is changed
by a command, sud as another load command. The idea of storing information is one of the
ideasthat setsthe CLUI apart from the commandlanguagedescribed in SectionA.

Next, load(constants='ab.1' ) parsesthe AUTO constarts le c.ab.1and readsit into
memory. Note that changes to the file c.ab.l after it has been loaded in will not be used by
AUTO 2000 unless it is loaded in again after the changes are made.

Finally, run() (Section4.13.31in the reference)usesthe userde ned functions loadedby the
load(equation="ab’) command,andthe AUTO constarts loadedby the load(constants="'ab.1' )
to run AUTO 2000.

Figure 4.2 shovedtwo of the le typesthat the load commandcanreadinto memory, namely
the user de ned function le and the AUTO constarts le (Section 3.1). There are two other
les typesthat can be read in using the load command, and they are the restart solution le
(Section 3.5) and the HomCort parameter le (Section 15.2).
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Script Description
demol.auto The demoscript from Section4.3.
demo2.auto The demoscript from Section4.5.

userScript.xauto

The expert demoscript from Figure 4.11.

userScript.p/

The loadableexpert demoscript from Fig-
ure 4.12.

fullT est.auto

A script  which uses the ertire
AUTO 2000 command set, except for
the plotting commands.

plotter.auto

A demonstration of some of the plotting
capabilities of AUTO 2000.

fullT est.auto

A script which implemerts the tutorial
from Section7.2.

n-body/compute _lagrangepoints_family.auto

A basicscript which computesand plots all
of the \Lagrange points” as a function of
the ratio of the massef the two planets.

n-body/compute _lagrangepoints_0.5.auto

A basic script which computesall of the
\Lagrange points" for the casewhere the
massesof the two planets are equal, and
savesthe data.

n-body/compute_periodic_family.xauto

An expert script which starts at a
\Lagrange point" computed by com-
pute_lagrangepoints_0.5.auto and cortin-
uesin the ratio of the masseauntil a spec-
ied massratio is readed. It then com-
putes a family of periodic orbits for eah
pair of purely complexeigervalues.

n-body/to _matlab.xauto

A script which takes a set of
AUTO 2000 data les and creates a
set of les formatted for importing into
Matlab for either plotting or further
calculations.

Table 4.1: The various demonstration scripts for the AUTO 2000CLUI.
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Unix-COMMAND ACTION
auto start the AUTO 2000CLUI
AUTO 2000CLUI COMMAND | ACTION
copydemo(‘ab’) copy the demo les to the work directory

load(equation="ab’)
load(constants="ab.1")

load the lename ab.cinto memory
load the contents of the le r.ab.linto memory

run() run AUTO 2000with the current setof les
Table 4.2: Running the demo ab les.
> auto
Initializing

Python 1.5.2 (#1, Feb 1 2000, 16:32:16)
(egcs- on linux-i386
Copyright 1991-1995 Stichting
(AUTOlnteractiveConso le)
AUTO>copydemo(‘ab")

Copying demoab ... done
AUTO>oad(equation="ab")
Runner configured
AUTO>oad(constants="ab.1’)
Runner configured

AUTO>run()

gcc -O -DPTHREAD® -lI/home/amavisitors/red
gcc -O ab.o -0 ab.exe /home/amavisitors/redr

[GCCegcs-2.91.66 19990314/Linux

Mathematisch Centrum, Amsterdam

rod/ src/ auto/ 2000/i ncl ude -c ab.c
od/s rc/auto/2000/1li b/* .o

-Ipthread  -L/home/amavisitors/red rod/src/ auto/ 2000/ ib -lauto f2c  -lm

Starting ab ...
1 1 EP 1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
1 33 LP 2 1.057390E-01 1.484391E+00 3.110230E-01 1.451441E+00
1 70 LP 3 8.893185E-02 3.288241E+00 6.889822E-01 3.215250E+00
1 90 HB 4 1.308998E-01 4.271867E+00 8.950803E-01 4.177042E+00
1 92 EP 5 1.512417E-01 4.369748E+00 9.155894E-01 4.272750E+00
Total Time 9.502E-02

ab ... done

AUTO>

Figure 4.2: Typing auto at the Unix shell prompt starts the AUTO 2000CLUI. The rest of the
commandsare interpreted by the AUTO 2000CLUI.
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Note that the namegivento the load commandis not the sameasthe lename which is read
in, for exampleload(constants='ab.1 ') readsin the le c.ab.1 This di erence is a result of
the automatic transformation of the lenames by the AUTO 2000CLUI into the standard names
usedby AUTO 2000. The standard lename transformations are show in Table 4.3.

Long name Short name | Nameertered | Transformed le name
equation e foo foo.c
constarts c foo c.foo
solution S foo s.foo
bifurcationDiagram | b foo b.foo
diagnostics d foo d.foo
homcort h foo h.foo

Table 4.3: This table shows the standard AUTO 2000CLUI lename translations. In load and
run commandseither the long name or the short name may be usedfor loading the appropriate
les.

Sincethe load commandis socommon,there are various shorthand versionsof it. First, there
are short versionsof the various argumerts as showvn in Table 4.3. For example,the command
load(constants="ab.1' ) canbeshortenedto load(c='ab.1") . Next, seweraldierent les may
be loadedat onceusing the sameload command. For example,the two commandsin Figure 4.3
have the samee ect asthe singlecommandin Figure 4.4.

AUTO>oad(e="ab")
Runner configured
AUTO>oad(c="ab.1)
Runner configured

Figure 4.3: Loading two les individually.

AUTO>oad(e="ab',c="ab.1")
Runner configured

Figure 4.4: Loading two les at the sametime.

Also, since it is common that sewral les will be loaded that have the same base name
load('ab’) performsthe sameaction asload(e="ab',c="ab’,s= ‘ab' ,h="ab) . Note, for the
commandload(‘ab’) it is only requiredthat ab.cand c.abexist; s.aband h.abare optional, and
if they do not exist, no error messagewill be given.

4.4  Scripting

Section4.3 shoved commandsbeing interactively ertered at the AUTO 2000CLUI prompt, but
sincethe AUTO 2000CLUI is basedon Python onehasthe ability to write scripts for performing
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sequence®f commandsautomatically. A Python script is very similar to the interactive mode
shavn in Section 4.3 except that the commandsare placedin a le and read all at once. For
example,if the commandsfrom Figure 4.2 where placedinto the le demol.autpin the format
shown in Figure 4.5, then the commandscould be run all at onceby typing auto demol.auto.
SeeFigure 4.6 for the full output.

copydemo(‘ab’)
load(equation="ab")
load(constants='ab.1")
run()

Figure 4.5: The commandsfrom Figure 4.2 and they would appearin a AUTO 2000CLUI script
le. The sourcefor this script can be found in $AUTO_DIR/demos/python/demol.auto

4.5 Second Example

In Section4.3 we shoved a very simple AUTO 2000CLUI script, in this Sectionwe will descrike
a more complexexample,which introducesseeral new AUTO 2000CLUI commandsas well as
somebasic Python constructs for conditionals and looping. We will not provide an exhaustive
referencefor the Python language,but only the very basics. For more extensive documertation
we refer the readerto Lutz (1996) or the web page http://www.python.org. In this sectionwe
will describe ead line of the script in detail, and the full text of the script is in Figure 4.7.

The script beginswith a section, extracted into Figure 4.8, which performs a task identical
to that shown in Figure 4.2 exceptthat the shorthand discussedn Section4.3 is usedfor the Id
command.

The next sectionof the script, extractedinto Figure 4.9, introducesthree newAUTO 2000CLUI
commands.First, sv('bvp’) (Section4.13.6in the referenceravesthe resultsofthe AUTO 2000run
into les usingthe basenamebvp and the lename extensionsin Table 4.3. For example,in this
casethe bifurcation diagram le fort.7 will be saved asb.bvp the solution le fort.8 will be saved
as s.bvp and the diagnostics le fort.9 will be saved as d.bvp Next, ld(s="bvp’) loads the
solution le s.bvpinto memory sothat it can be usedby AUTO 2000for further calculations.

Up to this point all of the commandspreserted have had analogsin the commandlanguage
discussedin Section A, and the AUTO 2000 CLUI has been designedin this way to make it
easyfor usersto migrate from the old commandlanguageto the AUTO 2000CLUI. The next
command, namely data = sl('bvp’) (Section 4.13.19in the reference)is the rst command
which has no analogin the old command language. The commandsl('bvp’)  parsesthe le
s.bvpand returns a python object which encapsulateghe information contained in the le and
preserts it to the userin an easyto useformat. Accordingly, the commanddata = sl('bvp’)
storesthis easyto userepresemation of the object in the Python variable data. Note, variables
in Python are di erent from thosein languagessuc as C in that their type doesnot have to
be declaredbefore they are created. Finally, ch("NTST",50) (Section4.13.32in the reference)
changesthe NTSTvalue to 50 (seeSection5.2.1). To be precise,the commandch("NTST",50)
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> cat demol.auto
copydemo(‘ab")
load(equation="ab")
load(constants='ab.1")
run()

> auto demol.auto

Initializing

Copying demoab ... done

Runner configured

Runner configured

gcc -O -DPTHREAD® -l/lhome/amavisitors/r  edrod/s rc/a uto/2 000/ in clu de -c ab.c
gcc -O ab.o -0 ab.exe /home/amavisitors/redro  d/src/ auto/ 2000/l ib /*. o -Ipthread
-L/home/amavisitors/re  drod/src/ auto/ 2000/l ib -lauto_f2c  -Im

Starting ab ...
1 1 EP 1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
1 33 LP 2 1.057390E-01 1.484391E+00 3.110230E-01 1.451441E+00
1 70 LP 3 8.893185E-02 3.288241E+00 6.889822E-01 3.215250E+00
1 90 HB 4 1.308998E-01 4.271867E+00 8.950803E-01 4.177042E+00
1 92 EP 5 1.512417E-01 4.369748E+00 9.155894E-01 4.272750E+00

Total Time 8.740E-02
ab ... done
>

Figure 4.6: This Figure starts by listing the cortents of the demol.autole usingthe Unix cat
command. The le is then run through the AUTO 2000CLUI by typing auto demol.autoand
the output is shown.

only modi es the \in memory" version of the AUTO 2000 constarts created by the Id('bvp")
command. The original le c.bvpis not modi ed.

The next section of the script, extracted into Figure 4.10, shows as example of looping and
conditionals in an AUTO 2000 CLUI script. The rst line for solution in data: is the
Python syntax for loops. The data variable was de ned in Figure 4.9 to be the parsedver-
sion of an AUTO 2000fort.8 le, and accordingly cortains a list of the solutions from the fort.8
le. The commandfor solution in data: isusedto loop overall solutionsin the data variable
by setting the variable solution to be one of the solutionsin data and then calling the rest of
the codein the block.

Python diers from most other computerlanguagesn that blocks of code are not de ned by
somedelimiter, such asfg in C, but by indentation. In Figure 4.7 the commandsplot('bvp’)
and wait() arenot part of the loop, becausehey are indented di erently. This canbe confusing
rst time usersof Python , but it hasthe advantage that the code is forcedto have a consister
indentation style.

The next commandin the script, if solution["Type name"] == "BP": is a Python condi-
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copydemo('bvp')

Id('bvp")

run()

sv('bvp)

Id(s="bvp")

data = sl('bvp")
ch("NTST",50)

for solution in data:

if solution["Type name'"] == "BP":
ch("IRS", solution["Label"])
ch("Isw", -1)
# Compute forward
run()
ap('bvp’)

# Compute back
ch("DS",-pr("DS"))
run()

ap(bvp’)

plot('bvp")
wait()

Figure 4.7: This Figure shavs a more complex AUTO 2000 CLUI script. The sourcefor this
script can be found in $AUTO_DIR/demos/python/demo2.auto

copydemo('bvp’)

Id(‘bvp")
run()

Figure 4.8: The rst part of the complexAUTO 2000CLUI script.

sv(‘bvp")
Id(s="bvp")

data = sl(bvp’)
ch("NTST",50)

Figure 4.9: The secondpart of the complexAUTO 2000CLUI script.
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tional. It examinesthe contents of the variable solution (which is oneof the entries in the array
of solutions data) and cheds to seeif the condition solution["Type name"] == "BP" holds.
For parsedfort.8 les Type nameBPcorresmpndsto a bifurcation point. Accordingly, the function
of this loop and conditional is to examineewery solution in the fort.8 le and run the following
commandsif the solution is a bifurcation point.

The next line is ch("IRS", solution["Label") which changesthe \in memory" version of
the AUTO 2000constarts le to setIRS (seeSection5.8.5) equalto the label of the bifurcation
point. Wethen usech("ISW", -1) to changethe AUTO 2000constart ISWto -1, which indicates
a brandh switch (seeSection5.8.3).

Wethen usearun() commandto perform the calculation of the bifurcating branch and then
appendthe data to the s.bvp b.bvp and d.bvp les with the ap('bvp’) command(Section4.13.1
in the reference).In addition, ascan be seenin Figure 4.10,the # characteris the Python com-
mert character. When the Python interpretor encourers a # character it ignoreseverything
from that characterto the end of the line.

Finally, we us ch("DS",-pr("DS"))  to changethe AUTO 2000initial step sizefrom positive
to negative, which allows us to compute the bifurcating branch in the other direction (seeSec-
tion 5.5.1). Running the AUTO 2000 calculation with the run() commandand appending the
data the appropriate les with the ap('bvp’) commandcompletesthe body of the loop.

for solution in data:

if solution["Type name'"] == "BP":
ch("IRS", solution["Label"])
ch("Isw", -1)

# Compute forward
run()

ap(bvp’)

# Compute back
ch("DS",-pr("DS"))
run()

ap(bvp’)

Figure 4.10: The secondpart of the complexAUTO 2000CLUI script.

Now that the section of script showvn in Figure 4.10 has nished computing the bifurcation
diagram, the command plot('bvp’) brings up a plotting window (Section 4.13.20in the ref-
erence),and the commandwait() causesthe AUTO 2000 CLUI to wait for input. You may
now exit the AUTO 2000 CLUI by pressingany key in the window in which you started the
AUTO 2000CLUL.

4.6 Extending the AUTO 2000 CLUI

The codein Figure 4.7 performeda very usefuland commonprocedure,it started an AUTO 2000cal-
culation and performedadditional cortinuations at every point which AUTO 2000detectedasa
bifurcation. Unfortunately, the script aswritten can only be usedfor the bvp demo. In this sec-
tion we will generalizethe script in Figure 4.7 for usewith any demo,and demonstratehow it can
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be imported bad into the interactive mode to createa new commandfor the AUTO 2000CLUI.
Seeral examplesof sud \expert" scripts can be found in auto/2000/demos/p/thon/n-body.
Just asloops and conditionals can be usedin Python , one can alsode ne functions. For ex-
ample, Figure 4.11is a functional versionof script from Figure 4.7. The changesare actually quite
minor. The rst line, from AUTOcIui import *, includesthe de nitions of the AUTO 2000CLUI
commands,and must be included in all AUTO 2000CLUI scripts which de ne functions. The
next line, def myRun(demo); beginsthe function de nition, and createsa function namedmyRun
which takesone argumert demo The rest of the script is the sameexceptthat it has beenin-
derted to indicate that it is part of the function de nition, and all occurrencesof string 'bvp'
have beenreplacedwith the variable demo Finally we have added a line myRun(bvp’) which
actually calls the function we have createdand runs the samecomputation asthe original script.

from AUTOclui import *
def myRun(demo):
copydemo(demo)

Id(demo)

run()

sv(demo)

Id(s=demo)

data = sl(demo)
ch("NTST",50)

for solution in data:

if solution["Type name"] == "BP":
ch("IRS", solution["Label")
ch("ISW", -1)

# Compute forward
run()

ap(demo)

# Compute back
ch("DS",-pr("DS"))
run()

ap(demo)

plot(demo)
wait()

myRun(‘bvp’)

Figure 4.11: This Figure shovs a complexAUTO 2000CLUI script written as a function. The
sourcefor this script can be found in $AUTO_DIR/demos/python/userScript.xauto

While the script in Figure 4.11is only slightly di erent then the one shoved in Figure 4.7 it
is much more powerful. Not only canit be usedasa script for running any demo by modifying
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the last line, it can be read bad into the interactive mode of the AUTO 2000CLUI and used
to create a new command, as in Figure 4.12. First, we createa le called userScript.p which
contains the script from Figure 4.11, with one minor modi cation. We want the function only
to run when we useit interactively, not whenthe le userScript.p is read in, sowe remove the
last line wherethe function is called. We start the AUTO 2000CLUI with the Unix command
auto, and oncethe AUTO 2000CLUI is running we usethe commandfrom userScript import

*  to import the le userScript.p into the AUTO 2000CLUI. The import commandmakesall
functions in that le available for our use (in this casemyRuris the only one). It is important
to note that from userScript import * doesnot usethe .py extensionon the le name. After
importing our new function, we may useit just like any other function in the AUTO 2000CLUI,

for exampleby typing myRun('bvp’) .

4.7 Bifurcation Diagram Files

Using the commandParseDiagramié command (Section 4.13.18in the reference)the user can
parse and read into memory an AUTO 2000 bifurcation diagram le. For example,the com-
mand commandParseDiagrambé (' ab) would parsethe le b.ab(if you are usingthe standard
lename translations from Table 4.3) and return an object which encapsulatesthe bifurcation
diagramin an easyto useform.

The object returned by the commandParseDiagramké is a list of all of the solutionsin the
appropriate bifurcation diagram le, and ead solution is a Python dictionary with entries for
ead pieceof data for the solution. For example,the sequencef commandsin Figure 4.13, prints
out the label of the rst solution in a bifurcation diagram. The queriable parts of the object are
listed in Table 4.4.

The individual elemens of the array may be accessedn two ways, either by index of the
solution using the [] syntax or by label number using the () syntax. For example, assume
that the parsedobject is cortained in a variable data. The rst solution may be accessedising
the command data[0] , while the solution with label 57 may be accessedising the command
data(57) .

This classhastwo methods that are particularily useful for creating data which can be used
in other programs. First, there is a method called toArray which takesa bifurcation diagram
and returns a standard Python array. Second,there is a method called writeRawFilename
which will create a standard ASCII le which cortains the bifurcation diagram. For example,
we again assumethat the parsedobject is corntained in a variable data. If one wanted to have
the bifurcation diagram returned as a Python array one would type data.toArray() . Similar-
ily, if onewanted to write out the bifurcation diagram to the le outputfile  onewould type
data.writeRawFilename (' outp utfi le ") .

4.8 Solution Files

Using the commandParseSolutiorFile command(Section4.13.19in the reference)the usercan
parseand readinto memory an AUTO 2000bifurcation solution le. For example,the command
commandParseSolutionH e('a b') would parsethe le b.ab(if you are using the standard le-
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> cp \$AUTO\ DIR/python/de mdu serScri pt.py .

> |s

userScript.py

> cat userScript.py

# This is an example script for the AUTO200@ommandine user

# interface. See the "Command.ine User Interface” chapter in the
# manual for more detalils.

from AUTOclui import *

def myRun(demo):
copydemo(demo)

Id(demo)

run()

sv(demo)

Id(s=demo)

data = sl(demo)
ch("NTST",50)

for solution in data:

if solution["Type name'"] == "BP":
ch("IRS", solution["Label"])
ch("Isw", -1)
# Compute forward
run()
ap(demo)

# Compute back
ch("DS",-pr("DS"))

run()
ap(demo)
plot(demo)
wait()
> auto
Initializing

Python 1.5.2 (#1, Feb 1 2000, 16:32:16) [GCCegcs-2.91.66 19990314/Linux
(egcs- on linux-i386

Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
(AUTOlnteractiveConso le)

AUTO>from userScript import *

AUTO>myRun('bvp’)

Figure 4.12: This Figure shaws the functional versionof the AUTO 2000CLUI from Figure 4.11
beingusedasan extensionto the AUTO 2000CLUI. The sourcecode for this script canbe found
in $AUTO_DIR/python/demo/userScript.p
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AUTO>data=dg(‘'ab’)

Parsed file: b.ab
AUTO>print data[0]

{LAB" 6, 'TY name" 'EP/,
'BR: 2, 'PT:
AUTO>print
6

AUTO>

‘data’;
1, 'TY number: 9}
data[O]['LAB']

[0.0,

0.0, 0.0, 0.0],

'section’: 12,

Figure 4.13: This gure shows an exampleof parsing a bifurcation diagram. The rst command,

data=dg(‘'ab’)
command,print

, readsin the bifurcation diagram and puts it into the variable data. The second
data[0] prints out all of the data about the rst solution in the list. The third

command,print data[O]['LAB'] , prints out the label of the rst point.
Query string | Meaning
TY name The short namefor the solution type (seeTable 4.5).
TY number | The number of the solution type (seeTable 4.5).
BR The branch number.
PT The point number.
LAB The solution label, if any.
section A uniqueiderti er for ead branch in a le with multiple branches.
data An array which cortains the AUTO 2000output.

Table 4.4: This table shaws the strings that can be usedto query a bifurcation diagram object

and their meanings.

Type Short Name | Number
No Label No Label
Branch point (algebraic problem) BP 1
Fold (algebraic problem) LP 2
Hopf bifurcation (algebraicproblem) | HB 3
Regular point (every NPR steps) RG 4
Userrequestedpoint uz -4
Fold (ODE) LP 5
Bifurcation point (ODE) BP 6
Period doubling bifurcation (ODE) PD 7
Bifurcation to invarient torus (ODE) | TR 8
Normal begin or end EP 9
Abnormal termination MX -9

Table4.5: This table shavsthe the varioustypesof points that canbe in solution and bifurcation

diagram les, with their short namesand numbers.
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nametranslations from Table4.3) and return an object which encapsulateshe bifurcation solution
in a easyto useform.

The object returned by the commandParseSolutiorfile is a list of all of the solutionsin the
appropriate bifurcation solution le, and ead solution is a Python dictionary with entries for
eadt pieceof data for the solution. For example,the sequencef commandsin Figure 4.14, prints
out the label of the rst solution in a bifurcation solution. The queriable parts of the object are
listed in Table 4.6.

AUTO>data=sl()

Parsed file:  fort.8
AUTO>print data[0]
'‘Branch number'. 2

1SW: 1

'‘Label: 6
'NCOL": 0
'NTST: O

'Parameters:  [0.0, 14.0, 2.0, 0.0, 0.0, 0.0]
'Point  number: 1

"Type name'. 'EP

‘Type number: 9

'p: [0.0, 14.0, 2.0, 0.0, 0.0, 0.0]
'‘parameters:  [0.0, 14.0, 2.0, 0.0, 0.0, 0.0]
AUTO>print data[O]['Label’]

6

AUTO>data[0]["data"][0]

{t" 0.0, 'u: [0.0, 0.0}

Figure 4.14: This gure shaws an exampleof parsing a bifurcation solution. The rst command,
data=dg(‘'ab’) , readsin the bifurcation solution and puts it into the variable data. The second
command,print data[0] prints out all of the data about the rst solution in the list. The third
command,print data[O]['Label] , prints out the label of the rst point. The last command
prints the value of the solution at the rst point of the rst solution.

The individual elemens of the array may be accessedn two ways, either by the index of
the solution using the [] syntax or by label number using the () syntax. For example,sssume
that the parsedobject is cortained in a variable data. The rst solution may be accessedising
the command data[0] , while the solution with label 57 may be accessedising the command
data(57) .

This classhastwo methods that are particularily useful for creating data which can be used
in other programs. First, there is a method called toArray which takes a solution and re-
turns a standard Python array. Second,there is a method called writeRawFilename which will
create a standard ASCIl le which cortains the solution. The rst elemen of ead row will
be the 't value and the following elemerts will be the values of the componerts at that 't'
value. For example, we again assumethat the parsedobject is corntained in a variable data.
If one wanted to have the solution with label 57 returned as a Python array one would type
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Query string Meaning
data An array which cortains the AUTO 2000output.
The number of the branch to which the solution belongs.

Branch number

ISW The ISW value usedto start the calcluation. SeeSec-
tion 5.8.3.

Label The label of the solution.

NCOL The number of collocation points usedto compute the
solution. SeeSection5.3.2.

NTST The number of meshintervals usedto computethe solu-
tion. SeeSection5.3.1.

Parameters The value of all of the parametersfor the solution.

Point number | The number of the point in the given branch.

A short string which descrikes the type of the solution
(seeTable 4.5).

A number which descrikesthe type of the solution (see
Table 4.5).

The value of all of the parametersfor the solution. (This
is an alias for 'Parameter’).

The value of all of the parametersfor the solution. (This
is an alias for 'Parameter’).

Type name

Type number

parameters

Table 4.6: This table shows the strings that can be usedto query a bifurcation solution object
and their meanings.
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data(57).toArray() . Similarily, if onewanted to write out the solution to the le outputfile
onewould type data(57).writeRawFil enane(‘outputfi le') .

4.9 The .autac File

Much of the default behavior of the AUTO 2000CLUI can be cortrolled by the .autac le. The
.autac le can exist in either the main AUTO 2000directory, the usershome directory, or the
current directory. For any option which is de ned in more then one le, the .autac le in the
current directory (if it exists) takes precedencefollowed by the .autac le in the usershome
directory (if it exists), and then the .autac le in the main AUTO 2000directory. Hence,options
may be de ned on either a per directory, per user, or global basis.

The rst section of the .autac le beginswith the line [AUTOQcommandliases] and this
sectionde nes short names,or aliasesfor the AUTO 2000CLUI commands.Ead line thereafter
is a de nition of a command, similiar to branchPoint =commandQueryBranchidd . The right
hand side of the assignmen is the internal AUTO 2000CLUI namefor the command,while the
left hand side is the desiredalias. Aliasesand internal namesmay be usedinterchangably but
the intention is that the aliaseswill be more commonlyused. A default set of aliasesis provided,
and thesealiaseswill be usedin the examplesin the rest of this Chapter. The default aliasesare
listed in the referencein Section4.13.

NOTE: Defaults for the plotting tool may be included in the .autorc file as well. The docu-
mentation for this is under developement, but the file SAUTO_DIR/.autorc contains examples of
how these options may be set.

4.10 Two Dimensional Plotting Tool

The two dimensional plotting tool can be run by using the commandplot() to plot the les
fort.7 and fort.8 after a calculation has beenrun, or using the command plot(‘foo’) to plote
the data in the les s.foo and b.foo.

The meru bar provides two buttons. The File button brings up a meru which allows the
userto savethe current plot asa Postscript le or to quit the plotter. The Options button allows
the plotter con guration optionsto be modi ed. The available options are decribed in Table 4.7.
In addition, the options can be set from within the CLUI. For example,the set of commands
in Figure 4.15 shows how to create a plotter and changeits badkground color to black. The
demo script auto/2000/demo/python/plotter.py cortains seeral examplesof changing options in
plotters.

Pressingthe right mousebutton in the plotting window brings up a meru of buttons which
control seeral aspects of the plotting window. The top two toggle buttons cortrol what func-
tion the left button performs. The print value button causesthe left button to print out the
numerical value underneaththe pointer whenit is clicked. When zoombutton is chedked the left
mousebutton may be held down to createa box in the plot. When the left button is releasedhe
plot will zoom to the selectedportion of the diagram. The unzoombutton returns the diagram
to the default zoom. The Postscript button allows the userto save the plot asa Postscript le.
The Configure...  button brings up the dialog for setting con guration options.
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AUTO>plot=pl()

Created plotter
AUTO>plot.config(bg="black" )
AUTO>

Figure 4.15: This exampleshows how a plotter is created,and how the badground color may be
changedto black. All other con guration options are set similarily. Note, the above commands
assumethat the les fort.7 and fort.8 exist in the current directory.

Query string Meaning

badground The badkground color of the plot.
bifurcation_column.defaults | A set of bifurcation columnsthe useris likely to use.
bifurcation_diagram A parsedbifurcation diagram le to plot.
bifurcation_diagram_lename | The lename of the bifurcation diagramto plot.
bifurcation_symbol The symbol to usefor bifurcation points.

bifurcation x The column to plot alongthe X-axis for bifurcation diagrams.
bifurcation_y The column to plot alongthe Y-axis for bifurcation diagrams.
color list A list of colorsto usefor multiple plots.

decorations Turn onor o the axis, tick marks, etc.

error_symbol The symbol to usefor error points.

foreground The badkground color of the plot.

grid Turn on or o the grid.

hopf_symbol The symbol to usefor Hopf bifurcation points.

index An array of indiciesto plot.

label An array of labelsto plot.

label_defaults A set of labelsthat the useris likely to use.

limit _point_symbol The symbol to usefor limit points.

mark_t The t value to marker with a small ball.

maxx The upper bound for the x-axis of the plot.

maxy The upper bound for the y-axis of the plot.

minx The lower bound for the x-axis of the plot.

miny The lower bound for the y-axis of the plot.
period_doubling_symbol The symbol to usefor period doubling bifurcation points.
runner The runner object from which to get data.
specialpoint_colors An array of colorsusedto mark special points.
special point _radius The radius of the spheresusedto mark special points.
solution A parsedsolution le to plot.
solution_column._defaults A set of solution columnsthe useris likely to use.
solution_ lename The lename of the solution to plot.

solution_x The columnto plot alongthe X-axis for solutions.
solution.y The columnto plot alongthe Y-axis for solutions.
symbol_font The font to usefor marker symbols.
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symbol_color The color to usefor the marker symbols.

tick_label_ template A string which de nes the format of the tick labels.
tick_length The length of the tick marks.

torus_symbol The symbol to usefor torus bifurcation points.

type The type of the plot, either \solution" or \bifurcation".
userpoint_symbol The symbol to usefor userde ned output points.

xlabel The label for the x-axis.

xmargin The margin betweenthe graph and the right and left edges.
xticks The number of ticks on the x-axis.

ylabel The label for the y-axis.

ymargin The margin betweenthe graph and the top and bottom edges.
yticks The number of ticks on the y-axis.

Table4.7: This table shavsthe optionsthat canbe setfor
the AUTO 2000CLUI two dimensionalplotting window
and their meanings.

4.11 Three Dimensional Plotting Tool

NOTE: the documentation in this section is under developement.

The AUTO 2000 three dimensional plotting tool can use DataViewer or Openinvertor for
rendering three dimensionalrepresemations of bifurcation diagramsand solutions and is under
active dewelopmen. Neither DataViewer nor Openlnvertor are provided with AUTO 2000and
must be downloadedseperately. If you areinterestedin the three dimensionalplotting tool please
conact redrod@acm.org.
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4.12

In this sectionwe have createda table of all of the AUTO 2000CLUI commands,their abbrevia-
tions, and a oneline description of what function they perform. Each commandmay be entered

Quick Reference

usingits full nameor any of its aliases.

Command Aliases Description
commandAppend ap append Append data les.
commandCat cat Print the cortents of a le
commandCd cd Changedirectories.
commandClean cleancl Cleanthe current directory.
commandCoyAndLoadDemo dm demo Copy a demo into the cur-
rent directory and load it.
commandCopyDataFiles copy cp Copy data les.
commandCopyDemo copydemo Copy a demo into the cur-
rent directory.
commandCogyFortFiles SV save Save data les.
commandCreateGUI gui Shov AUTOs graphicaluser
interface.
commandDeleteDataFiles deletedl Delete data les.

commandDeletelprtFiles

df deletefort

Clear the current directory
of fort les.

commandDouble double db Double a solution.

commandirteractiveHelp man help Get helponthe AUTO com-
mands.

commandLs Is List the current directory.

commandMoaoveFiles move mv Move data-les to a new

name.

commandPRarseConstaisFile

cn constartsget

Get the current cortinuation
constarts.

commandRarseDiagramAndSolutionFile

bt diagramandsolu-
tionget

Parse both bifurcation dia-
gram and solution.

commandRarseDiagramFile

dg diagramget

Parsea bifurcation diagram.

commandPRarseSolutionFile

sl solutionget

Parsesolution le:

commandPlotter

p2 pl plot

2D plotting of data.

commandPlotter3D

plot3 p3

3D plotting of data.

commandQueryBrantPoint

br bp branchpoint

Print the \branch-point
function”.

commandQueryEigemalue

eigervalue ev eg

Print eigervalues of Jaco-
bian (algebraic case).

commandQueryFlguet 0 quet Print the Floquet multipli-
ers.
commandQueryHopf hb hp hopf Ip Print the value of the \Hopf

function".
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commandQuerylterations iterations it Print the number of Newton
interations.
commandQueryLimitpoint Im limitp oint Print the value of the \limit
point function”.
commandQueryNote nt note Print notesin info le.
commandQuerySecondary&iod sc secondarymriod | Print value of \secondary-
sp periodic bif. fcn".

commandQueryStepsize

ssstepsizest

Print  cortinuation step
sizes.

commandRun

rrun rn

Run AUTO.

commandRunnerCon gFort2

changeconstah cc ch

Modify cortinuation con-
stants.

commandRunnerLoadName

Id load

Load les into the AUTO
runner.

commandRunnerPrinFort2

pc pr printconstart

Print cortinuation parame-
ters.

commandShell shell Run a shell command.

commandTriple tr triple Triple a solution.

commandUserData us userdata Covert user-supplied data
les.

commandWAit wait Wait for the userto enter a

key.
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4.13 Reference

4.13.1 commandAppend

Purpose

Append data les.

Description

TypecommandAppend('xxx’) to appendthe output- les fort.7, fort.8, fort.9, to exist-
ing data- les s.xxx, b.xxx, and d.xxx (if you areusingthe default lename templates).
Type commandAppend('xxx','yyy') to append existing data- les s.xxx, b.xxx, and
d.xxx to data- les s.yyy, b.yyy, and d.yyy (if you are using the default lename
templates).

Aliases

ap append

4.13.2 commandCat

Purpose

Print the cortents of a le

Description

Type 'commandCat xxx' to list the contents of the le 'xxx'. This calls the Unix
function 'cat' for readingthe le.

Aliases

cat
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4.13.3 commandCd

Purpose

Changedirectories.

Description

Type'commandCdxxx' to changeto the directory 'xxx'. This commandunderstands
both shell variablesand homedirectory expansion.

Aliases

cd

4.13.4 commandClean

Purpose

Cleanthe current directory.

Description
Type commandClean()to cleanthe current directory. This commandwill deleteall

les of the form fort.*, *.0, and *.exe.

Aliases

cleancl
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4.13.5 commandCopyAndLoadDemo

Purpose

Copy a demointo the current directory and load it.

Description

Type commandCoyAndLoadDemo('xxx") to copy all les from
auto/2000/demos/xxx to the current user directory. Here 'xxx' denotes a
demo name; e.g., 'abc’. Note that the 'dm' command also copiesa Make le to
the currernt user directory. To avoid the overwriting of existing les, always run
demosin a cleanwork directory. NOTE: This commandautomatically performsthe
commandRunnerLoadNameommandas well.

Aliases

dm demo

4.13.6 commandCopyDataFiles

Purpose

Copy data les.

Description
Type commandCopyDataFiles('xxx','yyy') to copy the data- les c.xxx, d.xxx, b.xxx,

and h.xxx to c.yyy, d.yyy, b.yyy, and h.yyy (if you are using the default lename
templates).

Aliases

copy cp
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4.13.7 commandCopyDemo

Purpose

Copy a demointo the current directory.

Description

Type commandCopyDemo('xxx') to copy all les from auto/2000/demos/xxx to the
current user directory. Here 'xxx' denotesa demo name;e.g.,'abc’. Note that the
‘dm' command also copiesa Make le to the current user directory. To avoid the
overwriting of existing les, always run demosin a cleanwork directory.

Aliases

copydemo

4.13.8 commandCopyFortFiles

Purpose

Save data les.

Description

Type commandCopyFortFiles('xxx') to save the output- les fort.7, fort.8, fort.9, to
b.xxx, s.xxx, d.xxx (if you are using the default lename templates). Existing les
with thesenameswill be overwritten.

Aliases

SV save
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4.13.9 commandCreateGUI

Purpose

Shav AUTOs graphical userinterface.

Description

Type commandCreateGUI()to start AUTOs graphical userinterface.
NOTE: This commandis not implemerted yet.

Aliases

gui

4.13.10 commandDeleteDataFiles

Purpose

Delete data les.

Description

Type commandDeleteDataFiles('xxx')to deletethe data- les d.xxx, b.xxx, and s.xxx
(if you are usingthe default lename templates).

Aliases

deletedl|

45



4.13.11 commandDeleteFortFiles

Purpose

Clear the current directory of fort les.

Description

Type commandDeletelrtFiles() to cleanthe current directory. This commandwill
deleteall les of the form fort.*.

Aliases

df deletefort

4.13.12 commandDouble

Purpose

Double a solution.

Description

Type commandDouble()to double the solution in 'fort.7' and 'fort.8'.
Type commandDouble('xxx’) to double the solution in b.xxx and s.xxx (if you are
using the default lename templates).

Aliases

doubledb

46



4.13.13 commandInteractiveHelp

Purpose

Get help on the AUTO commands.

Description
Type 'help’ to list all commandswith a online help. Type 'help xxx' to get help for

command 'xxx'.

Aliases

man help

4.13.14 commandLs

Purpose

List the current directory.

Description

Type 'commandLs' to run the system’ls' commandin the current directory. This
commandwill acceptwhatever argumerts are acceptedby the Unix command’ls’.

Aliases

Is
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4.13.15 commandMoveFiles

Purpose

Move data- les to a new name.

Description

Type commandMaoveFiles('xxx','yyy') to move the data- les b.xxx, s.xxx, d.xxx, and
c.xxx to b.yyy, s.yyy, d.yyy, and c.yyy (if you are using the default lename tem-
plates).

Aliases

move mv

4.13.16 commandParseConstantsFile

Purpose

Get the current cortinuation constarts.

Description

Type commandRarseConstatsFile('xxx’) to get a parsedversionof the constarts le
c.xxx (if you are using the default lename templates).

Aliases

cn constartsget
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4.13.17 commandParseDiagramAndSolutionFile

Purpose

Parseboth bifurcation diagram and solution.

Description

Type commandRarseDiagramAndSolutionFile('xxx') to get a parsed version of the
diagram le b.xxx and solution le s.xxx (if you are using the default lename tem-
plates).

Aliases

bt diagramandsolutionget

4.13.18 commandParseDiagramFile

Purpose

Parsea bifurcation diagram.

Description

Type commandRarseDiagramFile('xxx') to get a parsedversion of the diagram le
b.xxx (if you are using the default lename templates).

Aliases

dg diagramget
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4.13.19 commandParseSolutionFile

Purpose

Parsesolution le:

Description

Type commandRarseSolutionFile('’xxx’) to get a parsed version of the solution le
s.xxx (if you are using the default lename templates).

Aliases

sl solutionget

4.13.20 commandPlotter

Purpose

2D plotting of data.

Description

Type commandPlotter('’xxx") to run the graphicsprogramfor the graphicalinspection
of the data- les b.xxx and s.xxx (if you are using the default lename templates).
The return value will be the handle for the graphicswindow.

Type commandPlotter() to run the graphics program for the graphical inspection
of the output- les 'fort.7' and 'fort.8'. The return value will be the handle for the
graphicswindow.

Aliases

p2 pl plot
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4.13.21 commandPlotter3D

Purpose

3D plotting of data.

Description

Type commandPlotter3D('xxx") to run the graphicsprogramfor the graphicalinspec-
tion of the data- les b.xxx and s.xxx (if you are usingthe default lename templates).
The return value will be the handle for the graphicswindow.

Type commandPlotter3D() to run the graphicsprogram for the graphical inspection
of the output- les 'fort.7" and 'fort.8'. The return value will be the handle for the
graphicswindow.

Aliases

plot3 p3

4.13.22 commandQueryBranchPoint

Purpose

Print the \branch-point function”.

Description

Type commandQueryBrantPoint() to list the value of the \branch-point function”
in the output- le fort.9. This function vanishesat a branch point.

Type commandQueryBranbPoint('xxx") to list the value of the \branch-point func-
tion" in the info le 'd.xxx'.

Aliases

br bp branchpoint

51



4.13.23 commandQueryEigenvalue

Purpose

Print eigervaluesof Jacobian(algebraic case).

Description

Type commandQueryEigermalue() to list the eigervalues of the Jacobianin fort.9.
(Algebraic problems.)

Type commandQueryEigemalue('’xxx’) to list the eigervaluesof the Jacobianin the
info le 'd.xxx'

Aliases

eigervalue ev eg

4.13.24 commandQueryFloquet

Purpose

Print the Floquet multipliers.

Description

Type commandQueryFlauet() to list the Floquet multipliers in the output- le fort.9.
(Di erential equations.)

Type commandQueryFlaguet('xxx') to list the Floquet multipliers in the info le
"d.xxX'.

Aliases

0 quet
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4.13.25 commandQueryHopf

Purpose

Print the value of the \Hopf function”.

Description

Type commandQueryHopf()to list the value of the \Hopf function” in the output- le
fort.9. This function vanishesat a Hopf bifurcation point.

Type commandQueryHopf('xxx') to list the value of the \Hopf function” in the info
le 'd.xxx'.

Aliases

hb hp hopf Ip

4.13.26 commandQuerylterations

Purpose

Print the number of Newton interations.

Description

Type commandQuerylterations()to list the number of Newton iterations per cortin-
uation stepin fort.9.

Type commandQuerylterations('’xxx’) to list the number of Newton iterations per
corntinuation stepin the info le 'd.xxx'.

Aliases

iterations it
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4.13.27 commandQueryLimitpoint

Purpose

Print the value of the \limit point function”.

Description

Type commandQueryLimitpoint() to list the value of the \limit point function” in
the output- le fort.9. This function vanishesat a limit point (fold).

Type commandQueryLimitpoint('xxx’) to list the value of the \limit point function”
in the info le 'd.xxx".

Aliases

Im limitp oint

4.13.28 commandQueryNote

Purpose

Print notesin info le.

Description

Type commandQueryNote()to show any notesin the output- le fort.9.
Type commandQueryNote('xxx’) to shov any notesin the info le 'd.xxx'.

Aliases

nt note
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4.13.29 commandQuerySecondaryPeriod

Purpose

Print value of \secondary-periodic bif. fcn".

Description

Type commandQuerySecondary&riod() to list the value of the \secondary-periodic
bifurcation function” in the output-le ‘fort.9. This function vanishesat period-
doubling and torus bifurcations.

Type commandQuerySecondary@riod('xxx’) to list the value of the \secondary-
periodic bifurcation function" in the info le 'd.xxx".

Aliases

sc secondarygriod sp

4.13.30 commandQueryStepsize

Purpose

Print cortinuation step sizes.

Description

TypecommandQueryStepsize(fo list the cortin uation step sizefor ead cortinuation
stepin ‘fort.9.

Type commandQueryStepsize('xxx')to list the cortinuation step sizefor ead con-
tinuation stepin the info le 'd.xxx'".

Aliases

ssstepsizest
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4.13.31 commandRun

Purpose

Run AUTO.

Description

Type commandRun([options])to run AUTO with the given options. There are four
possibleoptions:

Long name Short name  Description

equation e The equations file
constants c The AUTCconstants file
solution S The restart  solution file
homcont h The Homcontparameter file

Options which are not explicitly setretain their previousvalue. For exampleone may
type: commandRun(e="ab',c="'ab.1’) to use'ab.c' asthe equations le and c.ab.1las
the constarts le (if you are usingthe default lename templates).
Type commandRun('name')load all les with base’name’. This doesthe samething
asrunning commandRun(e='name’',c="name,s="name’',h="name’).

Aliases

rrunrn

4.13.32 commandRunnerConfigFort2

Purpose

Modify cortinuation constarts.

Description

Type commandRunnerCon gFort2('xxx',yyy) to changethe constart 'xxx' to have
value yyy.

Aliases

changeconstah cc ch
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4.13.33 commandRunnerLoadName

Purpose

Load les into the AUTO runner.

Description

Type commandRunnerLoadName([options}jo modify AUTO runner. There are four
possibleoptions:

Long name Short name  Description

equation e The equations file
constants c The AUTCconstants file
solution S The restart  solution file
homcont h The Homcontparameter file

Options which are not explicitly setretain their previousvalue. For exampleone may
type: commandRunnerLoadName(e="ab',c="ab.1')to use'ab.c' asthe equations le
and c.ab.1asthe constarts le (if you are usingthe default lename templates).
Type commandRunnerLoadName('name’) load all les  with base
'name’. This does the same thing as running commandRunnerLoad-
Name(e='name’',c='name,s='name’,h="name’).

Aliases

Id load
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4.13.34 commandRunnerPrintFort2

Purpose

Print cortinuation parameters.

Description

Type commandRunnerPrinFort2() to print all the parameters. Type commandRun-
nerPrintFort2('xxx’) to return the parameter'xxx'.

Aliases

pc pr printconstant

4.13.35 commandShell

Purpose

Run a shell command.

Description

Type 'shell xxx' to run the command'xxx' in the Unix shell and display the results
in the AUTO commandline userinterface.

Aliases

shell
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4.13.36 commandTriple

Purpose

Triple a solution.

Description

Type commandTriple() to triple the solution in ‘fort.7' and 'fort.8'.
Type commandTriple('xxx’) to triple the solutionin b.xxx and s.xxx (if you are using
the default lename templates).

Aliases

tr triple

4.13.37 commandUserData

Purpose

Covert user-supplieddata les.

Description

Type commandUserData('xxx’) to corvert a user-supplieddata le 'xxx.dat' to
AUTO format. The corverted le is called's.dat’. The original le is left unchanged.
AUTO automatically setsthe period in PAR(11). Other parametervaluesmust be set
in 'stpnt’. (When necessaryPAR(11) may alsobe rede ned there.) The constarts-
le le 'c.xxx' must be presen, asthe AUTO-constarts 'NTST' and'NCOL' areused
to de ne the new mesh. For examplesof using the 'userData’ command seedemos
lor' and 'pen’ (whereit hasthe old name'fc’).

Aliases

us userdata
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4.13.38 commandWait

Purpose

Wait for the userto enter a key.

Description

Type 'commandWait' to have the AUTO interface wait until the user hits any key
(mainly usedin scripts).

Aliases

wait
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Chapter 5

Description of AUTO -Constan ts.

5.1 The AUTO -Constants File.

As descrited in Section 3.1, if the equations- le is xxx.c then the constarts that de ne the
computation are normally expectedin the le c.xxx The generalformat of this le is the same
for all AUTO runs. For example,the le c.abin directory auto/2000/demos/abis listed below.
(The tutorial demo abis descrilted in detail in Chapter 7.)

2101 NDIM,IPS,IRS,ILP

1 1 NICP,(ICP(l),I=1,NIC P)
504311000 NTST,NCOL,IAD,ISP,ISVJPLT,NBC,NINT
100 0. 0.15 0. 100. NMX,RLO,RL1,A0,Al

10010 2 8 53 0 NPR,MXBF,IID, I TMX, I TNVWWWT,JAC

l.e-6 l.e-6 0.0001 EPSL,EPSU,EPSS
0.01 0.005 0.05 1 DS,DSMIN,DSMAX,IADS

1 NTHL,((I,THL()),l=1 ,NTH.)
11 0.

0 NTHU,((I, THU()),I=1 ,NTHJ)
0 NUZR,((I,UZR()),I=1 ,NUR)

The signi cance of the AUTO -constarts, grouped by function, is described in the sections
belon. Represerative demosthat illustrate useof the AUTO -constarts are also mernioned.

5.2 Problem Constants.
5.2.1 NDIM

Dimension of the systemof equationsas speci ed in the user-suppliedsubroutine func.

5.2.2 NBC

The number of boundary conditions as speci ed in the user-suppliedsubroutine bcnd.
(Demos exp kar.)

61



5.2.3  NINT

The number of integral conditions as speci ed in the user-suppliedsubroutine icnd .
(Demos int, lin, obv)

5.2.4 JAC

Usedto indicate whether derivativesare supplied by the useror to be obtained by di erencing :
- JAC=0. No derivativesare given by the user. (Most demosuse JAG0.)

- JAC=1. Derivativeswith respect to state- and problem-parametersare given in the user-
suppliedsubroutines func, bcnd, icnd and fopt , whereapplicable. This may be neces-
sary for sensitive problems. It is alsorecommendedor computationsin which AUTO gen-
eratesan extendedsystem,for example,when ISW2.

(Demos int, dd2 obt, plp, ops)
(For 1SWseeSection5.8.3.)

5.3 Discretization Constants.

5.3.1 NTST

The number of meshintervals usedfor discretization. NTSTemains xed during any particular
run, but can be changedwhenrestarting. Recommended/alue of NTST. As small aspossibleto
maintain corvergence.

(Demos exp ab, sph)

(For meshadaption seelAD in Section5.3.3.)

5.3.2 NCOL

The number of Gausscollocation points per meshinterval, (2 ~ NCOL 7). NCOkemains xed
during any given run, but can be changedwhen restarting at a previously computed solution.
The choice NCOt4, usedin most demos,is recommended.lf NDIMs \large" and the solutions
\v ery smooth" then NCOt2 may be appropriate.

5.3.3 IAD

This constant cortrols the meshadaption :

- IAD=0: Fixed mesh. Normally, this choiceshouldnewer be used,asit may resultin spurious
solutions. (Demo ext.)

- IAD>0: Adapt the meshewery IAD stepsalongthe branch. Most demosuse IAD=3 which
is the strongly recommendedvalue.
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When computing \trivial* solutions to a boundary value problem, for example, when all
solution componerts are constart, then the meshadaption may fail under certain circumstances,
and over ow may occur. In sud case,try recomputing the solution branch with a xed mesh
(IAD=0). Be sureto set IAD badk to IAD=3for computing evertual non-trivial bifurcating
solution branches.

5.4  Tolerances.

5.4.1 EPSL

Relative corvergencecriterion for equation parametersin the Newton/Chord method. Most
demosuse EPSE10-% or EPSE10-7, which is the recommendedvalue range.

5.4.2 EPSU

Relative corvergencecriterion for solution componerts in the Newton/Chord method. Most
demosuse EPSH10-% or EPSH10~7, which is the recommendedvalue range.

5.4.3 EPSS

Relative arclength convergencecriterion for the detection of special solutions. Most demosuse
EPSS10-* or EPSS10-°, which is the recommendedvalue range. Generally EPSShould be
approximately 100to 1000times the value of EPSI. EPSU

5.4.4 ITMX

The maximum number of iterations allowed in the accurate location of special solutions, sud
as bifurcations, folds, and user output points, by Meuller's method with bradketing. The recom-
mendedvalueis ITMX8, usedin most demos.

5.4.5 NWTN

After NWTNewton iterations the Jacobianis frozen,i.e., AUTO usesfull Newton for the rst

NWTMerations and the Chord method for iterations NWTAL to ITNW The choice NWTH8

is strongly recommendedand usedin most demos. Note that this constart is only e ectiv e for
ODEs, i.e., for solving the piecewisepolynomial collocation equations. For algebraic systems
AUTO always usesfull Newton.

5.4.6 ITNW

The maximum number of combined Newton-Chord iterations. When this maximum is readed,
the step will be retried with half the stepsize. This is repeated until corvergence,or until the
minimum stepsizeis readed. In the latter casethe computation of the branch is discortinued
and a messagerinted in fort.9. The recommendedsalueis ITNWS5, but ITNW7 may be used
for \di cult” problems,for example,demos sph chu, plp, etc.
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5.5 Continuation Step Size.

5.5.1 DS

AUTO usespseudo-arclengthcontinuation for following solution branches. The pseudo-arclength
stepsizeis the distance between the current solution and the next solution on a branch. By

default, this distanceincludesall state variables(or state functions) and all free parameters. The

constart DSde nes the pseudo-arclengthstepsizeto be usedfor the rst attempted step along
any branch. (Note that if IADS>0then DSwill automatically be adaptedfor subsequet steps
and for failed steps.) DSmay be chosenpositive or negative; changing its sign reversesthe

direction of computation. The relation DSMIN j jDS DSMAMust be satis ed. The precise
choiceof DSis problem-dependern; the demosusea value that wasfound appropriate after some
experimertation.

5.5.2 DSMIN

This is minimum allowable absolute value of the pseudo-arclengthstepsize. DSMINmust be
positive. It is only e ectiv e if the pseudo-arclengthstep is adaptive, i.e., if 1ADS>0. The choice
of DSMINs highly problem-dependen; most demosusea value that wasfound appropriate after
someexperimertation. Seealsothe discussionin Section6.2.

5.5.3 DSMAX

The maximum allowable absolutevalue of the pseudo-arclengthstepsize. DSMAMKust be pos-
itive. It is only e ective if the pseudo-arclengthstep is adaptive, i.e., if 1ADS>0. The choice
of DSMAIX highly problem-dependen; most demosusea value that wasfound appropriate after
someexperimertation. Seealsothe discussionin Section6.2.

5.5.4 |ADS

This constant cortrols the frequencyof adaption of the pseudo-arclengthstepsize.

- IADS=0: Use xed pseudo-arclengthstepsize,.e., the stepsizewill be equalto the speci ed
value of DSfor every step. The computation of a branch will be discortinued as soon as
the maximum number of iterations ITNWs readed. This choiceis not recommended.

(Demo tim.)

- IADS>0 : Adapt the pseudo-arclengthstepsize after every |ADS steps. If the New-
ton/Chord iteration corvergesrapidly then j jDS will be increased,but newer beyond
DSMAMXT a step fails then it will be retried with half the stepsize. This will be done
repeatedly until the stepis successfubr until j jDS readhes DSMINIn the latter casenon-
convergencewill be signalled. The strongly recommendedvalueis IADS=1, which is used
in almost all demos.
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5.5.5 NTHL

By default, the pseudo-arclengthstepsizeincludesall state variables (or state functions) and all
free parameters. Under certain circumstancesone may want to modify the weight accordedto
individual parametersin the de nition of stepsize.For this purpose, NTHLde nes the number of
parameterswhoseweight is to be modi ed. If NTHEO then all weights will have default value
1.0. If NTHEO then onemust enter NTHLpairs, Parameter Index Weight , with ead pair on
a separateline.

For example, for the computation of periodic solutions it is recommendedthat the period
not be included in the pseudo-arclengthcortinuation stepsize,in order to avoid period-induced
limitations on the stepsizenear orbits of in nite period. This exclusioncan be accomplishedby
setting NTHL=1with, on a separateline, the pair 11 0.0 . Most demosthat compute periodic
solutions usethis option; seefor exampledemo ab.

5.5.6 NTHU

Under certain circumstancesone may want to modify the weight accordedto individual state
variables (or state functions) in the de nition of stepsize. For this purpose, NTHWe nes the
number of stateswhoseweight is to be modi ed. If NTHEO then all weights will have default
value 1.0. If NTHWO then onemust erter NTHWairs, State Index Weight , with ead pair
on a separateline. At preser none of the demosusethis option.

5.6 Diagram Limits.
There are three ways to limit the computation of a branch :

- By appropriate choice of the computational window de ned by the constarts RLQ RL1
AQ and ALl One should always ched that the starting solution lies within this computa-
tional window, otherwisethe computation will stop immediately at the starting point.

- By specifying the maximum number of steps, NMX

- By specifying a negative parameterindex in the list ass@iated with the constart NUZR
seeSection5.9.4.

5.6.1 NMX

The maximum number of stepsto be taken along any branch.

5.6.2 RLO

The lower bound on the principal cortinuation parameter. (This is the parameterwhich appears
rst in the ICP list; seeSection5.7.1.).
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5.6.3 RL1

The upper bound on the principal cortinuation parameter.

5.64 A0

The lower bound on the principal solution measure.(By default, if [PLT=0, the principal solution
measureis the L,-norm of the state vector or state vector function. Seethe AUTO -constart
IPLT in Section5.9.3for choosinganother principal solution measure.)

5.6.5 Al

The upper bound on the principal solution measure.

5.7 Free Parameters.

5.7.1 NICP, ICP

For ead equationtype and for ead cortinuation calculation there is a typical (\generic") number
of problem parametersthat must be allowed to vary, in order for the calculationsto be properly
posed. The constart NICPindicates how many free parametershave beenspeci ed, while the
array ICP actually designatesthese free parameters. The parameter that appears rst in the
ICP list is called the \principal cortinuation parameter". Speci ¢ examplesand special casesare
described below.

5.7.2 Fixed points.

The simplest caseis the continuation of a solution branch to the system f(u,p) = 0, where
f(,),u 2 R", cf. Equation (2.1). Sud a systemarisesin the cortinuation of ODE stationary
solutionsand in the cortinuation of xed points of discretedynamical systems.Thereis only one
free parameterhere,so NICRE=1.

As a concreteexample,considerRun 1 of demo ab, where NICP=1with ICP(1)=1. Thus,
in this run  PAR(1)is designatedas the free parameter.

5.7.3 Periodic solutions and rotations.

The cortinuation of periodic solutionsand rotations genericallyrequirestwo parameters,namely,
one problem parameter and the period. Thus, in this case NICR=2. For example,in Run 2
of demo ab we have NICR=2, with ICP(1)=1 and ICP(2)=11. Thus, in this run, the free
parametersare PAR(1)and PAR(11) (Note that AUTO resenes PAR(11)for the period.)

Actually, for periodic solutions, one can set NICR=1 and only specify the index of the free
problem parameter,asAUTO will automatically addd PAR(11) Howewer, in this casethe period
will not appearin the screenoutput and in the fort.7 output- le.

For xed period orbits one must set NICR:=2 and specify two free problem parameters. For
example,in Run 7 of demo pp2 we have NICR2, with PAR(1)and PAR(2)specied asfree
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problem parameters. The period PAR(11)is xed in this run. If the period is large then suc a
cortinuation provides a simple and e ective method for computing a locus of homaclinic orbits.

5.7.4 Folds and Hopf bifurcations.

The cortinuation of folds for algebraicproblemsand the contin uation of Hopf bifurcations requires
two free problem parameters,i.e., NICR=2. For example,to continue a fold in Run 3 of demo
ab, we have NICR2, with PAR(1)and PAR(3)specied as free parameters. Note that one
must set ISWE2 for computing sud loci of special solutions. Also note that in the cortinuation
of folds the principal cortinuation parameter must be the onewith respect to which the fold was
located.

5.7.5 Folds and period-doublings.

The cortinuation of folds, for periodic orbits and rotations, and the cortinuation of period-
doubling bifurcations require two free problem parametersplus the free period. Thus, onewould
normally set NICR=3. For example,in Run 6 of demo pen where a locus of period-doubling
bifurcations is computedfor rotations, we have NICR=3, with PAR(2) PAR(3) and PAR(11)
speci ed as free parameters. Note that one must set ISW=2 for computing sud loci of special
solutions. Also note that in the cortinuation of folds the principal cortinuation parameter must
be the onewith respect to which the fold waslocated.

Actually, one may set NICR=2, and only specify the problem parameters,as AUTO wiill
automatically add the period. For example,in Run 3 of demo plp, where a locus of folds is
computed for periodic orbits, we have NICRE2, with PAR(4) and PAR(1) specied as free
parameters. Howewer, in this casethe period will not appear in the screenoutput and in the
fort.7 output- le.

To cortinue a locus of folds or period-doublings with xed period, simply set NICR=3 and
specify three problem parameters,not including PAR(11)

5.7.6 Boundary value problems.

The simplest caseis that of boundary value problemswhere NDIM NBCand where NINTO.
Then, generically one free problem parameteris required for computing a solution branch. For
example,in demo exp we have NDIM NBG2, NINT=0. Thus NICR=1. Indeed,in this demo
one free parameteris designated,namely PAR(1)

More generally for boundary value problemswith integral constrairts, the generic number
of free parametersis NBC+ NINT NDIM+1. For example,in demo lin, we have NDIM2,
NBE2, and NINT1. Thus NICR=2. Indeed,in this demotwo free parametersare designated,
namely PAR(1)and PAR(3)

5.7.7 Boundary value folds.

To cortinue a locus of folds for a generalboundary value problem with integral constrains, set
NICR= NB@ NINT NDIM2, and specify this number of parameterindicesto designatethe free
parameters.
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5.7.8 Optimization problems.

In algebraicoptimization problemsonemust set ICP(1)=10, asAUTO uses PAR(10)asprincipal
cortinuation parameterto monitor the value of the objective function. Furthermore, one must
designateone free equation parameterin ICP(2). Thus, NICR=2 in the rst run.

Folds with respectto PAR(10)corresmpnd to extrema of the objective function. In a second
run onecanrestart at sud afold, with an additional freeequationparameterspeci ed in ICP(3).
Thus, NICR=3 in the secondrun.

The above procedurecanberepeated. For example,foldsfrom the secondun canbe cortinued
in athird run with three equation parametersspeci ed in addition to PAR(10) Thus, NICR=4
in the third run.

For a simple example seedemo opt, where a four-parameter extremum is located. Note
that NICRE5 in ead of the four constarts- les of this demo, with the indicesof PAR(10)and
PAR(1)-PAR(4)speci ed in ICP. Thus,in the rst threeruns, there areoverspeci ed parameters.
Howewver, AUTO will always usethe correct number of parameters. Although the overspeci ed
parameterswill be printed, their valueswill remain xed.

5.7.9 Internal free parameters.

The actual cortinuation schemein AUTO may useadditional free parametersthat are automati-
cally added. The simplestexampleis the computation of periodic solutionsand rotations, where
AUTO automatically addsthe period, if not speci ed. The computation of loci of folds, Hopf bi-
furcations, and period-doublingsalsorequiresadditional internal cortinuation parameters. These
will be automatically added, and their indiceswill be greaterthan 10.

5.7.10 Parameter overspecification.

The number of speci ed parameterindicesis allowed to be be greaterthan the genericnumber.
In sud casethere will be \overspeci ed" parameters,whosevalueswill appearin the screenand
fort.7 output, but which are not part of the cortinuation process.A simple exampleis provided
by demo opt, wherethe rst three runs have overspeci ed parameterswhosevalues, although
constart, are printed.

There is, however, a more useful application of parameter overspeci cation. In the user-
supplied subroutine pvisone can de ne solution measuresand assigntheseto otherwise unused
parameters. Sud parameterscan then be overspeci ed, in order to print them on the screenand
in the fort.7 output. It is important to note that sud overspeci ed parametersmust appear at
the end of the ICP list, asthey cannot be usedastrue continuation parameters.

For an example of using parameter overspeci cation for printing user-de ned solution mea-
sures,seedemo pvl. This is a boundary value problem (Bratu's equation) which has only one
true cortinuation parameter, namely PAR(1) Three solution measuresare de ned in the sub-
routine pvls namely, the Ly,-norm of the rst solution componert, the minimum of the second
componert, and the left boundary value of the secondcomponert. Thesesolution measuresare
assignedto PAR(2), PAR(3) and PAR(4) respectively. In the constaris-le c.pvl we have
NICR=4, with PAR(1)-PAR(4)speci ed asparameters. Thus, in this example, PAR(2)-PAR(4)
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are overspeci ed. Note that PAR(1) must appear rst in the ICP list; the other parameters
cannot be usedastrue cortinuation parameters.

5.8 Computation Constants.

5.8.1 ILP

- ILP=0 : No detection of folds. This choiceis recommended.

- ILP=1: Detection of folds. To be usedif subsequenfold cortinuation is intended.

5.8.2 ISP

This constarnt cortrols the detection of branch points, period-doubling bifurcations, and torus
bifurcations.

- ISP=0: This setting disablesthe detection of branch points, period-doubling bifurcations,
and torus bifurcations and the computation of Floquet multipliers.

- ISP=1: Branch points are detectedfor algebraicequations,but not for periodic solutions
and boundary value problems. Period-doubling bifurcations and torus bifurcations are not
located either. Howewer, Floquet multipliers are computed.

- ISP=2: This setting enablesthe detection of all special solutions. For periodic solutions
and rotations, the choice ISP=2 should be usedwith care,due to potential inaccuracyin
the computation of the linearized Poincare map and possiblerapid variation of the Floquet
multipliers. The linearized Poincare map always has a multiplier z = 1. If this multiplier
becomesnaccuratethen the automatic detection of secondaryperiodic bifurcations will be
discortinued and a warning messagewill be printed in fort.9. Seealso Section6.4.

- ISP=3: Branch points will be detected,but AUTO will not monitor the Floquet multipliers.
Period-doubling and torus bifurcations will go undetected. This option is usefulfor certain
problemswith non-genericFloquet behavior. The Floquet multipliers will be output to the
diagnostic le.

5.8.3 ISW

This constart cortrols branch switching at branch points for the caseof di erential equations.
Note that branch switching is automatic for algebraicequations.

- ISW=1 This is the normal value of ISW

- ISW=1: If IRSisthe label of a branch point or a period-doubling bifurcation then branch
switching will be done. For period doubling bifurcations it is recommendedhat NTSTbe
increased.For examplesseeRun 2 and Run 3 of demo lor, wherebranch switching is done
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at period-doubling bifurcations, and Run 2 and Run 3 of demo bvp, wherebranch switching
is doneat a transcritical branch point.

- ISW=2 If IRSis the label of a fold, a Hopf bifurcation point, or a period-doubling or torus
bifurcation then a locus of suth points will be computed. An additional free parameter
must be speci ed for sud cortinuations; seealso Section5.7.

5.8.4 MXBF

This constart, which is e ectiv e for algebraicproblemsonly, setsthe maximum number of bifur-
cationsto be treated. Additional branch points will be noted, but the correspnding bifurcating
brancheswill not be computed. If MXBFHs positive then the bifurcating branches of the rst
MXBBranch points will be traced out in both directions. If MXBIs negative then the bifurcating
branchesof the rst j MXBF branch points will be traced out in only onedirection.

5.8.5 IRS

This constart setsthe label of the solution wherethe computation is to be restarted.

- IRS=0: This setting is typically usedin the rst run of anewproblem. In this casea starting
solution must be de ned in the user-suppliedsubroutine stpnt, seealso Section3.3. For
represermativ e examplesof analytical starting solutionsseedemos aband frc. For starting
from unlabeled numerical data seethe @fc command(SectionA) and demos lor and pen

- IRS>0 : Restart the computation at the previously computed solution with label IRS.
This solution is normally expectedto be in the current data- le q.xxx seealsothe @r and
@R commandsin SectionA. Various AUTO -constaris can be modi ed when restarting.

5.8.6 IPS

This constart de nes the problemtype:

- IPS=0: An algebraic bifurcation problem. Hopf bifurcations will not be detected and
stability propertieswill not be indicated in the fort.7 output- le.

- IPS=1: Stationary solutions of ODEs with detection of Hopf bifurcations. The sign of PT,
the point number, in fort.7 is usedto indicate stability :  is stable, + is unstable.

(Demo ab)

- IPS= 1: Fixed points of the discrete dynamical systemu*+Y = f(u*), p), with detection
of Hopf bifurcations. The signof PT in fort.7 indicatesstability :  is stable, + is unstable.
(Demo dd2)

- IPS= 2 : Time integration using implicit Euler. The AUTO -constaris DS DSMIN
DSMAXand ITNW NWTNortrol the stepsize. In fact, pseudo-arclengthis usedfor \con-
tinuation in time". Note that the time discretization is only rst order accurate, so that
results should be carefully interpreted. Indeed, this option has beenincluded primarily
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for the detection of stationary solutions, which can then be entered in the user-supplied
subroutine stpnt.

(Demo ivp.)

IPS=2: Computation of periodic solutions. Starting data can be a Hopf bifurcation point
(Run 2 of demo ab), a periodic orbit from a previous run (Run 4 of demo pp2), an
analytically known periodic orbit (Run 1 of demo frc), or a numerically known periodic
orbit (Demo lor). The signof PT in fort.7 is usedto indicate stability :  is stable, + is
unstable or unknown.

IPS=4: A boundary value problem. Boundary conditions must be speci ed in the user-
supplied subroutine bcnd and integral constraints in icnd. The AUTO -constarts NBC
and NINTmust be given correct values. (Demos exp int, kar.)

IPS=5: Algebraic optimization problems. The objective function must be speci ed in the
user-suppliedsubroutine fopt . (Demo opt.)

IPS=7: A boundary value problem with computation of Floquet multipliers. This is a
very special option; for most boundary value problemsone should use IPS=4 Boundary
conditions must be speci ed in the user-suppliedsubroutine bcnd and integral constrairts
in icnd. The AUTO -constarts NBCGand NINTmust be given correct values.

IPS=9 : This option is used in connection with the HomCort algorithms descrited in
Chapters 15-21for the detection and cortinuation of homaclinic bifurcations.

(Demos san mtn, kpr, cir, she rev)

IPS=11: Spatially uniform solutions of a system of parabolic PDEs, with detection of
traveling wave bifurcations. The userneedonly de ne the nonlinearity (in subroutine func),
initialize the wave speedin PAR(10) initialize the di usion constarisin PAR(15,16, ),
and set a free equation parameterin ICP(1). (Run 2 of demo wav.)

IPS=12: Continuation of traveling wave solutionsto a systemof parabolic PDEs. Starting
data canbe a Hopf bifurcation point from a previousrun with 1PS=11, or a traveling wave
from a previousrun with IPS=12. (Run 3 and Run 4 of demo wav.)

IPS=14: Time ewlution for a system of parabolic PDEs subject to periodic boundary
conditions. Starting data may be solutionsfrom a previousrun with IPS=12 or 14. Start-
ing data can also be speci ed in stpnt, in which casethe wave length must be speci ed
in PAR(11) and the diusion constarts in PAR(15,16, ). AUTO uses PAR(14)for
the time variable. DS DSMINand DSMAMovern the pseudo-arclengthcortinuation in
the space-timevariables. Note that the time discretization is only rst order accurate, so
that results should be carefully interpreted. Indeed, this option is mainly intended for the
detection of stationary waves. (Run 5 of demo wav.)

IPS=15: Optimization of periodic solutions. The integrand of the objective functional
must be speci ed in the user-suppliedsubroutine fopt. Only PAR(1-9) should be used
for problem parameters. PAR(10)is the value of the objective functional, PAR(11)the
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period, PAR(12)the norm of the adjoint variables, PAR(14)and PAR(15)are internal
optimality variables. PAR(21-29) and PAR(31) are used to monitor the optimality
functionals assaiated with the problem parametersand the period. Computations can be
started at a solution computedwith IPS=2 or IPS=15. For a detailed exampleseedemo
ops

- IPS=16: This option is similar to 1PS=14, exceptthat the user suppliesthe boundary
conditions. Thus this option can be usedfor time-integration of parabolic systemssubject
to user-de ned boundary conditions. For examplesseethe rst runs of demos pdl, pd2
and bru. Note that the space-deriatives of the initial conditions must also be supplied
in the user-suppliedsubroutine stpnt. The initial conditions must satisfy the boundary
conditions. This option is mainly intended for the detecting stationary solutions.

- IPS=17: This option can be usedto cortinue stationary solutions of parabolic systems
obtained from an ewlution run with 1PS=16. For examplesseethe secondruns of demos
pdland pd2

5.9 Output Control.
5.9.1 NPR

This constart can be usedto regularly write fort.8 plotting and restart data. IF NPR-0 then
sudh output is written every NPRsteps. IF  NPRO or if NPR NMXhen no sud output is
written. Note that special solutions, sud as branch points, folds, end points, etc., are always
written in fort.8. Furthermore, one can specify parameter values where plotting and restart
data is to be written; seeSection5.9.4. For thesereasons,and to limit the output volume, it is
recommendedhat NPRoutput be kept to a minimum.

5.9.2 IID

This constart cortrols the amourt of diagnostic output printed in fort.9 : the greater IID the
more detailed the diagnostic output.

- 1ID=0 : Minimal diagnosticoutput. This setting is not recommended.
- 1ID=2 : Regulardiagnosticoutput. This is the recommendedvalue of 1ID .

- 1ID=3 : This setting givesadditional diagnosticoutput for algebraicequations,namely the
Jacobianand the residual vector at the starting point. This information, which is printed
at the beginningof fort.9, is usefulfor verifying whether the starting solution in stpnt is
indeeda solution.

- 1ID=4 : This setting gives additional diagnostic output for di erential equations,namely
the reducedsystemand the assaiated residualvector. This information is printed for every
step and for every Newton iteration, and should normally be suppressed.In particular it
can be usedto verify whether the starting solution is indeeda solution. For this purpose,
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the stepsize DSshould be small, and one should look at the residualsprinted in the fort.9
output- le. (Note that the rst residualvector printed in fort.9 may be identically zero,as
it may correspnd to the computation of the starting direction. Look at the secondresidual
vector in sud case.) This residual vector has dimension NDIM NB@& NINT1, which
accourts for the NDIMli erential equations,the NB®oundary conditions,the NINTuser-
de ned integral constrairts, and the pseudo-arclengthequation. For proper interpretations
of thesedata one may want to refer to the solution algorithm for solving the collocation
system,as descrited in Doedel,Keller & Kernewez (1991h).

- 1ID=5 : This setting givesvery extensive diagnosticoutput for di erential equations,namely,
debugoutput from the linear equation solver. This setting should not normally be usedas
it may result in a huge fort.9 le.

5.9.3 IPLT

This constart allows rede nition of the principal solution measure which is printed asthe second
(real) columnin the screenoutput and in the fort.7 output- le :

- If IPLT = 0O then the L,-norm is printed. Most demosuse this setting. For algebraic
problems, the standard de nition of L,-norm is used. For di erential equations,the L,-
norm is de ned as

1 NDIM

/ Z U(x)? dx .
0 k=1

Note that the interval of integration is [0, 1], the standard interval used by AUTO. For
periodic solutions the independen variable is transformed to range from 0 to 1, before
the norm is computed. The AUTO-constarts THL(*) and THU(*) (seeSection5.5.5and
Section5.5.6) a ect the de nition of the L,-norm.

-1f0< IPLT NDIMhen the maximum of the IPLT'th solution componert is printed.

- If  NDIM IPLT <O then the minimum of the [PLTth solution componert is printed.
(Demo fsh)

- If NDIM< IPLT 2* NDIMhen the integral of the ( IPLT NDINIth solution componert
is printed. (Demos exp lor.)

- If 2* NDIM< IPLT 3* NDIMhen the Ly-norm of the ( IPLT NDINfth solution com-
ponert is printed. (Demo frc.)

Note that for algebraic problems the maximum and the minimum are identical. Also, for
ODEs the maximum and the minimum of a solution componert are generallymuch lessaccurate
than the L,-norm and componert integrals. Note also that the subroutine pvls provides a
second,more generalway of de ning solution measuresseeSection5.7.10.
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594 NUZR

This constant allows the setting of parameter valuesat which labeled plotting and restart infor-
mation is to be written in the fort.8 output-le. Optionally, it also allows the computation to
terminate at sud a point.

- Set NUZRO if no sud output is needed.Many demosusethis setting.

- If NUZRO then one must enter NUZPBpairs, Parameter-Index  Parameter-Value , with
ead pair on a separateline, to designatethe parametersand the parametervaluesat which
output is to be written. For examplesseedemos exp int, and fsh

- If sudh a parameterindex is precededby a minus signthen the computation will terminate
at sudh a solution point. (Demos penand bru.)

Note that fort.8 output canalsobe written at selectedvaluesof overspeci ed parameters. For
an exampleseedemo pvl. For details on overspeci ed parametersseeSection5.7.10.
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Chapter 6
Notes on Using AUTO .

6.1 Restrictions on the Use of PAR

The array PARIin the user-suppliedsubroutinesis available for equation parametersthat the
userwants to vary at somepoint in the computations. In any particular computation the free
parameter(s)must be designatedin ICP; seeSection5.7. The following restrictions apply :

- The maximum number of parameters, NPARX auto/2000/src/auto_c.h, has pre-de ned
value NPARX36. NPARXhould not normally be increasedand it should newver be de-
creased.Any increaseof NPARXwst be followed by recompilation of AUTO .

- Generally one should only use PAR(1)-PAR(9) for equation parameters,as AUTO may
needthe other componerts internally.

6.2 Efficiency.

In AUTO , e ciency hasat times beensacri ced for generality of programming. This appliesin
particular to computationsin which AUTO generatesan extendedsystem,for example,compu-
tations with ISW£2. Howewer, the user has signi cant cortrol over computational e ciency, in
particular through judicious choice of the AUTO -constartis DS DSMINand DSMAXand, for
ODEs, NTSTand NCOLnitial experimertation normally suggestsappropriate values.

Slownly varying solutions to ODEs can often be computed with remarkably small values of
NTSTand NCOLfor example, NTS¥5, NCOt2. Generally howevwer, it is recommendedo set
NCOt4, and then to usethe \smallest" value of NTSTthat maintains corvergence.

The choice of the pseudo-arclengthstepsizeparameters DS DSMINand DSMAJ highly
problemdependen. Generally DSMINhouldnot betakentoo small,in orderto prevert excessie
stepre nement in caseof non-corvergence.lt shouldalsonot betoo large,in orderto avoid instant
non-corvergence. DSMAZXhould be su ciently large, in order to reducecomputation time and
amourt of output data. On the other hand, it should be su cien tly small, in order to prevernt
stepping over bifurcations without detecting them. For a given equation, appropriate values of
theseconstaris can normally be found after someinitial experimertation.

The constarts ITNW NWTNTHL EPSU EPSI. EPSSlsoa ect e ciency. Understanding
their signi cance is therefore useful; seeSection5.4 and Section5.5. Finally, it is recommended
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that initial computations be done with ILP=0; no fold detection; and ISP=1; no bifurcation
detection for ODEs.

6.3 Correctness of Results.

AUTO -computed solutions to ODEs are almost always structurally correct, becausethe mesh
adaption strategy, if |IAD>0, safeguardsto someextent against spurious solutions. If thesedo
occur, possiblynearin nite-p eriod orbits, the unusualappearanceof the solution branch typically
seresasa warning. Repeating the computation with increased NTSTis then recommended.

6.4 Bifurcation Points and Folds.

It is recommendedthat the detection of folds and bifurcation points be initially disabled. For
example,if an equation hasa \v ertical" solution branch then AUTO may try to locate onefold
after another.

Generally degeneratebifurcations cannot be detected. Furthermore, bifurcations that are
closeto ead other may not be noticed when the pseudo-arclengthstep sizeis not su cien tly
small. Hopf bifurcation points may go unnoticed if no clear crossingof the imaginary axis takes
place. This may happen when there are other real or complex eigervalues near the imaginary
axis and when the pseudo-arclengthstep is large comparedto the rate of changeof the critical
eigervalue pair. A typical caseis a Hopf bifurcation closeto a fold. Similarly, Hopf bifurcations
may go undetected if switching from real to complex conjugate, followed by crossingof the
imaginary axis, occursrapidly with respect to the pseudo-arclengthstep size. Secondaryperiodic
bifurcations may not be detected for similar reasons. In caseof doubt, carefully inspect the
contents of the diagnostics le fort.9.

6.5 Floquet Multipliers.

AUTO extracts an appraximation to the linearized Poincare map from the Jacobian of the lin-
earizedcollocation systemthat arisesin Newton's method. This procedureis very e cien t; the
map is computed at negligible extra cost. The linear equationssolver of AUTO is described in
Doedel,Keller & Kernewez(1991h). The actual Floquet multiplier solver waswritten by Fairgrieve
(1994). For a detailed description of the algorithm seeFairgrieve & Jepson(1991).

For periodic solutions,the exactlinearizedPoincare map always hasa multiplier z = 1. A good
accuracyched is to inspect this multiplier in the diagnosticsoutput- le fort.9. If this multiplier
becomesnaccurate then the automatic detection of potential secondaryperiodic bifurcations (if
ISP=2) is discortinued and a warning is printed in fort.9. It is strongly recommendedhat the
contents of this le be habitually inspected, in particular to verify whether solutions labeled as
BP or TR (cf. Table 3.1) have indeedbeencorrectly classi ed.
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6.6 Memory Requirements.

Pre-de ned maximum valuesof certain AUTO -constarts arein auto/2000/src/auto_c.h; seealso
Section 1.3. Thesemaxima a ect the run-time memory requiremens and should not be set to
unnecessariljlarge values. If an application only solvesalgebraicsystemsand if NDIMs \large™
then memory requiremens can be much reduced by setting each of NTSTX NCOLX NBCX
NINTX equalto 1 in auto/2000/src/auto_c.h, followed by recompilation of the AUTO libraries.
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Chapter 7
AUTO Demos : Tutorial.
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7.1 Introduction.

The directory auto/2000/demoshasa large number of subdirectories, for example ab, pp2 exp
etc., ead containing all necessaryles for certain illustrativ e calculations. Each subdirectory, say
XXX, correspndsto a particular equation and cortains one equations- le xxx.cand one or more
constarts- les c.xxx.i one for ead successig run of the demo. To seehow the equationshave
beenprogrammed,inspect the equations- le. To understandin detail how AUTO is instructed
to carry out a particular task, inspect the appropriate constarts- le. In this chapter we descrike
the tutorial demo abin detail. A brief description of other demosis given in later chapters.

7.2 ab : A Tutorial Demo.

This demo illustrates the computation of stationary solutions, Hopf bifurcations and periodic
solutions, and the computation loci of folds and Hopf bifurcation points. The equations, that
model an A ! B reaction, are thosefrom Uppal, Ray & Poore (1974), namely

up + pi(1 ug)e?,
ug + pip2(l  w)e"?  psus.

!
Uy
!
Ug

(7.1)

7.3 Copying the Demo Files.

The commandslisted in Table 7.1 will copy the demo les to your work directory.

Unix-COMMAND ACTION

auto start the AUTO2000 Command Line User Interface
AUTO -COMMAND | ACTION

cd go to main directory (or other directory).

' mkdir ab createan empty work directory. Note: the

"I' is usedto signify a commandwhich is
ser to the shell.

cd ab changeto the work directory.

demo(‘ab’) copy the demo les to the work directory.

Table 7.1: Copying the demo ab les.

At this point you may want to seewhat les have been copiedto the work directory. In
particular, you may want to edit the equations-le ab.cto seehow the equations have been
ertered (in subroutine func) and how the starting solution hasbeenset (in subroutine stpnt).
Note that, initially, p; = 0 p, = 14, and p; = 2, for which u; = u, = 0 is a stationary solution.
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7.4 Executing all Runs Automatically.

To executeall preparedruns of demo ab, simply type one or both of the command given in
Table 7.2.

AUTO -COMMAND ACTION
demofile('fab _old.auto) executeall runs of demo ab interactively
using a new constarts le for eat run

demofile('fab _new.auto’) | executeall runs of demo ab interactively
by modifying the constarts le beforeeadh
run

Table 7.2: Executing all runs of demo ab.

Eadch of the commandsin Table 7.2 beginsa tutorial which will proceedone step ead time
the user pressesa key. Each step consistsof a single AUTO command precededby instructions
asto what action the commandperforms. The tutorial script ab old.autoperformsthe demo by
readingin a sequenceof AUTO constarts les ead of which correspndsto a step of the demao.
The tutorial script ab_.new.autoperforms the demo by readingin a single AUTO constarts le
and then interactively modifying it to perform ead of the demo. Both are valid and e ective
methods for running AUTO , with ab.old.autobeing similar to the way AUTO was usedbefore
the advert of the CLUI, and ab_new.autousing new functionality provided by the CLUI.

Note that there are v e separateruns. In the rst run, a branch of stationary solutions
is traced out. Along it, two folds (LP) and one Hopf bifurcation (HB) are located. The free
parameteris p;. The other parametersremain xed in this run. Note also that only special,
labeledsolution points are printed on the screen.More detailed results are saved in the data- les
b.ah s.ah and d.ah

The secondrun traces out the branch of periodic solutions that emanatesfrom the Hopf
bifurcation. The free parametersare p; and the period. The detailed results are appendedto the
existing data- les b.ah s.ah and d.ah

In the third run, one of the folds detectedin the rst run is followed in the two parameters
p1 and ps, while p, remains xed. The fourth run continuesthis branch in opposite direction.
Similarly, in the fth run, the Hopf bifurcation located in the rst run is followed in the two
parametersp; and ps. (In this examplethis is donein onedirection only.) The detailed results
of thesecortinuations are accunulated in the data- les b.2p s.2p and d.2p

The numerical results are given belov in somewhatabbreviated form. Somedi erences in
output are to be expected on di erent madines. This does not mean that the results have
di erent accuracy but simply that arithmetic di erences have accunulated from step to step,
possiblyleadingto di erent step sizedecisions.

One could now usethe AUTO CLUI to graphically inspect the cortents of the data- les, but
we shall do this later. Howeer, it may be usefulto edit these les to view their cortents.

Next, resetthe work directory, by typing the commandgivenin Table 7.3.
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AUTO -COMMAND | ACTION
cl() remove temporary les of demo ab
di('ab) remove 'ab’ data- les of demo ab
di('’2p") remove '2p' data- les of demo ab

Table 7.3: Cleaningthe demo ab work directory.
ab : first run : stationary solutions

BR PT TYLAB PAR(1) L2-NORM u(1) u(2)

1 1 EP 1 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
1 33 LP 2 1.05739E-01 1.48439E+00 3.11023E-01 1.45144E+00
1 70 LP 3 8.89318E-02 3.28824E+00 6.88982E-01 3.21525E+00
1 90 HB 4 1.30899E-01 4.27186E+00 8.95080E-01 4.17704E+00
1 92 EP 5 1.51241E-01 4.36974E+00 9.15589E-01 4.27275E+00
Saved as *.ab

ab : second run : periodic solutions

BR PT TYLAB PAR(1) L2-NORM MAXU(1) MAXU(2) PERIOD
4 30 6 1.19881E-01 3.98712E+00 9.91911E-01 7.02034E+00 2.721E+00
4 60 7 1.15303E-01 3.14630E+00 9.99577E-01 9.95764E+00 6.147E+00
4 90 8 1.05650E-01 2.21917E+00 9.99166E-01 9.36609E+00 1.399E+01
4 120 9 1.05507E-01 1.69684E+00 9.99086E-01 9.29629E+00 9.956E+01
4 150 EP 10 1.05507E-01 1.60388E+00 9.99789E-01 9.28146E+00 1.867E+03
Appendedto *.ab

ab : third run : a 2-parameter locus of folds

BR PT TYLAB PAR(1) L2-NORM U(1) u(2) PAR(3)

2 27 LP 11 1.35335E-01 2.06012E+00 4.99653E-01 1.99861E+00 2.499E+00
2 100 EP 12 1.09381E-08 2.13650E+01 9.53147E-01 2.13437E+01-3.748E-01
Saved as *.2p

ab : fourth run : the locus of folds in reverse direction

BR PT TYLAB PAR(1) L2-NORM uU(1) U(2) PAR(3)
2 35 EP 11 -1.31939E-03 9.96432E-01 -3.58651E-03 9.96426E-01 -1.050E+00
Appendedto *.2p

ab : fifth run : a 2-parameter locus of Hopf points

BR PT TYLAB PAR(1) L2-NORM u(1) U(2) PAR(3)

4 100 EP 11 8.80940E-05 1.17440E+01 9.14609E-01 1.17083E+01 9.362E-02
Appendedto *.2p
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7.5 Executing Selected Runs Automatically.

As illustrated by the commandsin Table 7.6, one can also executeselectedruns of demo ab. In
general,this cannot be donein arbitrary order, asany given run may needrestart data from a
previousrun. Run 3 only requiresthe resultsof Run 1, sothat the displayed commandsequenceés
indeedappropriate. The screenoutput of theseruns will be identical to that of the correspnding
earlier runs, exceptfor a changein solution labelsin Run 3.

In real usethere are two mains ways in which the AUTO can be used. First, one can prepare
a constarts- le for ead run. In the illustrativ e runs below, the constaris- les were carefully
prepared in advance. For example,the le c.ab.1conains the AUTO -constarts for Run 1,
c.ab.3cortains the AUTO -constarts for Run 3, etc.

AUTO -COMMAND ACTION
ld("ab") load the problem de nition ab
run(c="ab.1") executethe run which usesthe constarts in c.ab.1
sv("ab") save the results of the run into the les b.ah s.ah and d.ab
run(c="ab.3",s="ab") executethe third run of demo ab

Table 7.4: Selectedruns of demo ab.

On the other hand, one can usethe CLUI to generatethe constarts le at runtime. In the
examplebelow, the constart le c.ab.1will be readin, and the CLUI will be usedto make the
appropriate changesto perform the samecalculation asin Table 7.6.

AUTO -COMMAND | ACTION

Id("ab™) load the problem de nition ab

run(c="ab.1") executethe run which usesthe constarts in c.ab.1

sv("ab") save the results of the run into the les b.ah s.ah and d.ab

cc("IRS",2) start the new calculation from a solution with label 2

cc("ICP",[0,2]) sincewe are following a locus of folds we require two free parameters

cc("ISP",0) turn o detection of branch points

cc("ISwW",2) sincewe start at a fold the ISW parameterindicates we
desireto compute a locus of sud points

cc("DSMAX",0.5) increasethe maximum allowed step size

run(s="ab") executethe third run of demo ab

Table 7.5: Selectedruns of demo ab.

7.6 Using AUTO -Commands.

Next, with the commandsin Table ??, we executethe rst two runs of demo ab again, using
commandssimilar Table ?? that one would normally usein an actual application. We still use
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AUTO -COMMAND ACTION
cl() remove temporary les of any previousruns of the demo
di("ab™) remove 'ab' data- les of any previousruns of the demo
di("2p") remove '2p' data- les of any previousruns of the demo
ld("ab") make surethe problem de nition is loaded
run(c="ab.1") compute a stationary solution branch with folds and Hopf bifurcation
sv("ab") save output- les as b.ab,s.ab,d.ab
run(c="ab.2",s="ab") compute a branch of periodic solutions from the Hopf point
ap("ab™) append the output- les to b.ab,s.ab,d.ab

Table 7.6: Commandsfor Run 1 and Run 2 of demo ab.

the democonstarts- les that were preparedin advanceand assumeyou are in the directory into
which the ab demohasalready beencopied

It is instructive to look at the constarts- les c.ab.1and c.ab.2usedin the two runs above.
The signi cance of eat AUTO -constant setin these les can be found in Chapter 5. Note in
particular the AUTO -constarts that were changedbetweenthe two runs; seeTable 7.7.

Constart | Run 1 | Run 2 | Reasonfor Change
IPS 1 2 | To compute periodic solutionsin Run 2
IRS 0 4 | To specify the Hopf bifurcation restart label
NICP 1 2 | The secondrun hastwo free parameters
ICP 1| 1,11 | Touseandprint PAR(1)and PAR(11l)in Run 2
NMX 100 150 | To allow more cortinuation stepsin Run 2
NPR 100 30 | To print output every 30 stepsin Run 2

Table 7.7: Di erences in AUTO -constarts between c.ab.land c.ab.2

Actually, for periodic solutions, AUTO automatically adds PAR(11)(the period) assecond
parameter. Howeer, for the period to be printed, one must specify the index 11in the ICP list,
asshawvn in Table7.7.

7.7 Plotting the Results with AUTO .

The bifurcation diagram computedin the runs above is storedin the le b.ah while eat labeled
solution is fully storedin s.abh To use AUTO to graphically inspect these data- les, type the
AUTO -commandgivenin Table 7.8. The saved plots are shovn in Figure 7.1 and in Figure 7.2.

Figure 7.1 shaws the default view of the plotting tool, which consistsof a represemtation of
the bifurcation diagram. Step by step instructions for creating Figure 7.2 are given below.

The plotting window consistsof a merubar at the top, a plotting area,and a cortrol panelwith
four control widgetsat the bottom. The rst stepin creating Figure 7.2is to changethe mode of
the plotting tool from \bifurcation" to \solution". This is accomplishedby clicking on the widget
marked \T ype" on the bottom cortrol paneland setting it from \bifurcation"” to \solution". In
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the plotting window will appear a plot of the rst labeled solution in s.ab Unfortunately, this
is an equilibrium solution, so only a single point is plotted. Sincewe wish to plot the periodic
solutions, we modify the widget marked \Lab el" by changing its value from \[1]" to \[6,7,10]"
(don't forget to hit the return key when you are done modifying the value). This signi es that
instead of plotting the solution with label 1 we want to plot the solutions with labels 6, 7, and
10 simultaneously In the plotting window we now have three curves, eat of which is a plot of
time versusthe value of the rst state variable. If we want a di erent plot, say the valuesof the
two state variables plotted against eat other, we usethe two remaining widgetsin the cortrol
panel, labeled\X" and\Y". For example,if changethe value of \X" from \['t]" to \[0]" andthe
value of \Y" from \[0]" to \[1]" we get a phaseplot of the period solutions (don't forget to hit
the return key when you are done modifying ead value). This plot is shavn in Figure 7.2.

The plotting tool canalsobe usedto create Postscript les from plots by selectingthe \File"
on the merubar and then selectingthe \Save Postscript..." from the drop down meru. This will
bring up a dialog into which the usercan enter the lename of the postscript le to save the plot
in. Further information on the plotting tool can be found in Section4.10.

AUTO -COMMAND | ACTION
plot("ab") run AUTO to graph the contents of b.aband s.ah

Table 7.8: Commandfor plotting the les b.aband s.ab

7.8 Following Folds and Hopf Bifurcations.

The commandsin Table 7.9 will executethe remainingruns of demo ab. Here,asin later demos,
someof the AUTO -constaris that have beenchangedbetweenruns are indicated in the Table.

AUTO -COMMAND ACTION

run(c="ab.3",s="ab") compute a locus of folds with changes(from c.ab.]) :
IRS, NICP, ICP, ISW, DSMAX

sv("2p") save output- les as b.2p,s.2p,d.2p

run(c="ab.4",s="ab") compute the locus of folds in reverse direction with
changes(from c.ab.3 : DS (sign)

ap("2p") append the output- les to b.2p,s.2p,d.2p

run(c="ab.4",s="ab") compute a locus of Hopf points with changes (from
c.ab.g : IRS

ap("2p") append the output- les to b.2p,s.2p,d.2p

Table 7.9: Commandsfor Runs 3, 4, and 5 of demo ab.
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Figure 7.1: The bifurcation diagram of demo ab.
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Figure 7.2: The phaseplot of solutions6, 7, and 10in demo ah.
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7.9 Relabeling Solutions in the Data-Files.

Next we want to plot the two-parameterdiagram computedin the last three runs. Howeer, the
solution labelsin theseruns are not distinct. This is due to the fact that in ead of thesethree
runs the restart solution was read from s.ah while the computed solutions were storedin s.2p
Consequetly, theseruns were unaware of eat other's results, which led to non-unique labels.
For relabeling purpose,and more generallyfor le maintenance,there is a utilit y program that
can be invoked asindicated in Table 7.10. Its useis illustrated in Table 7.11.

AUTO -COMMAND | ACTION
rl("2p") run the relabeling programon b.2pand s.2p

Table 7.10: Commandto run the relabeling programon b.2pand s.2p

RELABELING COMMAND | ACTION
I list the labeledsolutionsin s.2p
r relabel the solutions
I list the new solution labeling
w rewrite b.2pand s.2p

Table 7.11: Relabeling commandsfor the les b.2pand s.2p

7.10 Plotting the 2-Parameter Diagram.

To plot the les b.2pand s.2p enter the commandlisted in Table 7.12. The saved plot is shavn
in Figure 7.3.

AUTO -COMMAND | ACTION
plot("2p") run to graph the cortents of b.2pand s.2p

Table 7.12: Commandto plot the les b.2pand s.2p
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Figure 7.3: Loci of folds and Hopf bifurcations for demo ab.
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Chapter 8
AUTO Demos : Fixed points.

8.1 enz : Stationary Solutions of an Enzyme Model.

The equations,that model a two-compartmert enzymesystem(Kernewez (1980)), are given by

s1 = (s0 s)+ (s2 s1) pR(s1), (8.1)
sy = (sot pu s2)* (51 s2) pR(sy), '
where
S
1+ s+ rs?’
The free parameteris so. Other parametersare xed. This equationis alsoconsideredn Doedel,
Keller & Kernewez (1991a).

R(s) =

AUTO -COMMAND | ACTION
I mkdir enz createan empty work directory
cd enz changedirectory
demo(‘'enz’) copy the demo les to the work directory
Id('enz") load the problem de nition
run(c='enz.1’) compute stationary solution branches
sv(‘enz’) save output- les as b.enz,s.enz,d.enz

Table 8.1: Commandsfor running demo enz
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8.2 dd2 : Fixed Points of a Discrete Dynamical System.

This demoillustrates the computation of a solution branch and its bifurcating branchesfor a
discrete dynamical system. Also illustrated is the cortinuation of Naimark-Sader (or Hopf)
bifurcations The equations,a discrete predator-prey system,are

kil

_ k k k, k
= piuf(l  uy)  poujus,
b DN (8.2)

= (1 p3)u§ + pQUIfU2~

In the rst run p, is free. In the secondrun, both p; and p, are free. The remaining equation
parameter, ps, is xed in both runs.

AUTO -COMMAND ACTION

I mkdir dd2 createan empty work directory

cd dd2 changedirectory

demo('dd2’) copy the demo les to the work directory
Id('dd2") load the problem de nition

run(c='dd2.1") 1strun; xed point solution branches
sv('dd2") save output- les as b.dd2,s.dd2,d.dd2
run(c='dd2.2',s='dd2 ") | 2nd run; a locus of Naimark-Sader bifur-

cations. Constarts changed: IRS, ISW

sv('ns’) save output- les as b.ns,s.ns,d.ns

Table 8.2: Commandsfor running demo dd2
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Chapter 9

AUTO Demos : Periodic solutions.
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9.1 Irz : The Lorenz Equations.

This demo computestwo symmetric homaoclinic orbits in the Lorenz equations

= p3(ug  w),
= p1ur U2 UiUus,
= UiU2  P2u3.

(9.1)

Here p, is the free parameter,and p, = 8/3, p; = 10. The two homaclinic orbits correspnd to
the nal, large period orbits on the two periodic solution branches.

AUTO -COMMAND ACTION
I mkdir Irz createan empty work directory
cd Irz changedirectory
demo('lrz") copy the demo les to the work directory
ld('Irz") load the problem de nition
run(c='lrz.1") compute stationary solutions
sv('Irz") save output- les as b.lrz, s.Irz,d.Irz
run(c='lrz.2',s="lIrz' ) | compute periodic solutions;the nal orbit
is near-homalinic. Constarts changed:
IPS, IRS, NICP, ICP, NMX,NPR, DS
ap('lrz") append the output- les to b.lrz,s.lrz,d.Irz
run(c='lrz.3',s="lIrz' ) | compute the symmetric periodic solution
branch. Constarts changed: IRS
ap(lrz") append the output- les to b.Irz, s.Irz,d.lIrz

Table 9.1: Commandsfor running demo Irz.
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9.2 abc: The A! B! C Reaction.

This demo illustrates the computation of stationary solutions, Hopf bifurcations and periodic
C reaction (Doedel & Heinemann(1983)).

solutionsinthe A! B!

with po = 1, p3 = 1.55, py

ur+ pi(1 wg)e™,
ug + pre® (1w psug),
uz  psuz + pipae” (1 uy + papsus),

= 8, and p5 = 0.04. The free parameteris p;.

(9.2)

ap(‘abc’)

AUTO -COMMAND ACTION

I mkdir abc createan empty work directory

cd abc changedirectory

demo('abc’) copy the demo les to the work directory

Id(*abc") load the problem de nition

run(c="abc.1") computethe stationary solution branch with Hopf bifurcations

sv(‘abc’) save output- les as b.alc, s.alx, d.akc

run(c='abc.2',s='abc ') | compute a branch of periodic solutions
from the rst Hopf point. Constarts
changed: IRS, IPS, NICP, ICP

ap(‘abc’) append the output- les to b.akc, s.alx, d.akc

run(c="abc.3',s="abc ") | compute a branch of periodic solutions

from the secondHopf point. Constarts
changed: IRS, NMX

append the output- les to b.akc, s.ale, d.akc

Table 9.2: Commandsfor running demo abc.

92



9.3 pp2: A 2D Predator-Prey Model.

This demo illustrates a variety of calculations. The equations, which model a predator-prey
systemwith harvesting, are

/
Uy

u/ p2U1(1 ul) UjUg pl(l 6_p3U1)7 (93)
2

Ug + PauiUs.

Here p, is the principal cortinuation parameter, p; = 5, p, = 3, and, initially, p, = 3. For
two-parametercomputations p, is alsofree.

AUTO -COMMAND ACTION
I mkdir pp2 createan empty work directory
cd pp2 changedirectory
demo('pp2") copy the demo les to the work directory
ld('pp2') load the problem de nition
run(c='pp2.1") 1st run; stationary solutions
sv('pp2') save output- les as b.pp2,s.pp2,d.pp2

run(c='pp2.2',s='pp2 ') | 2ndrun; restart at alabeledsolution. Con-
stants changed: IRS, RL1

ap('pp2) append output- les to b.pp2,s.pp2,d.pp2
run(c="pp2.3',s='pp2 ) | 3rd run; periodic solutions. Constarts
changed: IRS, IPS, ILP

ap('pp2) append output- les to b.pp2,s.pp2,d.pp2
run(c='pp2.4',s="pp2 ') | 4th run; restart at a labeled periodic solu-
tion. Constarts changed: IRS, NTST
ap('pp2") append output- les to b.pp2,s.pp2,d.pp2
run(c='pp2.5',s="pp2 ") | 5th run; cortinuation of folds. Constarts
changed: IRS, IPS, ISW, ICP

sv('lp) save output- les as b.lp, s.Ip,d.Ip
run(c='pp2.6',s="pp2 ') | 6th run; cortinuation of Hopf bifurcations.
Constarts changed: IRS

sv(‘hb") save output- les as b.hb, s.hb,d.hb
run(c="pp2.7',s='pp2 ") | 7th run; cortinuation of homaclinic orbits.
Constarts changed: IRS, IPS, ISP

sv(‘hom’) save output- les as b.hom,s.hom,d.hom

Table 9.3: Commandsfor running demo pp2
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9.4 lor : Starting an Orbit from Numerical Data.

This demoillustrates how to start the computation of a branch of periodic solutions from nu-
merical data obtained, for example,from an initial value solver. As an illustrativ e application we
considerthe Lorenz equations

/ —_

Uy —p3(u2 U1)>

/ —_

Uy = P1U1 U2  UIUS, (9.4)
/ —_

Uz = UrU2 pPaus.

Numerical simulations with a simple initial value solver shav the existenceof a stable periodic
orbit when p; = 280, p, = 8/3, p3 = 10. Numerical data represeting one complete periodic
oscillation are cortained in the le lor.dat Ead row in lor.dat cortains four real numbers,
namely, the time variable ¢, u;, uy and us. The correponding parameter values are de ned in
the user-suppliedsubroutine stpnt. The AUTO -commandus(‘lor)  then corverts the data in
lor.dat to a labeled AUTO solution (with label 1) in anew le s.dat The meshwill be suitably
adaptedto the solution, usingthe number of meshintervals NTSTand the number of collocation
point per meshinterval NCOlkpeci ed in the constaris- le c.lar. (Note that the le s.datshould
be usedfor restart only. Do not append new output- les to s.dat asthe commandus(lor')
only creates s.dat with no correspnding b.dat)

AUTO -COMMAND ACTION

' mkdir lor createan empty work directory

cd lor changedirectory

demo('lor’) copy the demo les to the work directory

Id('lor") load the problem de nition

us('lor') corvert lor.datto AUTO format in s.dat

run(c='lor.1',s="dat' ) | compute a solution branch, restart from s.dat

sv('lor) save output- les as b.lar, s.la, d.lor

run(c="lor.2',s="lor' ) | switch branches at a period-doubling de-
tected in the rst run. Constarts changed
- IRS, ISW, NTST

ap(lor’) append the output- les to b.lor, s.la, d.lor

Table 9.4: Commandsfor running demo lor.
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9.5 frc: A Periodically Forced System.

This demoiillustrates the computation of periodic solutionsto a periodically forced system. In
AUTO this canbe doneby adding a nonlinear oscillator with the desiredperiodic forcing asone
of the solution componerts. An exampleof sud an oscillator is

x/

/

Y

z+ Py x(z®+ y?),
Br+y yl®+ y?), (9:5)

which hasthe asymptotically stable solution x = sin(3t), y = cos(5t). We couplethis oscillator
to the Fitzhugh-Nagumoequations:

'U/

w/

F(v) w)/e,
5 duw ()b+rsin(ﬁt)), (9.6)

by replacing sin(5t) by x. Above, F(v) = v(v a)(1 wv) and a,b,e and d are xed. The rst

run is a homotopy from » = 0, where a solution is known analytically, to » = 0.2. Part of the
solution branch with » = 0.2 and varying ( is computedin the secondrun. For detailed results
seeAlexander, Doedel & Othmer (1990).

AUTO -COMMAND ACTION

' mkdir frc createan empty work directory

cd frc changedirectory

demo('frc’) copy the demo les to the work directory

ld('frc") load the problem de nition

run(c="frc.1") homotopy to » = 0.2

sv('0") save output- les as b.0,s.0,d.0

run(c='frc.2',s='0") compute solution branch; restart from
s.0 Constarts changed: IRS, ICP(1),
NTST, NMX,DS, DSMAX

sv(‘'frc’) save output- les as b.frc, s.frc, d.frc

Table 9.5: Commandsfor running demo frc.
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9.6 ppp : Continuation of Hopf Bifurcations.

This demoillustrates the cortin uation of Hopf bifurcationsin a 3-dimensionalpredator prey model
(Doedel(1984)). This curve cortain branch points, whereonelocusof Hopf points bifurcatesfrom
another locus of Hopf points. The equationsare

U1(1 U1) PaurUg,

Dolg + paurus  psusus  pr(l ePEv2)
Pp3uz + PsugUz.

(9.7)

Herep, = 1/4,p3= 1/2,p, = 3, ps = 3, ps = 5, and p; is the free parameter. In the cortinuation
of Hopf points the parameterp, is alsofree.

AUTO -COMMAND ACTION
' mkdir ppp createan empty work directory
cd ppp changedirectory
demo('ppp’) copy the demo les to the work directory
ld('ppp") load the problem de nition
run(c="ppp.1") compute stationary solutions; detect Hopf bifurcations
sv('ppp’) save output- les as b.ppp,s.ppp.d.ppp

run(c="ppp.2',s=ppp ') | compute a branch of periodic solutions.
Constarts changed: IPS, IRS, ICP

ap('‘ppp’) append the output- les to b.ppp,s.ppp,d.ppp

run(c="ppp.3',s='ppp ) | compute Hopf bifurcation curves

sv(‘hb") save the output- les as b.hb, s.hb,d.hb

Table 9.6: Commandsfor running demo ppp.
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9.7

This demo, which correspnds to computations in Doedel, Keller & Kernewez (1991s), shows
how one can cortinue a fold on a branch of periodic solution in two parameters. The calculation
of a locus of Hopf bifurcations is alsoincluded. The equations,that model a one-compartmen
activator-inhibitor system(Kernewez (1980)), are given by

plp : Fold Continuation for Periodic Solutions.

s = (SO S) pR(S> a)v
" =alay a) pR(s,a), (9:8)
where sa
R(S, Cl) = m, k > 0.

The free parameteris p. In the fold cortinuation s, is alsofree.

AUTO -COMMAND ACTION

' mkdir plp createan empty work directory

cd plp changedirectory

demo('plp’) copy the demo les to the work directory

ld('plp") load the problem de nition

run(c="plp.1") 1st run; compute a stationary solution branch and locate HBs

sv('plp") save output- les as b.plp, s.plp,d.plp

run(c="plp.2',s="plp ) | computea branch of periodic solutionsand
locate a fold. Constarts changed: IPS,
IRS, NMX

ap('plp") append output- les to b.plp, s.plp,d.plp

run(c="plp.3',s="plp ) | Compute a locus of Hopf bifurcation
points. Constarts changed: IPS, ICP,
ISW, NMX,RL1

sv('2p") save output- les as b.2p,s.2p,d.2p

run(c="plp.4',s="plp ) | generatestarting data for the fold cortin-
uation. Constarts changed: IPS, IRS,
ICP, NMX

sv('tmp") save output- les as b.tmp, s.tmp, d.tmp

run(c="plp.5',s='tmp ") | fold cortinuation; restart data from s.tmp.
Constarts changed: IRS, NUZR

ap('2p") append output- les to b.2p,s.2p,d.2p

run(c="plp.6',s="2p’ ) | compute an isola of periodic solutions;

sv('iso")

restart data from s.2p Constarts changed
IRS, ISW, NMX,NUZR

save output- les as b.iso,s.iso,d.iso

Table 9.7: Commandsfor running demo plp.
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9.8 pp3 : Period-Doubling Continuation.

This demoillustrates the computation of stationary solutions, Hopf bifurcations, and periodic
solutions, branch switching at a period-doubling bifurcation, and the computation of a locus of
period-doubling bifurcations. The equationsmodel a 3D predator-prey systemwith harvesting

(Doedel (1984)).

~

U1(1
polia + pyutus  psusuz  pr(l  eTFE2)
p3us * psugus.

Ppaui U2,

(9.9)

The free parameteris p;, exceptin the period-doubling cortinuation, where both p; and p, are

free.

AUTO -COMMAND

ACTION

sv(2p’)

I mkdir pp3 createan empty work directory

cd pp3 changedirectory

demo('pp3’) copy the demo les to the work directory

ld('pp3’) load the problem de nition

run(c="pp3.1") 1st run; stationary solutions

sv('pp3’) save output- les as b.pp3,s.pp3,d.pp3

run(c='pp3.2',s='pp3 ) | compute a branch of periodic solutions.
Constarts changed: IRS, IPS, NMX

ap('pp3 append output- les to b.pp3,s.pp3,d.pp3

run(c="pp3.3',s='pp3 ) | compute the branch bifurcating at the
period-doubling.  Constarts changed :
IRS, ISW, NTST

ap('pp3’) append output- les to b.pp3,s.pp3,d.pp3

run(c="pp3.4',s='pp3 ') | generate starting data for the period-
doubling cortinuation. Constarts changed

ISW
sv('tmp’) save output- les as b.tmp, s.tmp, d.tmp
run(c="pp3.5',s='tmp ") | period-doubling cortinuation; restart from

s.tmp. Constarts changed: IRS
save output- les as b.2p,s.2p,d.2p

Table 9.8: Commandsfor running demo pp3
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9.9 tor : Detection of Torus Bifurcations.

This demo usesa model in Freire, Rodr guez-Luis, Gamero & Ponce (1993) to illustrate the
detection of a torus bifurcation. It also illustrates branch switching at a secondaryperiodic
bifurcation with double Floquet multiplier at z = 1. The computational results also include
folds, homaclinic orbits, and period-doubling bifurcations. Their cortinuation is not illustrated
here; seeinstead the demos plp, pp2 and pp3 respectively. The equationsare

d(t) =[ B+ v)r+ Py ap®+ by )]/,
y() =pBr (B+Ny =z by 2)° (9.10)
2(1) =y,
wherey = 0.6, r = 0.6, a3 = 0.328578,and b3 = 0.933578.Initially »= 0.9 and = 0.5.
AUTO -COMMAND ACTION
I mkdir tor createan empty work directory
cd tor changedirectory
demo('tor') copy the demo les to the work directory
ld('tor") load the problem de nition
run(c="tor.1") 1st run; compute a stationary solution branch with Hopf bifurcation
sv('1l) save output- les as b.1,s.1,d.1
run(c="tor.2',s="1") compute a branch of periodic solutions;
restart from s.1 Constarts changed :
IPS, IRS
ap('1) append output- les to b.1,s.1,d.1
run(c="tor.3',s="1") compute a bifurcating branch of periodic
solutions; restart from s.1 Constarts
changed: IRS, ISW, NMX
ap('1) append output- les to b.1,s.1,d.1

Table 9.9: Commandsfor running demo tor.
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9.10 pen : Rotations of Coupled Pendula.

This demoillustrates the computation of rotations, i.e., solutions that are periodic, modulo a
phasegain of an even multiple of 7. AUTO chedks the starting data for componerts with sud a
phasegain and, if presen, it will automatically adjust the computations accordingly The model
equations,a systemof two coupledpendula, (Doedel, Aronson & Othmer (1991)), are given by

G+ ey +singy = T+ y(da ),
B+ edh+ singy = T+ (1 ¢), (9.11)

or, in equivalert rst order form,

Qsll = wla

Gy = 1o,

Y= ey sing + I+ y(da @), (9.12)
Wy= ey Singy+ I+ y(dy o).

Throughout v = 0.175. Initially, e = 0.1 and I = 0.4.

Numerical data represeting one completerotation are cortained in the le pen.dat Each
row in pen.datcortains v e real numbers, namely, the time variable ¢, ¢, ¢2, ¥1 and ¢». The
correponding parametervaluesare de ned in the user-suppliedsubroutine stpnt.

Actually, in this example,a scaledtime variable ¢ is given in pen.dat For this reasonthe
period ( PAR(11) is alsosetin stpnt. Normally AUTO would automatically set the period
accordingto the data in pen.dat

The AUTO -commandus(‘pen’) corverts the data in pen.datto a labeled AUTO solution
(with label 1) in anew le s.dat The meshwill be suitably adaptedto the solution, using the
number of meshintervals NTSTand the number of collocation point per meshinterval NCOL
speci ed in the constarts- le c.pen (Note that the le s.datshouldbe usedfor restart only. Do
not append new output- les to s.dat asthe commandus('pen’) only creates s.dat with no
correspnding b.dat)

The rst run, with [ asfreeproblem parameter,starts from the converted solution with label 1
in pen.dat A period-doubling bifurcation is located, and the period-doubledbranch is computed
in the secondrun. Two branch points are located, and the bifurcating branchesare traced out in
the third and fourth run, respectively. The fth run generatesstarting data for the subsequen
computation of a locus of period-doubling bifurcations. The actual computation is donein the
sixth run, with ¢ and I asfree problem parameters.
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AUTO -COMMAND ACTION
I mkdir pen createan empty work directory
cd pen changedirectory
demo('pen’) copy the demo les to the work directory
Id('pen’) load the problem de nition
us('pen’) corvert pen.datto AUTO format in s.dat

run(c='pen.1',s='dat’'
sv('pen’)

locate a period doubling bifurcation; restart from s.dat
save output- les as b.pen,s.pen,d.pen

run(c='pen.2',s="pen’

ap(‘pen’)

a branch of period-doubled (and out-of-
phase) rotations. Constarts changed :
IPS, NTST, ISW, NMX

append output- les tp b.pen,s.pen,d.pen

run(c='pen.3',s="pen’

ap(‘pen’)

a secondary bifurcating branch (without
bifurcation detection). Constarts changed
IRS, ISP

append output- les to b.pen,s.pen,d.pen

run(c='pen.4',s='pen’

ap(‘pen’)

another secondary bifurcating branch
(without bifurcation detection). Constarts
changed: IRS

append output- les to b.pen,s.pen,d.pen

run(c='pen.5',s="pen’

sv('t")

generatestarting data for period doubling
corntinuation. Constarts changed: IRS,
ICP, ICP, ISW, NMX

save output- les as b.t, s.t, d.t

run(c='pen.6’,s='t")

sv(‘pd’)

compute a locus of period doubling bi-
furcations; restart from s.t. Constarts
changed: IRS

save output- les as b.pd, s.pd, d.pd

Table 9.10: Commandsfor running demo pen
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9.11 chu: A Non-Smooth System (Chua’s Circuit).

Chua’s circuit is one of the simplest electronic devicesto exhibit complexbehavior. For related
calculations seeKhibnik, Roose& Chua (1993). The equationsmodeling the circuit are

Wy = afuy h(u) |,
uh, = up us+ oug, (9.13)
U’:IS = ﬂ Uy

where 1
h(z) = ayz + > (a0 a) {jz+1j jz 1j},

and wherewe take g = 143, a0 = 1/7,a; = 2/7.

Note that h(z) is not a smooth function, and hencethe solution to the equationsmay have
non-smath derivatives. Howevwer, for the orthogonal collocation method to attain its optimal
accuracy it is necessarythat the solution be su cien tly smaooth. Moreover, the adaptive mesh
selectionstrategy will fail if the solution or one of its lower order derivativeshas discortin uities.
For thesereasonswe usethe smaoth approximation

. 2
jxj = arctan(Kx),
m

which get better as K increases.In the numerical calculations belov we use K = 10. The free
parameteris a.

AUTO -COMMAND ACTION

I mkdir chu createan empty work directory

cd chu changedirectory

demo('chu’) copy the demo les to the work directory

Id(‘chu’) load the problem de nition

run(c='chu.l") 1st run; stationary solutions

sv('chu’) save output- les as b.chu,s.chu,d.chu

run(c='chu.2',s='chu’ ) | 2ndrun; periodic solutions,with detection
of period-doubling. constarts changed :
IPS, IRS, ICP, ICP

ap(‘chu’) append the output- les to b.chu,s.chu,d.chu

Table 9.11: Commandsfor running demo chu
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9.12 phs : Effect of the Phase Condition.

This demoillustrates the e ect of the phasecondition on the computation of periodic solutions.
We considerthe di erential equation

!
Uy
!
Ug

Aup ug,
U1(1 ul).

(9.14)

This equation has a Hopf bifurcation from the trivial solution at A = 0. The bifurcating branch
of periodic solutions is vertical and along it the period increasesmonotonically. The branch
terminatesin a homoclinic orbit cortaining the saddlepoint (uq, us) = (1,0). Graphicalinspection
of the computed periodic orbits, for examplew; versusthe scaledtime variable ¢, shovs how the

phasecondition hasthe e ect of keepingthe \p eak" in the solution in the samelocation.

AUTO -COMMAND ACTION
I mkdir phs createan empty work directory
cd phs changedirectory
demo('phs’) copy the demo les to the work directory
Id('phs") load the problem de nition
run(c="phs.1) detect Hopf bifurcation
sv('phs’) save output- les as b.phs,s.phs,d.phs

run(c="phs.2',s="phs

ap(phs’)

)

compute periodic solutions. Constarts
changed: IRS, IPS, NPR

append output- les to b.phs,s.phs,d.phs

Table 9.12: Commandsfor running demo phs
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9.13 ivp : Time Integration with Euler’s Method.

This demo usesEuler's method to locate a stationary solution of the following predator-prey
systemwith harvesting:

wy = pour(l wy)  wus pr(1 e M),

Uy = Uyt pauguy, (0-19)
where all problem parametershave a xed value. The equationsare the sameasthosein demo
pp2 The cortinuation parameteris the independert time variable, namely PAR(14)

Note that Euler time integration is only rst order accurate, so that the time step must
be su ciently small to ensurecorrect results. Indeed, this option has been added only as a
convenienceand shouldgenerallybe usedonly to locate stationary states. Note that the AUTO -
constats DS DSMINand DSMAXortrol the step sizein the spaceconsisting of time, here
PAR(14) and the state vector, here (uy, us).

AUTO -COMMAND | ACTION
I mkdir ivp createan empty work directory
cd ivp changedirectory
demo(ivp') copy the demo les to the work directory
ld('ivp) load the problem de nition
run(c="ivp.1") time integration
sv('ivp') save output- les as b.ivp, s.ivp,d.ivp

Table 9.13: Commandsfor running demo ivp.
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Chapter 10
AUTO Demos : BVP .

10.1 exp : Bratu’s Equation.
This demoillustrates the computation of a solution branch to the boundary value problem

!
Uy
!
Uy

Ua,
u
p1€ 17

(10.1)

with boundary conditions «;(0) = 0, w;(1) = 0. This equation is also consideredin Doedel,
Keller & Kernevez (1991a).

AUTO -COMMAND ACTION
I mkdir exp createan empty work directory
cd exp changedirectory
demo(‘exp’) copy the demo les to the work directory
run(c="exp.1") 1st run; compute solution branch cortaining fold
sv(‘exp’) save output- les as b.exp,s.exp,d.exp
run(c='exp.2',s='exp ") | 2ndrun; restart at alabeledsolution, using
increasedaccuracy Constarts changed:
IRS, NTST, Al, DSMA¥Xspace0.2cm
ap(‘'exp’) append output- les to b.exp,s.exp,d.exp

Table 10.1: Commandsfor running demo exp
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10.2 int : Boundary and Integral Constraints.

This demoillustrates the computation of a solution branch to the equation

!
Uy
!
Uy

Ua,
U
p1€ 17

(10.2)

with a non-separatedooundary condition and an integral constrairt:

w©) wl) p=0, / ()t ps= 0.
0

The solution branch contains a fold, which, in the secondrun, is cortinued in two equation

parameters.

AUTO -COMMAND ACTION
' mkdir int createan empty work directory
cd int changedirectory
demo('int’) copy the demo les to the work directory
run(c='int.1") 1st run; detection of a fold
sv('int) save output- les as b.int, s.int, d.int

run(c='int.2',s="int'

sv('t)

) | 2nd run; generatestarting data for a curve of folds. Constarts changed :

pace0.2cm
save the output- les as b.t, s.t, d.t

run(c='"int.3',s="t")

sv(1p)

3rd run; compute a curve of folds; restart
from s.t. Constarts changed: IRS vs-

pace0.2cm
save the output- les as b.lp, s.Ip,d.lp

Table 10.2: Commandsfor running demo int.
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10.3 bvp : A Nonlinear ODE Eigenvalue Problem.

This demoillustrates the location of eigervaluesof a nonlinear ODE boundary value problem as
bifurcations from the trivial solution branch. The branch of solutionsthat bifurcatesat the rst
eigervalue is computedin both directions. The equationsare

uy = ug,
uy = (pim)?ug + ud, (10.3)
with boundary conditions u;(0) = 0, (1) = 0.
AUTO -COMMAND ACTION
I mkdir bvp createan empty work directory
cd bvp changedirectory
demo('bvp’) copy the demo les to the work directory
run(c='bvp.1’) computethe trivial solution branch and locate eigervalues
sv('bvp") save output- les as b.bvp,s.bvp,d.bvp
run(c="bvp.2',s='bvp’) compute the rst bifurcating branch.
Constarts changed : IRS, ISW, NPR,
DSMAX
ap('bvp’) append output- les to b.bvp,s.bvp,d.bvp
run(c="bvp.3',s='bvp’) computethe rst bifurcating branch in op-
positedirection. Constarts changed: DS
ap('bvp") append output- les to b.bvp,s.bvp,d.bvp

Table 10.3: Commandsfor running demo bvp
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10.4 lin : A Linear ODE Eigenvalue Problem.

This demo illustrates the location of eigervalues of a linear ODE boundary value problem as
bifurcations from the trivial solution branch. By meansof branch switching an eigenfunction
is computed, asis illustrated for the rst eigervalue. This eigervalue is then continued in two
parametersby xing the Ls-norm of the rst solution componert. The eigervalue problem is

given by the equations

!
Uy
!
Uy

Uz,

(p1m)?us, (10-4)

with boundary conditions u;(0) p, = 0 and u;(1) = 0. We add the integral constrain

1
/ Ul(t)zdt p3 = 0.
0

Then p; is simply the L,-norm of the rst solution componert. In the rst two runs p, is xed,
while p; and ps are free. In the third run p; is xed, while p; and p, are free.

AUTO -COMMAND ACTION
' mkdir lin createan empty work directory
cd lin changedirectory
demo('lin’) copy the demo les to the work directory
run(c="lin.1") 1st run; computethe trivial solution branch and locate eigervalues
sv('lin) save output- les as b.lin, s.lin,d.lin

run(c="lin.2",s='lin'

ap('lin’)

2nd run; compute a few steps along the
bifurcating branch. Constarts changed:
IRS, ISW, DSMAX

append output- les to b.lin, s.lin, d.lin

run(c='lin.3",s="lin’

sv(2p)

3rd run; computea two-parametercurve of
eigervalues. Constarts changed: IRS,
ISW, ICP(2)

save the output- les as b.2p,s.2p,d.2p

Table 10.4: Commandsfor running demo lin.
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10.5 non : A Non-Autonomous BVP.

This demoillustrates the continuation of solutionsto the non-autonomousboundary value prob-
lem

/ —_
Uy = Ug,

(10.5)

/ - :L‘Sul
uy = pre” ™,

with boundary conditionsw;(0) = 0, w(1) = 0. Herex isthe independen variable. This system
is rst corverted to the following equivalent autonomoussystem:

!/ —_

ul - u2,
wy = predn, (10.6)
i =1

with boundary conditions u,(0) = 0, wu;(1) = 0, w3(0) = 0. (For a periodically forced system
seedemo frc).

AUTO -COMMAND | ACTION
I mkdir non createan empty work directory
cd non changedirectory
demo(‘'non’) copy the demo les to the work directory
run(c='non.1’) compute the solution branch
sv(‘non’) save output- les as b.non,s.non,d.non

Table 10.5: Commandsfor running demo non
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10.6 kar : The Von Karman Swirling Flows.

The steady axi-symmetric ow of a viscousincompressible uid above an in nite rotating disk
is modeled by the following ODE boundary value problem (Equation (11) in Lentini & Keller
(1980):

uy = Tus,

uh, = Tus,

uy =T 2yus+ w3 2uus 4], (10.7)
uwy = Tus,

ur = T[Z’WQ + 2uquy 2u1u5},

with left boundary conditions
u(0)=0,  w(0)=0, w(0)=1 »,

and (asymptotic) right boundary conditions

[foo + alfaos )] ua(D) + us(1) v ;1= 0,
0(foor7) PU=2 up(1) + [+ alf,7)] wa(D) + us(2) = O, (10.8)

Ul(l) = fooa

where
1/2

a(fOOa’}/) = % [(féo + 472)1/2 + fgo} :
b(f,7) = %j[(f;‘o + 422 p2] 12 (10.9)

Note that there are v e dierential equationsand six boundary conditions. Correspondingly,
there are two free parametersin the computation of a solution branch, namely v and f... The
\p eriod" T is xed; T = 500. The starting solutionisu; = 0,:=1, ,5,atv=1, f,,= 0.

AUTO -COMMAND | ACTION
I mkdir kar createan empty work directory
cd kar changedirectory
demo('kar’) copy the demo les to the work directory
run(c='kar.1") computation of the solution branch
sv(‘kar") save output- les as b.kar, s.kar, d.kar

Table 10.6: Commandsfor running demo Kkar.
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10.7 spb : A Singularly-Perturbed BVP.

This demo illustrates the use of cortinuation to compute solutions to the singularly perturbed
boundary value problem
uy = ug,

dy = A(wun(u? 1)+ w), (10.10)

with boundary conditions «;(0) = 3/2, u;(1) = ~. The parameter A hasbeenintroducedinto the
equationsin order to allow a homotopy from a simple equation with known exact solution to the
actual equation. This is donein the rst run. In the secondrun ¢ is decreaseddy cortinuation.
In the third run € is xed at ¢ = .001 and the solution is cortinued in ~. This run takes more
than 1500cortinuation steps. For a detailed analysisof the solution behavior seeLorenz (1982).

AUTO -COMMAND ACTION
' mkdir spb createan empty work directory
cd spb changedirectory
demo('spb’) copy the demo les to the work directory
run(c='spb.1") 1st run; homotopy from A= 0to A= 1
sv('1l) save output- les as b.1,s.1,d.1
run(c="'spb.2',s='1") 2nd run; let ¢ tend to zero; restart from
s.1 constarts changed: IRS, ICP(1),
NTST, DS
sv('2) save the output- les as b.2,s.2,d.2
run(c="'spb.3',s="2") 3rd run; cortinuation in y; € =
0.001; restart from s.2 Constarts
changed : IRS, ICP(1), RLO, ITNW,
EPSL, EPSU,NUZR
sv('3") save the output- les as b.3,s.3,d.3

Table 10.7: Commandsfor running demo sph
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10.8 ezp : Complex Bifurcation in a BVP.

This demoiillustrates the computation of a solution branch to the the complex boundary value
problem

/ —_
Uy = U,

/ U
u2 ple 17

with boundary conditions «;(0) = 0, u;(1) = 0. Hereu; and u, are allowedto be complex,while
the parameter p; can only take real values. In the real case,this is Bratu's equation, whose
solution branch corntains a fold; seethe demo exp It is known (Henderson& Keller (1990))
that a simple quadratic fold givesrise to a pitch fork bifurcation in the complexequation. This
bifurcation is located in the rst computation below. In the secondand third run, both legsof
the bifurcating solution branch are computed. On it, both solution componenrs «; and u, have
nontrivial imaginary part.

(10.11)

AUTO -COMMAND ACTION
I mkdir ezp createan empty work directory
cd ezp changedirectory
demo(‘ezp’) copy the demo les to the work directory
run(c='ezp.1’) 1st run; compute solution branch cortaining fold
sv(‘ezp’) save output- les as p.ezp,s.ezp,d.ezp

run(c='ezp.2',s='ezp ") | 2nd run; compute bifurcating complex
solution branch. Constarts changed :
IRS, ISW

ap(‘ezp") append output- les to p.ezp,s.ezp,d.ezp
run(c='ezp.3',s='ezp ") | 3rd run; compute 2nd leg of bifurcating
branch. constart changed: DS

ap(‘ezp’) append output- les to p.ezp,s.ezp,d.ezp

Table 10.8: Commandsfor running demo ezp
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Chapter 11
AUTO Demos : Parabolic PDEs.
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11.1  pdl : Stationary States (1D Problem).

This demo usesEuler's method to locate a stationary solution of a nonlinear parabolic PDE,
followed by cortinuation of this stationary state in a free problem parameter. The equationis

ou

E_D@ + pru@ o ow),

on the spaceinterval [0, L], where L = PAR(11)= 10is xed throughout, asis the di usion
constat D = PAR(15)= 0.1. The boundary conditions are «(0) = u(L) = 0 for all time.

In the rst run the cortinuation parameteris the independer time variable, namely PAR(14)
while p; = 1is xed. The AUTO -constats DS DSMINand DSMA#MXen corrol the step size
in space-time,here consistingof PAR(14)and u(z). Initial data are u(x) = sin(rx/L) at time
zero. Note that in the subroutine stpnt the initial data must be scaledto the unit interval, and
that the scaledderivative must also be provided; seethe equations- le pvl.c In the secondrun
the cortinuation parameteris p;.

Euler time integration is only rst order accurate,sothat the time step must be su cien tly
small to ensurecorrect results. Indeed, this option has beenadded only as a corvenience,and
should generallybe usedonly to locate stationary states.

AUTO -COMMAND ACTION

I mkdir pdl createan empty work directory

cd pdl changedirectory

demo('pdl’) copy the demo les to the work directory

run(c="pd1.1") time integration towards stationary state

sv('l) save output- les as b.1,s.1,d.1

run(c="pd1.2',s="1") cortinuation of stationary states; read
restart data from s.1 constans changed:
IPS, IRS, ICP, etc.

sv('2) save output- les as b.2,s.2,d.2

Table 11.1: Commandsfor running demo pdl
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11.2 pd2 : Stationary States (2D Problem).

This demo usesEuler's method to locate a stationary solution of a nonlinear parabolic PDE,
followed by cortinuation of this stationary state in a free problem parameter. The equationsare

8u1/8t
8u2/8t

Dy *uy/02® + pru(d  u) Ui U,
DQ 82’&2/81'2 Uy + U1 U2,

(11.1)

on the spaceinterval [0, L], where L = PAR(11)= 1is xed throughout, as are the di usion
constarts D; = PAR(15)= 1and D, = PAR(16)= 1. The boundary conditions are u;(0) =
u1(L) = 0and us(0) = us(L) = 1, for all time.

In the rst run the cortinuation parameteris the independen time variable, namely PAR(14)
while p; = 12is xed. The AUTO -constats DS DSMINand DSMA¥en cortrol the step
sizein space-time,here consistingof PAR(14)and (ui(x),us(x)). Initial data at time zeroare
ui(z) = sin(rz/L) and uy(x) = 1. Note that in the subroutine stpnt the initial data must
be scaledto the unit interval, and that the scaledderivatives must also be provided; seethe
equations- le pv2.c In the secondrun the cormtinuation parameteris p;. A branch point is
located during this run.

Euler time integration is only rst order accurate,sothat the time step must be su cien tly
small to ensurecorrect results. Indeed, this option has beenadded only as a corvenience,and
should generallybe usedonly to locate stationary states.

AUTO -COMMAND ACTION

' mkdir pd2 createan empty work directory

cd pd2 changedirectory

demo('pd2’) copy the demo les to the work directory

run(c='pd2.1") time integration towards stationary state

sv('1l) save output- les as b.1,s.1,d.1

run(c='pd2.2',s="1") cortinuation of stationary states; read
restart data from s.1 constarts changed:
IPS, IRS, ICP, etc.

sv('2") save output- les as b.2,s.2,d.2

Table 11.2: Commandsfor running demo pd2.
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11.3 wav : Periodic Waves.

This demoillustrates the computation of various periodic wave solutionsto a systemof coupled
parabolic partial di erential equationson the spatial interval [0, 1]. The equations,that model
an enzymecatalyzedreaction (Doedel & Kernevez (198&)) are :

Qui /0t = 0%ui/0x*  pi[paR(ur,ue)  (p2  w)],

11.2
Qug /Ot = BDPuy/0x®  py [p4R(U1,U2) pr(ps UQ)}- ( )
All equation parameters,exceptps, are xed throughout.
AUTO -COMMAND ACTION
I mkdir wav createan empty work directory
cd wav changedirectory
demo(‘wav’) copy the demo les to the work directory
run(c='wav.1’) 1st run; stationary solutions of the systemwithout di usion
sv(‘ode’) save output- les as b.ode,s.ade, d.ode
cp c.wav.2 c.wav constarts changed: IPS

run(c='wav.2'.s='wav ) 2nd run; detect bifurcations to wave train
solutions. Constarts changed: IPS

sv(‘wav') save output- les as b.wav, s.wav, d.wav
run(c='wav.3',s='wav ) 3rd run; wave train solutionsof xed wave
speed. Constarts changed: IRS, IPS,
NUZR,ILP

ap(‘wav’) append output- les to b.wav, s.wav, d.wav
run(c='wav.4',s='wav ) 4th run; wave train solutionsof xed wave
length. Constarts changed: IRS, IPS,
NMX,ICP, NUZR

sv('rng’) save output- les as b.rng,s.rng,d.rng
run(c='wav.5',s='wav ) 5th run; time ewlution computation. Con-
stants changed: IPS, NMX,NPR,ICP

sv('tim") save output- les as b.tim, s.tim, d.tim

Table 11.3: Commandsfor running demo wav.
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11.4 brc : Chebyshev Collocation in Space.

This demoillustrates the computation of stationary solutionsand periodic solutionsto systemsof
parabolic PDEs in one spacevariable, using Chebyshev collocation in space.More precisely the
approximate solution is assumedof the form u(z,t) = Z;Lé ug(t)lr(x). Hereu,(t) correspnds
to u(x,t) at the Chebyshevpoints {xk}zzl with respect to the interval [0, 1]. The polynomials

{&(:):)}Z:; are the Lagrange interpolating coe cien ts with respect to points {xk}’;z where
9 = 0and x,,1 = 1. The number of Chelyshev points in [0, 1], as well as the number of
equationsin the PDE system,can be set by the userin the le brc.inc
As an illustrativ e application we considerthe Brusselator (Holodniok, Knedlik & Kub cek
(1987))
Uy D,/L*uz, + v*v  (B+ Lu+ A,
Uy D,/L*v,, wu*v+ Bu,

with boundary conditions «(0,¢) = u(1,t) = A and v(0,t) = v(1,t) = B/A.

Note that, giventhe non-adaptive spatial discretization, the computational procedurehereis
not appropriate for PDEs with solutions that rapidly vary in space,and care must be taken to
recognizespurioussolutions and bifurcations.

(11.3)

AUTO -COMMAND ACTION
' mkdir brc createan empty work directory
cd brc changedirectory
demo('brc’) copy the demo les to the work directory
run(c="brc.1") compute the stationary solution branch with Hopf bifurcations
sv('brc’) save output- les as b.brc, s.lrc, d.brc
run(c='brc.2',s='brc’ ) | compute a branch of periodic solutions

from the rst Hopf point. Constarts
changed: IRS, IPS

ap(‘brc’) append the output- les to b.brc, s.krc, d.brc
run(c="brc.3",s="brc’ ) | compute a solution branch from a sec-
ondary periodic bifurcation. Constarts
changed: IRS, ISW

ap('brc’) append the output- les to b.brc, s.lrc, d.brc

Table 11.4: Commandsfor running demo brc.
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11.5 brf : Finite Differences in Space.

This demoillustrates the computation of stationary solutionsand periodic solutionsto systemsof
parabolic PDEs in one spacevariable. A fourth order accurate nite di erence approximation is
usedto approximate the secondorder spacederivatives. This reducesthe PDE to an autonomous
ODE of xed dimensionwhich AUTO is capableof treating. The spatial meshis uniform; the
number of meshintervals, as well asthe number of equationsin the PDE system,can be set by

the userin the le brf.inc.

As an illustrativ e application we considerthe Brusselator (Holodniok, Knedlik & Kub cek

(1987))
Ut

D,/L*uz, + v*v  (B+ Lu+ A,
D,/L*v,, u*v+ Bu,

with boundary conditions «(0,t) = w(1,t) = A and v(0,t) = v(1,t) = B/A.

Note that, giventhe non-adaptive spatial discretization, the computational procedurehereis
not appropriate for PDEs with solutions that rapidly vary in space,and care must be taken to
recognizespurioussolutions and bifurcations.

(11.4)

AUTO -COMMAND

ACTION

' mkdir brf createan empty work directory

cd brf changedirectory

demo('brf") copy the demo les to the work directory

run(c="brf.1") compute the stationary solution branch with Hopf bifurcations
sv('brf") save output- les as b.brf, s.of, d.brf

run(c="brf.2',s="brf' )

ap('brf’)

compute a branch of periodic solutions
from the rst Hopf point. Constarts
changed: IRS, IPS

append the output- les to b.brf, s.lof, d.brf

run(c="brf.3',s="brf' )

ap('brf)

compute a solution branch from a sec-
ondary periodic bifurcation. Constarts
changed: IRS, ISW

append the output- les to b.brf, s.lof, d.brf

Table 11.5: Commandsfor running demo brf.
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11.6 bru : Euler Time Integration (the Brusselator).

This demoillustrates the useof Euler's method for time integration of a nonlinear parabolic PDE.
The exampleis the Brusselator (Holodniok, Knedlik & Kub cek (1987)), given by

ug = Dy/LPuz, + v?v  (B+ Lu+ A,
v, = D,/L*v,, u?v+ Bu, (11.5)
with boundary conditions «(0,t) = w(1,t) = A and v(0,t) = v(1,t) = B/A. All parametersare
given xed valuesfor which a stable periodic solution is known to exist.

The continuation parameteris the independert time variable, namely PAR(14) The AUTO -
constarts DS DSMINand DSMA¥Men cortrol the step sizein space-time,here consisting of
PAR(14) and (u(z),v(x)). Initial data at time zero are u(x) = A 0.5sin(rz) and v(z) =
B/A+ 0.7sin(rx). Note that in the subroutine stpnt the spacederivativesof « and v must also
be provided; seethe equations- le bru.c.

Euler time integration is only rst order accurate,sothat the time step must be su cien tly
small to ensurecorrect results. This option has beenadded only as a corvenience,and should
generallybe usedonly to locate stationary states. Indeed, in the caseof the asymptotic periodic
state of this demo, the number of required stepsis very large and useof a better time integrator
is advisable.

AUTO -COMMAND | ACTION
I mkdir bru createan empty work directory
cd bru changedirectory
demo('bru’) copy the demo les to the work directory
run(c="bru.1") time integration
sv('bru’) save output- les as b.bru, s.ru, d.bru

Table 11.6: Commandsfor running demo bru.
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Chapter 12

AUTO Demos : Optimization.
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12.1 opt : A Model Algebraic Optimization Problem.

This demoillustrates the method of successig cortin uation for constrainedoptimization problems
by applying it to the following simple problem: Find the maximum sum of coordinates on the
unit spherein R°. Coordinate 1 is treated as the state variable. Coordinates 2-5 are treated as
corntrol parameters. For details on the successig cortinuation procedure seeDoedel, Keller &

Kernewez (1991s), Doedel,Keller & Kernewez (19915).

AUTO -COMMAND

ACTION

I mkdir opt createan empty work directory

cd opt changedirectory

demo(‘opt’) copy the demo les to the work directory
run(c="opt.1") onefree equation parameter

sv('l) save output- les as b.1,s.1,d.1

run(c='opt.2',s="1")

sv('2")

two free equation parameters;read restart
data from s.1 Constarts changed: IRS

save output- les as b.2,s.2,d.2

run(c="opt.3',s="2")

sv('3")

three free equation parameters; read
restart data from s.2 Constarts changed
IRS

save output- les as b.3,s.3,d.3

run(c='opt.4',s='3")

sv('4)

four free equation parameters;read restart
data from s.3 Constarts changed: IRS

save output- les as b.4,s.4,d.4

Table 12.1: Commandsfor running demo opt.
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12.2 ops : Optimization of Periodic Solutions.

This demo illustrates the method of successig cortinuation for the optimization of periodic
solutions. For a detailed description of the basic method seeDoedel, Keller & Kernewez(19915).
The illustrativ e systemof autonomousODEs, taken from Rodr guez-Luis(1991), is

7'(t) [ M(2?/3 2)+ (2 2)/A yl/A,
y() =z A, (12.1)

(1) (2 2)/ X

with objective functional

1
w= / g(x7yvz;)\17)\27)\37)\4) dt7
0

where g(z,y, z; A1, A2, A3, A4)  A3. Thus, in this application, a one-parameterextremum of ¢
correspndsto a fold with respect to the problem parameter A3, and multi-parameter extrema
correspnd to generalizedolds. Note that, in general,the objective functional is an integral along
the periodic orbit, sothat a variety of optimization problemscan be addressed.

For the caseof periodic solutions, the extendedoptimality systemcan be generatedautomat-
ically, i.e., one needonly de ne the vector eld and the objective functional, asin donein the
le ops.c For referencepurposeit is corveniert hereto write down the full extendedsystemin
its generalform :

W'(t) = Tf(u(t),N), T 2 R (period), u(),f(,)2R" A2 R™,
w'(t) = Tfu(u(®),A) wt) + sup(t) + ygu(u(t),N)",  w()2R", k,72R,
u(l) w(0) = 0, w(l) w(0) = 0,
[ uty ul(t) dt = 0,
(12.2)
folw g(u(t),/\) dt = 0,
fol w(t)*w(t) + K2+ 42 adt= 0, a2 R,

fol Fu@®), ) w(t)  vgr(u®),\) 7 dt=0, 7 2 R,

f(]l Tf)w (U(t), /\>*w(t) Y9N (U(t), )‘) Ti dt = 07 Ti 2 R7 1= 17 y T~

Above uq is a referencesolution, namely, the previoussolution along a solution branch.
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In the computationsbelow, the two preliminary runs, with IPS=1 and [PS=2, respectively,
locate periodic solutions. The subsequehruns arewith IPS=15 and henceusethe automatically
generatedextendedsystem.

- Run1. Locate a Hopf bifurcation. The free systemparameteris \s.
- Run 2. Compute a branch of periodic solutions from the Hopf bifurcation.

- Run 3. This run retracespart of the periodic solution branch, using the full optimality
system,but with all adjoint variables,w( ), x,, and hencec, equalto zero. The optimality
parameterst, and 73 are zerothroughout. An extremum of the objective functional with
respect to \; is located. Sud a point correspnds to a branch point of the extended
system. Given the choice of objective functional in this demo, this extremum is alsoa fold
with respectto \s.

- Run4. Branch switching at the above-found branch point yields nonzerovalues of the
adjoint variables. Any point on the bifurcating branch away from the branch point can
sere as starting solution for the next run. In fact, the branch-switching can be viewed
as generatinga nonzeroeigervector in an eigervalue-eigenector relation. Apart from the
adjoint variables,all other variablesremain unchangedalong the bifurcating branch.

- Run5. The above-foundstarting solution is cortinued in two systemparameters,here A3
and \,; i.e., a two-parameterbranch of extremawith respectto A3 is computed. Along this
branch the value of the optimality parameterr, is monitored, i.e., the value of the functional
that vanishesat an extremum with respectto the systemparameter\,. Sud a zeroof 7, is,
in fact, located, and hencean extremum of the objective functional with respect to both A,
and \; hasbeenfound. Note that, in general,r; is the value of the functional that vanishes
at an extremum with respect to the systemparameter \;.

- Run6. In the nal run, the above-found two-parameterextremum is continued in three
systemparameters,here \;, Ay, and A3, toward \; = 0. Again, given the particular choice
of objective functional, this nal cortinuation has an alternate signi cance here: it also
represeis a three-parameterbranch of transcritical secondaryperiodic bifurcations points.

Although not illustrated here, onecan restart an ordinary cortinuation of periodic solutions,
using IPS=2 or IPS=3, from a labeledsolution point on a branch computedwith [PS=15.
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The free scalarvariablesspeci ed in the AUTO constarts- les for Run 3 and Run 4 are shavn
in Table12.2.

Index 31111222 -22| -23|-31
Variable M| T| al m [/\2] [/\3] [T]

Table12.2: Runs3 and 4 (les c.ops.3and c.ops.3.

The parameter «,, which is the norm of the adjoint variables, becomesnonzeroafter branch
switching in Run 4. The negative indices(-22, -23, and -31) set the active optimality functionals,
namely for Ay, A3, and T, respectively, with correspnding variables,, 73, and 7y, respectively.
Theseshould be setin the rst run with [PS=15 and remain unchangedin all subsequenruns.

Index 3| 2111 22]| -22| -23|-31
Variable | A3 | Ao | T | 7 | [Mo] | [Ns] | [T]

Table12.3: Run5 (le c.ops.j.

In Run 5 the parameter «, which has beenreplacedby )\,, remains xed and nonzero. The
variable 5, monitors the value of the optimality functional assaiated with ;. The zero of
located in this run signalsan extremum with respectto \,.

Index 3| 2| 1|11| -22| -23|-31
Variable | A3 | Ao | Ay | T | [A2] | [Ns] | [T]

Table12.4: Run6 (le c.ops.9.

In Run 6 7, which hasbeenreplacedby )\, remainszero.

Note that 7y and 75 are not usedasvariablesin any of the runs; in fact, their valuesremainzero
throughout. Also note that the optimality functionals correspndingto =, and 73 (or, equivalertly,
to T and )\3) are active in all runs. This set-up allows the detection of the extremum of the
objective functional, with 7" and A3 as scalar equation parameters,as a bifurcation in the third
run.

The parameter )\, and its correspnding optimality variable 7,, are not usedin this demo.
Also, \; is usedin the last run only, and its correspnding optimality variable 7, is newver used.
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AUTO -COMMAND ACTION
' mkdir ops createan empty work directory
cd ops changedirectory
demo(‘ops’) copy the demo les to the work directory
run(c='ops.1’) locate a Hopf bifurcation
sv('0") save output- les as b.0,s.0,d.0

run(c='ops.2',s='0")

ap(0)

compute a branch of periodic solutions;
restart from s.0 Constarts changed :
IPS, IRS, NMX,NUZR

append the output- les to b.0,s.0,d.0

run(c='ops.3',s='0")

sv('1)

locate a 1l-parameter extremum as a bi-
furcation; restart from s.0 Constarts
changed: IPS, IRS, ICP,

save the output- les as b.1,s.1,d.1

run(c='ops.4',s='1")

ap('1)

switch branches to generate optimality
starting data; restart from s.1 Constarts
changed: IRS, ISP, ISW, NMX

append the output-les to b.1,s.1,d.1

run(c='ops.5',s="1")

sv('2")

compute 2-parameter branch of 1-
parameter extrema; restart from s.1
Constarts changed : IRS, ISW, ICP,
ISW

save the output- les as b.2,s.2,d.2

run(c='ops.6',s="'2")

sv('3")

compute 3-parameter branch of 2-
parameter extrema; restart from s.2
Constarts changed: IRS, ICP, EPSL,
EPSU,NUZR

save the output- les as b.3,s.3,d.3

Table 12.5: Commandsfor running demo ops
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12.3 obv : Optimization for a BVP.

This demoillustrates use of the method of successig cortinuation for a boundary value opti-
mization problem. A detailed description of the basic method, as well as a discussionof the
speci ¢ application consideredhere,is givenin Doedel,Keller & Kernewez(1991h). The required
extendedsystemis fully programmedherein the user-suppliedsubroutinesin obv.c For the case
of periodic solutionsthe optimality systemcan be generatedautomatically; seethe demo ops
Considerthe system
uh (1) = ua(t),
uégt% 2)(\1)67’(“1’)‘2’)‘3), (12.3)

wherep(uy, Ao, A3)  up + Xu? + Azui, with boundary conditions

Ul(O) = 07
w(1) =0 (12.4)
The objective functional is
1 1 3
w = / (w(t) 1) dt+ =) A
0 10 p
The successig cortinuation equationsare given by
uy(t) = UQ(t)>( )
wp(l) = Nertmdn),
WD) = Mg un(t) + 29(n(0) D), (129
wé(t) = wl(t)a
where 5
Duy P 1+ 2\ou; + 4)\3u?,
aul
with
ul(o) = 07 wl(o) 61 = 07 wZ(O) = 07 (12 6)
uy(1) = 0, w1 (1) + B2 = 0, wy(1) = 0, '

! 2 1 & 2
/0[w (ui() 1) E;Ak} dt = 0,

/ (Wi a0l de= 0
0

fol[ PR y(t)  Ly] dt = 0,
Jo [ Aer22 )y (02w (1) tydy ] dt =0, (12.7)
fol[ AePtinredsdy, () hwy(t)  tyAg 73] dt = 0.

In the rst run the free equation parameteris ;. All adjoint variables are zero. Three

extrema of the objective function are located. These correspnd to branch points and, in the
secondrun, branch switching is done at one of these. Along the bifurcating branch the adjoint
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variables becomenonzero, while state variablesand \; remain constart. Any sud non-trivial
solution point can be usedfor cortinuation in two equation parameters,after xing the L,-norm
of one of the adjoint variables. This is donein the third run. Along the resulting branch se\eral
two-parameterextremaare located by monotoring certain inner products. One of theseis further
cortinued in three equation parametersin the nal run, where a three-parameterextremum is
located.

AUTO -COMMAND ACTION
I mkdir obv createan empty work directory
cd obv changedirectory
demo('obVv’) copy the demo les to the work directory
run(c='obv.1") locate 1-parameterextremaas branch points
sv(‘obv') save output- les as b.obv,s.obv,d.obv

run(c='obv.2',s='obv' ) | computea few steponthe rst bifurcating
branch. Constarts changed: IRS, ISW,

NMX
sv('1l) save the output- les as b.1,s.1,d.1
run(c='obv.3',s='1") locate 2-parameterextremum; restart from
s.1 Constarts changed : IRS, ISW,
NMX,ICP(3)
sv('2") save the output- les as b.2,s.2,d.2
run(c='obv.4',s='2") locate 3-parameterextremum; restart from
s.2 Constarts changed: IRS, ICP(4)
sv('3") save the output- les as b.3,s.3,d.3

Table 12.6: Commandsfor running demo obv.
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Chapter 13

AUTO Demos : Connecting orbits.
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13.1 fsh : A Saddle-Node Connection.

This demoillustrates the computation of travelling wave front solutionsto the Fisher equation,

Wy = Wy + f(w), 1 <x<l1l, t>0

flw) w@ w).

We look for solutions of the form w(x,t) = u(x + ct), wherec is the wave speed. This givesthe
rst order system

(13.1)

uy(2) = ua(2),

W) = cus(z)  F(m(2). (132)
Its xed point (0,0) hastwo positive eigervalueswhen ¢ > 2. The other xed point, (1,0), is a
saddlepoint. A branch of orbits connectingthe two xed points requiresonefree parameter;see
Friedman & Doedel (1991). Here we take this parameterto be the wave speedc.

In the rst run a starting connectingorbit is computedby cortinuation in the period 7'. This
procedurecan be usedgenerally for time integration of an ODE with AUTO . Starting data in
stpnt correspnd to a point on the appraximate stable manifold of (1,0), with 7" small. In this
demothe \free" end point of the orbit necessaryapproadhesthe unstable xed point (0,0). A
computedorbit with su cien tly large T is then chosenasrestart orbit in the secondrun, where,
typically, onereplacesT’ by ¢ as cortinuation parameter. Howeer, in the secondrun below, we
alsoadd a phasecondition, and both ¢ and 7' remain free.

AUTO -COMMAND ACTION
I mkdir fsh createan empty work directory
cd fsh changedirectory
demo('fsh’) copy the demo les to the work directory
run(c="fsh.1’) cortinuation in the period 7', with ¢ xed; no phasecondition
sv('0") save output- les as b.0,s.0,d.0
run(c="fsh.2',s='0") cortinuation in ¢ and T, with active phase
condition. Constarts changed: IRS,
ICP, NINT, DS
sv('fsh") save output- les as b.fsh,s.fsh,d.fsh

Table 13.1: Commandsfor running demo fsh
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13.2 nag : A Saddle-Saddle Connection.

This demoillustrates the computation of traveling wave front solutionsto Nagumo'sequation,

Wy = Wep + f(w,a), 1 <z<1l, t>0

flw,a) wl w)(w a), O<a< 1l (13.3)

We look for solutions of the form w(x,t) = u(x + ct), wherec is the wave speed. This givesthe
rst order system
U,I(Z) = U2(2)7
134
() = cus(z)  (wi(2), ). (139
wherez = x + ¢t, and’ = d/dz. If a = 1/2 and ¢ = 0 then there are two analytically known
heteroclinic connections,one of which is given by

l z
_ eV = 1 1
Ul(Z') - 1+ e%ﬁzv UQ(Z) - U’l(z)7 <z < .

The secondheteraclinic connectionis obtained by re ecting the phaseplanerepresetation of the
rst with respect to the u;-axis. In fact, the two connectionstogether constitute a heteroclinic
cycle. One of the exact solutionsis usedbelow as starting orbit. To start from the secondexact
solution, changeSIGN=-1 in the subroutine stpnt in nag.cand repeat the computations below;
seealso Friedman & Doedel (1991).

AUTO -COMMAND ACTION
I mkdir nag createan empty work directory
cd nag changedirectory
demo('nag’) copy the demo les to the work directory
run(c="nag.1") compute part of rst branch of heteroclinic orbits
sv(‘nag’) save output- les as b.nag,s.nag,d.nag
run(c='nag.2'.,s='nag ") | compute rst branch in opposite direction.

Constarts changed: DS

ap('nag’) append output- les to b.nag,s.nag,d.nag

Table 13.2: Commandsfor running demo nag
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13.3 stw : Continuation of Sharp Traveling Waves.

This demoillustrates the computation of sharptravelingwave front solutionsto nonlineardi usion
problemsof the form
Wy = A(w)wmx + B(w)wfc + C’(w),

with A(w) = a;w+ asw?, B(w) = by+ byw+ byw?, and C(w) = co+ cyw+ cow?. Sud equationscan
have sharp traveling wave fronts assolutions,i.e., solutionsof the form w(z,t) = u(x + ct)
for which thereis a z, sud that u(z) = Ofor 2z, u(z) 6 0for z < zp, and u(z) ! constant as
z! 1 . Thesesolutionsare actually generalizedsolutions, sincethey neednot be di erentiable
at 2.

Speci cally, in this demoa homotopy path will be computedfrom an analytically known exact
sharp traveling wave solution of

Q) w; = 2Wwe, + 2w2 + w(l  w),
to a correspnding sharp traveling wave of
(2) w; = 2w + wwe, + ww? + wl  w).

This problemis alsoconsideredn Doedel,Keller & Kernevez(1991b). For thesetwo special cases
the functions A, B, C' are de ned by the coe cien ts in Table 13.3.

ay | Qo b() b1 bg Co | C1 | Co
Case() |2 [0 |2 |0 |00 |1 -1
Case(2) |2 |1 (O |1 |0 (0|1 |1

Table 13.3: Problem coe cien ts in demo stw.
With w(z,t) = u(x + ct), z = x + ct, oneobtains the reducedsystem

uy(z) = u,
uh(z) = [cuz B(uy)u? C’(ul)]/A(ul).

To remove the singularity whenwu; = 0, we apply a nonlinear transformation of the independert
variable (seeAronson (1980)), viz., d/d== A(u;)d/dz, which changesthe above equationinto

(13.5)

uy(2) = Alur)us,

uh(2) = cus  Blu)u2  C(uq). (13.6)

Sharp traveling wavesthen correspnd to heteroclinic connectionsin this transformed system.
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Finally, we map [0,77 ! [0,1] by the transformation ¢ = =/T. With this scaling of the

independert variable, the reducedsystembecomes

uy(§) = TA(ur)uz,
uh(€) = Tleus  Blu)ui  Cluwy)].

For Casel this equation hasa known exact solution, namely;

1 1

WO @y YO Tha( 19

(13.7)

This solution haswave speedc = 1. In the limit as7'! 1 its phaseplane trajectory connects

the stationary points (1,0) and (0, %).

The sharp traveling wave in Case2 can now be obtained using the following homotopy. Let
(ar,as,bp,b1,b2) = (L N)(2,0,2,0,0)+ A\(2,1,0,1,0). Then as A varies cortinuously from 0 to
1, the parameters(aq, as, by, b1, by) vary cortinously from the valuesfor Casel to the valuesfor

Case?2.
AUTO -COMMAND | ACTION
I mkdir stw createan empty work directory
cd stw changedirectory
demo('stw’) copy the demo les to the work directory
run(c="stw.1’) cortinuation of the sharp traveling wave
sv('stw") save output- les as b.sw, s.stv, d.stw

Table 13.4: Commandsfor running demo stw.
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Chapter 14

AUTO Demos : Miscellaneous.
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14.1 pvl : Use of the Subroutine pvls.

ConsiderBratu's equation

uy = ug,

ul2 p1€Ula
with boundary conditions «;(0) = 0, u;(1) = 0. As in demo exp a solution curve requiresone
free parameter; here p;.

Note that additional parametersare speci ed in the user-suppliedsubroutine pvls in le
pvis.¢c namely, p; (the Ly-norm of u;), ps (the minimum of u, on the space-iterval [0,1] ), pq4
(the boundary value u5(0) ). These additional parametersshould be consideredas \solution
measures'for output purposesithey should not be treated astrue cortinuation parameters.

Note alsothat four free parametersare speci ed in the AUTO -constaris le c.pvl.1, namely,
P1, P2, P3, @and py. The rst onein this list, py, is the true cortinuation parameter. The parameters
p2, P3, and py are owverspecified sothat their valueswill appearin the output. Howewer, it is
essential that the true continuation parameter appear first. For example,it would be an error to
specify the parametersin the following order : ps, p1, p3, ps.

In general,true cortinuation parametersmust appear rst in the parameter-sgeci cation in
the AUTO constarts- le. Overspeci ed parameterswill be printed, and can be de ned in pvls,
but they are not part of the intrinsic cortinuation procedure.

As this demo also illustrates (seethe UZRvaluesin c.pvl.]), labeled solutions can also be
output at selectedvaluesof the overspeci ed parameters.

(14.1)

AUTO -COMMAND | ACTION
I mkdir pvl createan empty work directory
cd pvl changedirectory
demo('pvl’) copy the demo les to the work directory
run(c="pvl.1" compute a solution branch
sv('pvl’) save output- les as b.pvl, s.pvl,d.pvl

Table 14.1: Commandsfor running demo pvl.
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14.2 ext : Spurious Solutions to BVB.
This demoillustrates the computation of spurioussolutionsto the boundary value problem

uy  ug =0,
uhy + N2 sin(u; + vl + ud) = 0, t 2 [0, 1], (14.2)
u1(0) =0, wu1(1) =0

Herethe di erential equationis discretizedusinga xed uniform mesh. This resultsin spurious
solutions that disappear when an adaptive meshis used. Seethe AUTO -constart 1AD in
Section 5.3. This exampleis also consideredin Beyn & Doedel (1981) and Doedel, Keller &
Kernewez (1991)).

AUTO -COMMAND ACTION

I mkdir ext createan empty work directory

cd ext changedirectory

demo('ext’) copy the demo les to the work directory
run(c="ext.1") detect bifurcations from the trivial solution branch
sv(‘ext’) save output- les as b.ext, s.ext,d.ext
run(c="ext.2',s='ext’) compute a bifurcating branch cortaining

spurious bifurcations. Constarts changed
IRS, ISW, NUZR
ap(‘ext’) append output- les to b.ext, s.ext,d.ext

Table 14.2: Commandsfor running demo ext
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14.3 tim : A Test Problem for Timing AUTO .

This demois a boundary value problem with variable dimension NDIMIt can be usedto time
the performanceof AUTO for various choicesof NDIMwhich must be even), NTSTand NCOL

The equationsare

u
(%

Uy,
p1 e(u;),

(14.3)

SN oL~

i=1, , NDIVR, with boundary conditions «;(0) = 0, u;(1) = 0. Here

C(U) = Z F )
k=0

with n = 25. The computation requires10 full LU-decompsitions of the linearized systemthat
arisesfrom Newton's method for solving the collocation equations. The commandsfor running
the timing problem for a particular choiceof NDIM NTSTand NCOlare given below. (Note
that if NDIMs changedthen NBGOnust be changedaccordingly)

AUTO -COMMAND | ACTION
I mkdir tim createan empty work directory
cd tim changedirectory
demo('tim’) copy the demo les to the work directory
run(c="tim.1") Timing run
sv('tim’) save output- les as b.tim, s.tim, d.tim

Table 14.3: Commandsfor running demo tim.
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Chapter 15

HomCon t.

15.1 Introduction.

HomCort is a collection of subroutinesfor the cortinuation of homoclinic solutionsto ODEs in
two or more parameters. The accurate detection and multi-parameter cortinuation of certain
codimension-wo singularities is allowed for, including all known casesthat involve a unique
homaclinic orbit at the singular point. Homaoclinic connectionsto hyperbolic and non-hyperbolic
equilibria are allowedasare certain heteroclinic orbits. Homaoclinic orbits in reversiblesystemscan
alsobe computed. The theory behind the methods usedis explainedin Champneys& Kuznetsos
(1994),Bai & Champneys(1996), Sandstedg1995), 1995), Champneys Kuznetsos & Sandstede
(1996) and referencegherein. The nal cited paper contains a concisedescription of the presen
version.

The current implemertation of HomCort must be consideredas experimental, and updates
are anticipated. The HomCort subroutinesarein the le auto/2000/src/autlib5.c Expert users
wishing to modify the routines may look there. Note alsothat at preser, HomCort can be run
only in AUTO CommandMode and not with the GUI.

15.2 HomCont Files and Subroutines.

In order to run HomCort one must prepare an equations le xxx.G where xxxis the name of
the example, and two constarts- les c.xxxand h.xxx The rst two of these les are in the
standard AUTO format, whereasthe h.xxx le corntains constarts that are speci ¢ to homaclinic
cortinuation. The choice IPS=9 in c.xxxspeci es the problemasbeinghomaclinic cortinuation,
in which case h.xxxis required.

The equation- le kpr.c sernesasa samplefor newequation les. It cortains the C subroutines
func, stpnt, pvils, bcnd, icnd and fopt. The nal three are dummy subroutineswhich
are newver neededfor homaoclinic cortinuation. Note a minor di erence in stpnt and pvls with
other AUTO equation- les, in that the commonblock /BLHOMIs required.

The constarts- le c.xxxis idertical in format to other AUTO constaris- les. Note that the
values of the constarts NBCand NINT are irrelevant, as these are set automatically by the
choice IPS=9. Also, the choice JAC=lis strongly recommendedpecausethe Jacobianis used
extensiwely for calculating the linearization at the equilibria and hencefor evaluating boundary
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conditions and certain test functions. Howewer, note that JAC=1doesnot necessarilyneanthat
auto will usethe analytically speci ed Jacobianfor cortinuation.

15.3 HomCont-Constants.

An examplefor the additional le h.xxxis listed below:

12111 NUNSTAB,NSTAB,IEQUIBNST,ISTART

0 NREV,(/,LIREV(l)),I=  1,NREV)

1 NFIXED,(/,l,IFIXED(l) ), I=1,NFIXHD)
13

1 NPSI,(/,1,IPSI(1)),I= 1, NFSI)
9 10 13

The constarts speci ed in h.xxxhave the following meaning.

15.3.1  NUNSTAB

Number of unstable eigervaluesof the left-hand equilibrium (the equilibrium approated by the
orbit ast! 1 ).

15.3.2 NSTAB

Number of stable eigervaluesof the right-hand equilibrium (the equilibrium approaded by the
orbit ast! +1).

15.3.3 IEQUIB

- IEQUIB=0 Homoclinic orbits to hyperbolic equilibria; the equilibrium is speci ed explicitly
in pvls and storedin PAR(11+l1), 1=1,NDIM.

- IEQUIB=1: Homoclinic orbits to hyperbolic equilibria; the equilibrium is solved for during
cortinuation. Initial valuesfor the equilibrium are stored in PAR(11+l), 1=1,NDIM in
stpnt.

- IEQUIB=2. Homaclinic orbits to a saddle-nale; initial valuesfor the equilibrium are stored
in PAR(11+l), 1=1,NDIMin stpnt.

- IEQUIB=-1: Hetercclinic orbits to hyperbolic equilibria; the equilibria are speci ed explic-
itly in pvls andstoredin  PAR(11+l), 1=1,NDIM (left-hand equilibrium) and PAR(11+l),
I=NDIM+1,2*NDIMright-hand equilibrium).

- IEQUIB=-2: Heteroclinic orbits to hyperbolic equilibria; the equilibria are solved for during
cortinuation. Initial valuesare specied in stpnt and storedin PAR(11+l), 1=1,NDIM
(left-hand equilibrium), PAR(11+l), I=NDIM+1,2*NDIMright-hand equilibrium).
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15.3.4 ITWIST

ITWIST=0: the orientation of the homaclinic orbit is not computed.

ITWIST=1: the orientation of the homaclinic orbit is computed. For this purpose, the
adjoint variational equation is solved for the unique bounded solution. If IRS = 0, an
initial solution to the adjoint equation must be speci ed aswell. Howewer, if IRS>0and
ITWIST has just beenincreasedfrom zero, then AUTO will automatically generatethe
initial solution to the adjoint. In this case,a dummy Newton-stepshould be performed, see
Section15.7for more detalils.

15.3.5 ISTART

ISTART=1 This option is obsoletein the current version. It may be usedasa ag that
a solution is to be restarted from a previously computed point or from numerical data
converted into AUTO format usingus. In this case IRS>Q

ISTART=2 If IRS=Q an explicit solution must be speci ed in the subroutine stpnt in the
usual format.

ISTART=3 The \homotopy" approad is usedfor starting, seeSection15.7for more details.
Note that this is not available with the choice IEQUIB=2

ISTART=4 A phase-shiftis performedfor homaclinic orbits to let the equilibrium (either
xed or non- xed, dependingon IEQUIB) correspndto ¢t = Oand¢ = 1. This is necessary
if a periodic orbit that is closeto a homaclinic orbit is cortinued into a homaoclinic orbit.

ISTART=-N, N = 1,2 3,...: Homaclinic branch switching: this descriptionis for reference
only and we refer to Chapter 22 to seehow this can be usedin actual practice and to
Oldeman, Champneys& B. (2001) for theory and badkground.

The orbit is split into N + 1 parts and AUTO seesit asan (N + 1) NDIMdimensional
object. The rst part uy goesfrom the equilibrium to the point z, that is furthest from
the equilibrium. Then follow N 1 shifted copiesof the orbit, which travel from the point
xo badk to the point z,. The last part Uy goesfrom the point z, badk to the equilibrium.
The derivatives zy, with respect to time of the point that is furthest from the equilibrium
are stored at the parameterspar[NPARX-NDIM...NPRX-1].

If ITWIST=1andthis wasalsothe casen the precedingrun, then a copy of the adjoint vector

at x is storedat the parameterspar[NPARX-NDIM*2...NFARK-NDM- 1] and Lin's method
canbe usedto do homaclinic branch switching. To be more precise,the individual parts u;
and u; ., are at distancess; away from ead other, alongthe Lin vector Psi, at the left- and
right-hand end points. Thesegapse; are at parameterspar[19+2*i] . Moreover, ead part
(exceptuy,1) endsat at a Poincare sectionwhich goesthrough z, and is perpendicular to

Zg.
The times T; that ead part u; takesare stored asfollows: T, =par[9] , Ty =par[10] and

T; =par[18+2*] fori= 1...N 1. Through a cortinuation in problem parameters,gaps
g;, and times T; it is possibleto switch from a 1-homaclinic to an N-homaclinic orbit.
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If ITWIST=0 the adjoint vector is not computed and Lin's method is not used. Instead,
AUTO producesa gap c=par[21] at the right-hand end point p of ux.,, measuringthe
distance betweenthe stable manifold of the equilibrium and p. This technique can alsobe
usedto nd 2-homcclinic orbits, by varying in e and T3, similar to the method descriked
before,but only if the unstable manifold in one-dimensional.Becausethis method is more
limited than the method using Lin vectors,we do not recommendit for normal usage.

To switch badk to a normal homaclinic orbit, set ISTARTbad to a positive value suc as
1. Now HomCort haslost all the information about the adjoint, soif ITWISTis setto O,
HomCornt doesa normal cortinuation without the adjoint, and if ITWISTis setto 1, one
needsto do a Newton dummy step rst to recalculatethe adhoirt.

15.3.6 NREV,IREV

If NREV=fhen it is assumedhat the systemis reversibleunder the transformation ¢ ! t and
U(i) ! U(i7) for all - with  IREV(i)>0 . Then only half the homaclinic solution is solved for with
right-hand boundary conditions specifying that the solution is symmetric under the reversibility
(see Champneys& Spence (1993)). The number of free parametersis then reduced by one.
Otherwise IREV=0

15.3.7 NFIXED, IFIXED

Number and labels of test functions that are held xed. E.g., with NFIXED=Dbne can compute
a locusin oneextra parameterof a singularity de ned by test function PSI(IFIXED(1))=0 .

15.3.8  NPSI, IPSI

Number and labels of activated test functions for detecting homaoclinic bifurcations, see Sec-
tion 15.6for alist. If atestfunction is activated then the correspnding parameter( IPSI(1)+20 )
must be addedto the list of cortinuation parameters NICP,(ICP(I),I=1  NICP)and zeroof this
parameteraddedto the list of user-de nedoutput points NUZR, (/,1,PAR(])),I=1, NUZRn
C. XXX

15.4 Restrictions on HomCont Constants.

Note that certain combinations of theseconstarts are not allowed in the presen implemertation.
In particular,

- The computation of oriertation ITWIST=1s not implemerted for IEQUIB<0O(heteroclinic
orbits), IEQUIB=2(saddle-nale homaclinics), IREV=1(reversible systems), ISTART=3
(homotopy method for starting), or if the equilibrium cortains complex eigervaluesin its
linearization.

- The homotopy method ISTART=3s not fully implemerted for heteraclinic connections
IEQUIB<0 saddle-nale homaclinic orbits IEQUIB=2or reversiblesystems IREV=1
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- Certain test functions are not valid for certain forms of cortinuation (see Section 15.6
below); for example PSI(13) and PSI(14) only make sensef ITWIST=1and PSI(15)
and PSI(16) only apply to IEQUIB=2

15.5 Restrictions on the Use of PAR

The parameters PAR(1){ PAR(9)can be usedfreely by the user. The other parametersare
usedasfollows :

- PAR(11): The value of PAR(11) equalsthe length of the time interval over which a
homaclinic solution is computed. Also referredto as\p eriod”. This must be speci ed in
stpnt.

- PAR(10): If ITWIST=1then PAR(10)is usedinternally asa dummy parameter so that
the adjoint equationis well-posed.

- PAR(12)-PAR(20): Theseare usedfor specifying the equilibria and (if ISTART=} the
arti cial parametersof the homotopy method (seeSection15.7 below).

- PAR(21)-PAR(36): These parametersare used for storing the test functions (see Sec-
tion 15.6).

The output is in an identical format to AUTO exceptthat additional information at ead
computed point is written in fort.9. This information comprisesthe eigervalues of the (left-
hand) equilibrium, the values of eat activated test function and, if ITWIST=1 whether the
saddlehomaclinic loop is orientable or not. Note that the statemert about orientability is only
meaningful if the leading eigervaluesare not complexand the homaclinic solution is not in a ip
con guration, that is, noneof the test functions v; for i = 11, 12 13 14is zero(or closeto zero),
seeSection15.6. Finally, the valuesof the NPSIlactivated test functions are written.

15.6 Test Functions.

Codimension-tivo homaclinic orbits are detected along branches of codim 1 homaclinics by lo-
cating zerces of certain test functions ;. The test functions that are \switched on" during
any cortinuation are given by the choice of the labels i, and are speci ed by the parameters
NPSI,(/,1,IPSI(1)),l1= 1,NF5I) in h.xxxx Here NPSIgivesthe number of activated test func-
tionsand IPSI(1), ... IPSI(NPSI) givethe labelsof the test functions (humbersbetweenl and
16). A zeroof ead labeledtest function de nes a certain codimension-ivo homaclinic singular-
ity, speci ed asfollows. The notation usedfor eigervaluesis the sameasthat in Champneys&
Kuznetsor (1994) or Champneyset al. (1996).

- i = 1. Resonan eigervalues(neutral saddle);u; = ;.

- ¢ = 2: Double real leading stable eigervalues(saddleto saddle-fa@ustransition); 1, = pus.
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- i = 3: Double real leading unstable eigervalues(saddleto saddle-fa@us transition);
/\1 = )\2.

- i = 4: Neutral saddle,saddle-f@usor bi-focus (includes: = 1); Re(u1) = Re(\q).

- i = 5: Neutrally-divergen saddle-faus (stable eigervaluescomplex);

Re(A\1) = Re(u1)  Re(us).

- i = 6: Neutrally-divergen saddle-f@us (unstable eigervaluescomplex);
Re(u1) = Re(\;) Re(\).

- i = 7. Three leading eigervalues(stable); Re(\1) = Re(i1)  Re(us).
- i = 8: Three leading eigervalues(unstable); Re(u1) = Re(\;) Re()\y).

- 7= 9: Local bifurcation (zero eigervalue or Hopf): number of stable eigervaluesdecreases;
Re(u1) = 0.

- ¢ = 10: Local bifurcation (zero eigervalue or Hopf): number of unstable eigervalues de-
creasesRe(\;) = 0.

- 2= 11: Orbit ip with respect to leading stable direction (e.g., 1D unstable manifold).
- 4= 12: Orbit ip with respect to leading unstable direction, (e.g., 1D stable manifold).
- ¢ = 13: Inclination ip with respectto stable manifold (e.g., 1D unstable manifold).

- ¢ = 14: Inclination ip with respectto unstable manifold (e.g., 1D stable manifold).

- 4= 15: Non-ceriral homaclinic to saddle-nale (in stable manifold).

- i = 16: Non-certral homaclinic to saddle-nale (in unstable manifold).

Expert usersmay wish to add their own test functions by editing the function PSIHOIn

autlibs.c

It is important to remember that, in order to specify activated test functions, it is required

to also add the corresponding label +20 to the list of continuation parameters and a zero of this
parameter to the list of user-defined output points. Having done this, the corresponding parameters
are output to the screen and zeros are accurately located.

15.7 Starting Strategies.

There are four possiblestarting proceduresfor cortinuation.

(i) Data canbe readfrom a previously-obtainedoutput point from AUTO (e.g., from cortinu-
ation of a periodic orbit up to large period; note that if the end-point of the data stored is
not closeto the equilibrium, a phaseshift must be performedby setting ISTART=% These
data can be read from fort.8 (saved to s.xx¥ by making IRS correspnd to the label of
the data point in question.
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(ii)

(iii)

(iv)

Data from numerical integration (e.g., computation of a stable periodic orbit, or an approx-
imate homaclinic obtained by shaooting) can be read in from a data le using the general
AUTO utility us (seeearlierin the manual). The numerical data should be storedin a le

xxx.dat in multi-column format accordingto the read statemert

READ(...,") T(@),(U(1,J),I=1,NDI M)

whereT runsin the interval [0, 1]. After running us the restart data is storedin the format
of a previously computed solution in s.dat When starting from this solution IRS should
be setto 1 and the value of ISTARTIs irrelevant.

By setting ISTART=2an explicit homaoclinic solution canbe speci ed in the routine stpnt
in the usual AUTO format, that is U = ...(T) whereT is scaledto lie in the interval[0, 1].

The choice ISTART=3allows for a homotopy method to be usedto approad a homaclinic
orbit starting from a small approximation to a solution to the linear problemin the unstable
manifold (Doedel, Friedman & Monteiro 1993). For details of implemertation, the readeris
referredto Section5.1.2.of Champneys& Kuznetsor (1994), under the simpli cation that

we do not solwe for the adjoint u(t) here. The basicideais to start with a small solution
in the unstable manifold, and perform cortinuation in PAR(11)=27 and dummy initial-

condition parametersg; in orderto satisfythe correctright-hand boundary conditions, which
are de ned by zerosof other dummy parametersw;. More precisely the left-hand end point
is placedin the tangert spaceto the unstable manifold of the saddleand is characterized
by NUNSTA®ordinates¢; satisfying the condition

2 2 2 _ 2
&+ o F Sunstae = €05

where ¢, is a user-de ned small number. At the right-hand end point, NUNSTURBIluesw;
measurethe deviation of this point from the tangert spaceto the stable manifold of the
saddle.

Supposethat 1EQUIB=0,1and set IP=12+IEQUIB*NDIMTIhen

PAR(IP) © €
PAR(IP+i) : &, i=1,2,...,NUNSTAB
PAR(IP+NUNSTAB+): w;, i=1,2,...,NUNSTAB

Note that to avoid interference with the test functions (i.e. ~ PAR(21)-PAR(36)), one must
have IP+2*NUNSTAB 21.

If an w; is vanished,it can be frozenwhile another dummy or systemparameteris allowed
to vary in order to make consequetly all w; = 0. The resulting nal solution givesthe
initial homaclinic orbit provided the right-hand end point is su cien tly closeto the saddle.
SeeChapter 18 for an example, howewver, we recommendthe homotopy method only for
\expert users".
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To compute the orientation of a homaclinic orbit (in order to detect inclination- ip  bifur-
cations) it is necessaryto compute, in tandem, a solution to the modi ed adjoint variational
equation, by setting ITWIST=1 In order to obtain starting data for sud a computation when
restarting from a point where just the homaclinic is computed, upon increasing ITWISTto 1,
AUTO generatestrivial data for the adjoint. Becausethe adjoint equationsare linear, only a
single step of Newton's method is required to enablethesetrivial data to convergeto the correct
unique boundedsolution. This can be achieved by making a single cortinuation stepin a trivial
parameter(i.e. a parameterthat doesnot appear in the problem).

Decreasing ITWISTto 0 automatically deletesthe data for the adjoint from the cortinuation
problem.

15.8 Notes on Running HomCont Demos.

HomCont demosare givenin the following chapters. To copy all les of ademo xxx(for example,
sar), move to a cleandirectory and type demo(’zzz’). Simply typing make or make all will then
automatically executeall runs of the demo. At ead step, the useris encouragedo plot the data
saved by using the commandplot (e.g., plot(’1’) plots the data savedin b.1and s.J).

Of course,in areal application, the runs will not have beenpreparedin advance,and AUTO -
commandsmust be used. Sudh commandscan be found in a table at the end of ead chapter. A
sequenceof detailed AUTO -commandswill be givenin thesetables asillustrated in Table 15.1
and Table 15.2for two represemativ e runs of HomCornt demo san

The user is encouragedto copy the format of one of these demoswhen constructing new
examples.

The output of the HomCort demosreproducedin the following chaptersis somewhatmadine
dependent, asalready noted in Section7.4. In exceptionalcircumstances, AUTO may read its
maximum number of steps NMXeforea certain output point, or the label of an output point may
change. In sud casethe usermay have to make appropriate changesin the AUTO constarts- les.

COMMAND ACTION

ld(’san’) load the problem de tion

run(c="san.1’,h="san.1’) | get the HomCort constans- le and run AUTO /HomCont
sv(’6’) save output- les as b.6,s.6,d.6

Table 15.1: An exampleof AUTO -Commands.

COMMAND ACTION
run(c="san.9’,h="san.9’,s="6") | get the HomCort constaris-le and run
AUTO /HomCont; restart solution read
from s.6

ap(’6’) append output- les to b.6,s.6,d.6

Table 15.2: Another exampleof AUTO -Commands.
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Chapter 16

HomCon t Demo : san.

16.1 Sandstede’s Model.

Considerthe system(Sandstedel99%:)

axr+ by ax?+ (g az)z(2 3x)
br+ay 32ba? 2azy (p «az)2y (16.1)
czt pr+yry+af@@ z) )

=R

asgivenin the le san.c Choosingthe constarts appearing in (16.1) appropriately allows for
computing inclination and orbit ips aswell as non-oriertable resonarn bifurcations, see(Sand-
stede 199%;) for details and proofs. The starting point for all calculationsis a = 0, b = 1 where
there exists an explicit solution given by

(o), (1) 2(0) = (1 (15 4(11+—)0>

This solution is speci ed in the routine stpnt.

16.2 Inclination Flip.

We start by copying the demoto the current work directory and running the rst step

@dnsan
make first

This computation starts from the analytic solution abovewith ¢ = 0,6=1,¢= 2,a=0,8=1
andy = p = p = 0. The homaclinic solution is followed in the parameters(a, ) =(PAR(1),
PAR(8)) up to a = 0.25. The output is summarisedon the screenas

BR PT TYLAB PAR(l) L2-NORM PAR(8)

1 1 EP 1 0.000000E+00 4.000000E-01 ...  0.000000E+00
1 5 UZ 2 2.500000E-01 4.030545E-01 ... -3.620329E-11
1 10 EP 3 7.384434E-01 4.339575E-01 ... -9.038826E-09
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and saved in more detail as b.1, s.1and d.1

Next we want to add a solution to the adjoint equation to the solution obtained at a = 0.25.
This is achieved by making the change ITWIST= 1 savedin h.san.2 and IRS = 2, NMX=
2and ICP(1) = 9savedin c.san.2 We alsodisableany user-de nedfunctions NUZR=0The
computation so-de nedis a singlestepin atrivial parameter PAR(9)(namely a parameterthat
does not appear in the problem). The e ect is to perform a Newton step to enable AUTO to
corvergeto a solution of the adjoint equation.

make second

The output is storedin b.2, s.2and d.2

We can now cortinue the homaoclinic plus adjoint in (o, t) =(PAR(4), PAR(8)) by changing
the constarts (storedin c.san.3 to read IRS = 4, NMX= 50and ICP(1) = 4. We alsoadd
PAR(10)to the list of cortinuation parameters NICP,(ICP(l),I=1  NICP). Here PAR(10)is a
dummy parameterusedin orderto make the cortin uation of the adjoint well posed. Theoretically,
it should be zero if the computation of the adjoint is successfulSandstedel199%:). The test
functions for detecting resonan bifurcations ( ISPI(1)=1 ) and inclination ips ( ISPI(1)=13)
are alsoactivated. Recallthat this should be speci ed in three ways. First weadd PAR(21)and
PAR(33)to the list of cortinuation parametersin c.san.3 secondwe setup userde ned output at
zerosof theseparametersin the same le, and nally weset NPSI=2 (IPSI(1),IPSI(2))=1,1 3
in h.san.3 We alsoadd to c.san.3another userzerofor detectingwhen PAR(4)=1.0. Running

make third

readsstarting data from s.2and outputs to the screen

BR PT TYLAB PAR(4) .. PAR(8) PAR(10) ... PAR(33)

1 20 5 7.847219E-01 ... -3.001440E-11 -4.268884E-09 ... -1.441124E+01
1 27 UZ 6 1.000000E+00... -3.844872E-11 -4.460769E-09 ... -5.701675E+00
1 35 UZ 7 1.230857E+00... -5.833977E-11 -4.530541E-09 ..  9.434843E-06
1 40 8 1.383969E+00... -8.133899E-11 -4.671817E-09 ...  1.348810E+00
1 50 EP 9 1.695209E+00.. -1.386324E-10 -5.098460E-09 ...  5.311065E-01

Full output is storedin b.3, s.3and d.3. Note that the arti cial parametere = PAR(10)is zero
within the allowed tolerance. At label 7, a zero of test function ;5 has been detected which
correspndsto an inclination ip with respectto the stable manifold. That the orientation of the
homaclinic loop changesasthe branch passeghrough this point canbe readfrom the information
in d.3. Howewer in d.3, the line

ORIENTABLE 0.2982090775D-03)

at PT=35wvould seemdo cortradict the detectionofthe inclination ip at this point. Nonetheless,
the important fact is the zeroof the test function; and note that the value of the variable indicating

the orientation is small comparedto its value at the other regular points. Data for the adjoint

equationat LAB=5, 7 and 9 at and on either side of the inclination ip are preserted in Fig.

16.1. The switching of the solution betweencomponerts of the leadingunstableleft eigervectoris

apparen. Finally, weremarkthat the Newton stepin the dummy parameter PAR(20)performed
above is crucial to obtain corvergence.lndeed, if insteadwe try to continue the homaclinic orbit

and the solution of the adjoint equation directly by setting
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ITWIST=1 IRS=2 NMX=50 ICP(1) =4 NPUSZR 0O
(assavedin c.san.4 and running
make fourth

we obtain a no corvergenceerror.

16.3 Non-orientable Resonant Eigenvalues.

Inspecting the output saved in the third run, we obsene the existenceof a non-oriertable homo-
clinic orbit at label 7 correspndingto N=40 Werestart at this label, with the rst cortinuation
parameterbeing onceagaina = PAR(1), by changing constarts and storing them in c.san.5ac-
cording to

IRS =7 DS = -0.05D0 NMX= 20 ICP(1) =1

Running,
make fifth
the output at label 10
BR PT TYLAB PAR(1) PAR(8) PAR(10) PAR(21)
1 8 UZ 10 -1.304570E-07 ... 3.874816E-12 -1.468457E-09 -2.609139E-07

indicatesthat AUTO hasdetecteda zeroof PAR(21) implying that a non-oriertable resonar
bifurcation occurred at that point.

16.4 Orbit Flip.

In this section we compute an orbit ip. To this end we restart from the original explicit so-
lution, without computing the orientation. We begin by separately performing cortinuation in
(a, ), (B, r), (a,rt), (b,) and (u, ) in order to reach the parameter values (a, b, o, 3, 1) =
(0.5,3,1,0,0.25). The sequencef cortinuations up to the desiredparametervaluesare run via

make sizth
make seventh
make eighth
make ninth

make tenth

with appropriate cortinuation parametersand user output valuesset in the correspnding les
c.san.xx All the output is savedto s.G

The nal savedpoint LAB=1Qortains a homaoclinic solution at the desiredparametervalues.
From herewe perform cortinuation in the negative direction of (u, ) = ( PAR(7),PAR(8)) with
the test function v, for orbit ips with respect to the stable manifold activated.
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make eleventh
The output detectsan inclination ip (by a zeroof PAR(31) at PAR(7)=0

BR PT TYLAB PAR(7) PAR(8) PAR(31)
1 5 UZ 12 2.394737E-07 .. 6.434492E-08 -4.133994E-06

at which parametervalue the homaoclinic orbit is cortained in the (x, y)-plane (seeFig. 16.2).
Finally, we demonstratethat the orbit ip can be cortinued asthree parameters( PAR(6),
PAR(7), PAR(8) are varied.

make twelfth

BR PT TYLAB PAR(7) PAR(8) PAR(6)
1 5 14 -5.374538E-19 ... -1.831991E-10 -3.250000E-01
1 10 15 -6.145911E-19 ... -2.628607E-10 -8.250001E-01
1 15 16 -4.947133E-19 ... -2.361151E-10 -1.325000E+00
1 20 EP 17 -5.792940E-19 ... -3.075527E-10 -1.825000E+00

The orbit ip continuesto be de ned by a planar homaclinic orbit at PAR(7)=PAR(8)=0
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16.5 Detailed AUTO -Commands.

AUTO -COMMAND

ACTION

I mkdir san
cd san
demo('san’)

createan empty work directory
changedirectory
copy the demo les to the work directory

run(c='san.l',h='san. 1) cortinuation in  PAR(1)

sv('l) save output- les as b.1,s.1,d.1

run(c='san.2',h='san. 2',s="1") generateadjoint variables;restart from s.1

sv('2") save output- les as b.2,s.2,d.2

run(c='san.3',h='san. 3',s="2) cortinue homaclinic orbit and adjoint; restart from s.2
sv('3) save output- les as b.3,s.3,d.3

run(c='san.4',h='san. 4',s="1" no corvergencewithout dummy step; restart from s.1
sv('4) save output- les as b.4,s.4,d.4

run(c='san.5',h='san. 5',s="3)) cortinue non-oriertable orbit; restart from s.3

sv('5)

save output- les as b.5,s.5,d.5

Table 16.1: Detailed AUTO -Commandsfor running demo san
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AUTO -COMMAND ACTION

run(c='san.6',h='san. 6',s='san) restart and homotopy to PAR(4)=1.0

sv('6") save output- les as b.6,s.6,d.6

run(c='san.7',h='san. 7',s="6" homotopy to PAR(5)0.0; restart from s.6

ap('6") append output- les to b.6,s.6,d.6
run(c='san.8',h='san. 8',s='6" homotopy to PAR(1)0.5; restart from s.6

ap('6") append output- les to b.6,s.6,d.6
run(c='san.9',h='san. 9',s="6" homotopy to PAR(2)3.0; restart from s.6

ap('6") append output- les to b.6,s.6,d.6
run(c='san.10',h='san .10',s='6") homotopy to PAR(7)=0.25; restart from s.6

ap('6") append output- les to b.6,s.6,d.6
run(c='san.11'.,h='san .11',s='6") cortinuein PAR(7)to detectorbit ip; restart from s.6
sv('1l) save output- les as b.11,s.11,d.11
run(c='san.12'.h='san .12',s='11") | three-parametercorinuation of orbit ip; restart from s.11
sv('12) save output- les as b.12,s.12,d.12

Table 16.2: Detailed AUTO -Commandsfor running demosan

Figure 16.1: Secondversusthird componert of the solution to the adjoint equationat labels5, 7
and 9
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Figure 16.2: Orbits on either side of the orbit ip bifurcation. The critical orbit is cortained in
the (z, y)-plane
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Chapter 17

HomCon t Demo : mtn.

17.1 A Predator-Prey Model with Immigration.

Considerthe following systemof two equations(Sdhe er 1995)

X A XY
X = RX([(1 = ! + DK
K B+ X (17.1)
_ AXY Dy A ZY? :
= 1B1 X 1 7322 T ye

The valuesof all parametersexcept (K, Z) are setasfollows :
R=05 A,=04 B;=06, Dy=001 E, =06, A, =10, B,=05 D, =0.15

The parametric portrait of the system(17.1) on the (7, K)-plane is presented in Figure 17.1. It
cortains fold (¢, ) and Hopf () bifurcation curves, as well as a homcaclinic bifurcation curve
P. The fold curvesmeet at a cusp singular point C, while the Hopf and the homaclinic curves
originate at a Bogdanw-Takens point BT. Only the homaclinic curve P will be considered
here, the other bifurcation curvescan be computed using AUT@r, for example,locbif (Khibnik,
Kuznetsov, Levitin & Nikolaev1993).

17.2 Continuation of Central Saddle-Node Homoclinics.

Local bifurcation analysisshavsthat at K = 6.0, Z = 0.06729762. ., the systemhas a saddle-
node equilibrium
(X°, Y% = (5.738626 ..,0.5108401 . ),

with one zero and one negative eigervalue. Direct simulations reveal a homoclinic orbit to this

saddle-nale, departing and returning alongits certral direction (i.e., tangen to the null-vector).
Starting from this solution, stored in the le mtn.dat, we cortinue the saddle-nale certral

homaclinic orbit with respect to the parameters K and Z by copying the demoand running it

@dm mitn
make first
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The le mtn.c cortains appraximate parametervalues
K = PAR1) = 6.0, Z = PARR) = 0.06729762
aswell asthe coordinates of the saddle-nale
X" = PAR12) = 5738626 Y" = PARL3) = 0.5108401
and the length of the truncated time-interval
Ty = PARL1) = 1046178.
Sincea homaclinic orbit to a saddle-nale is being followed, we have also madethe choices
IEQUIB= 2 NUNSTABO NSTAE 1

in h.mtn.1. The two test-functions, )15 and ¢, to detect non-cerral saddle-nale homaclinic
orbits are also activated, which must be speci ed in three ways. Firstly, in h.mtn.1, NPSlis
setto 2 and the active test functions IPSI(l),I=1,2  are chosenas 15 and 16. This setsup the
monitoring of thesetest functions. Secondly in c.mtn.1 user-de ned functions (NUZR=2are set
up to look for zerosof the parameterscorrespnding to thesetest functions. Recall that the
parametersto be zerced are always the test functions plus 20. Finally, these parametersare
included in the list of continuation parameters(NICP,(ICP(l),I=1  NICP)).
Among the output thereis a line

BR PT TYLAB PAR() .. PAR(2) PAR(35) PAR(36)
1 27 UZ 5 6.10437E+00..  6.932475E-02 -6.782898E-07 8.203437E-02

indicating that a zero of the test function IPSI(1)=15 This meansthat at
D, = (K", Z") = (6.6104...,0.069325 . )

the homaclinic orbit to the saddle-nale becomesnion-central, namely; it returnsto the equilibrium
along the stable eigervector, forming a non-smath loop. The output is savedin b.1, s.1 and
d.1. Repeating computations in the opposite direction along the curve, IRS=1, DS=-0.01 in
c.mtn.2 ,

make second
one obtains

BR PT TYLAB PAR(1) PAR(2) PAR(35) PAR(36)
1 34 UZ 9 5.180323E+00... 6.385506E-02 3.349720E-09 9.361957E-02

which meansanother non-ceriral saddle-nale homoclinic bifurcation occurs at
D, = (K?* 7?) = (5.1803...,0.063855 . ).

Note that thesedata were obtained using a smaller value of NTSTthan the original computation
(comparec.mtn.1 with c.mtn.2 ). The high original value of NTSTwas only necessaryfor the
rst few stepsbecausethe original solution is speci ed on a uniform mesh.
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17.3 Switching between Saddle-Node and Saddle Homo-
clinic Orbits.

Now we can switch to cortinuation of saddlehomaclinic orbits at the located codim 2 points D,
and Ds.

make third
starts from D;. Note that now
NUNSTAB 1 IEQUIB=1

has beenspeci ed in h.mtn.3 . Also, test functions ¢y and ;, have beenactivated in order to
monitor for non-hyperbolic equilibria along the homaclinic locus. We get the following output

BR PT TYLAB PAR(l) .. PAR(2) PAR(29) PAR(30)

1 10 11 7.114523E+00... 7.081751E-02 -4.649861E-01 3.183429E-03
1 20 12 9.176810E+00...  7.678731E-02 -4.684912E-01 1.609294E-02
1 30 13 1.210834E+01..  8.543468E-02 -4.718871E-01 3.069638E-02
1 40 EP 14 1.503788E+01..  9.428036E-02 -4.743794E-01 4.144558E-02

The fact that PAR(29) and PAR(30) do not change sign indicates that there are no further
non-hyperbolic equilibria along this branch. Note that restarting in the opposite direction with
IRS=11, DS=-0.02

make fourth
will detectthe samecodim 2 point D; but now asa zero of the test-function

BR PT TYLAB PAR(l) .. PAR(2) PAR(29) PAR(30)
1 10 UZ 15 6.610459E+00 .. 6.932482E-02 -4.636603E-01 1.725013E-09

Note that the valuesof PAR(1)and PAR(2)di er from that at label 4 only in the sixth signi cant
gure.

Actually, the programruns further and eventually computesthe point D, and the whole lower
branch of P emanatingfrom it, howewer, the solutions between D, and D, should be considered
as spurious, thereforewe do not save thesedata. The reliable way to compute the lower branch
of P is to restart computation of saddlehomaclinic orbits in the other direction from the point
D,

make fifth

This givesthe lower branch of P approading the BT point (seeFigure 17.1)

! The program actually computes the saddle-saddle heteroclinic orbit bifurcating from the non-central saddle-
node homoclinic at the point D7, see Champneys et al. (1996, Fig. 2), and continues it to the one emanating from
Ds.
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BR PT TYLAB PAR(1) .. PAR(Q) PAR(29) PAR(30)

1 10 15 4.966429E+00... 6.298418E-02 -4.382426E-01 4.946824E-03
1 20 16 4.925379E+00... 7.961214E-02 -3.399102E-01 3.288447E-02
1 30 17 7.092267E+00... 1.587114E-01 -1.692842E-01 3.876291E-02
1 40 EP 18 1.101819E+01.. 2.809825E-01 -3.482651E-02 2.104384E-02

The data are appendedto the storedresultsin b.1, s.1 andd.1. Onecould now display all data
usingthe AUTO command @p 1 to reproducethe curve P shavn in Figure 17.1.

It is worthwhile to comparethe homaclinic curves computed above with a curve Ty = const
along which the system has a limit cycle of constart large period 7, = 1046178, which can
easily be computed using AUTO or lochif. Sud a curve is plotted in Figure 17.2. It obviously
approximates well the saddlehomaclinic loci of P, but demonstratesmuch bigger deviation from
the saddle-na@le homaclinic segmen D, D,. This happens becausethe period of the limit cycle
growsto in nit y while approading both typesof homaclinic orbit, but with different asymptotics:
as Inka ok, in the saddlehomaclinic case,and aska  a*k™! in the saddle-nale case.

17.4 Three-Parameter Continuation.

Finally, we can follow the curve of non-cerral saddle-nale homaclinic orbits in three parame-
ters. The extra cortinuation parameteris Dy=PAR(3) To adieve this we restart at label 4,
correspnding to the codim 2 point D,. We return to cortinuation of saddle-n@e homaclinics,
NUNSTABHBQUIB=2but appendthe de ning equation;; = 0to the cortinuation problem (via
NFIXED=1IFIXED(1)=15). The new cortinuation problem s speci ed in c.mtn.6 and h.mtn.6 .

make sizth

Notice that we setILP=1 and choosePAR(3)asthe rst cortinuation parametersothat AUTO can
detectlimit points with respectto this parameter. We alsomake a user-de nedfunction (NUZR31
to detect intersectionswith the plane D, = 0.01. We get amongother output

BR PT TYLAB PAR(3) L2-NORM ... PAR(1) PAR(2)
1 22 LP 19 1.081212E-02 5.325894E+00.. 5.673631E+00 6.608184E-02
1 31 UZ 20 1.000000E-02 4.819681E+00.. 5.180317E+00 6.385503E-02

the rst line of which represets the D, value at which the homaclinic curve P has a tangency
with the branch ¢, of fold bifurcations. Beyond this value of D,, P consistsertirely of saddle
homaclinic orbits. The data at label 20 reproducethe coordinatesof the point D,. The results of
this computation and a similar one starting from D; in the opposite direction (with DS=-0.01)
are displayed in Figure 17.3.
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17.5 Detailed AUTO -Commands.

AUTO -COMMAND

ACTION

! mkdir mtn

createan empty work directory

run(c="mtn.1’,h="min.1’,s="dat’)

sv(’1’)

cd mtn changedirectory
demo('mtn’) copy the demo les to the work directory
us(’'mtn’) usethe starting data in mtn.dat to creates.dat

continue saddle-nale homaoclinic orbit
save output- les asb.l, s.1, d.1

run(c="mitn.2’ h="min.2’,s="1")
ap(’1’)

cortinue in opposite direction; restart from s.1
append output- les to b.1, s.1, d.1

run(c="mitn.3’,h="min.3’,s="1")
ap('1)

switch to saddlehomaclinic orbit ; restart from s.1
append output- les to b.1, s.1, d.1

run(c="min.4’ h="min.4’,s="1")

sv(’4’)

cortinue in reversedirection; restart from s.1
save output- les ash.4, s.4, d.4

run(c="mitn.5 h="min.5’,s="1’)
ap('1’)

other saddlehomaclinic orbit brandh; restart from s.1
append output- les to b., s.1, d.1

run(c="mitn.6’,h="min.6’,s="1")
sv(’6’)

3-parameternon-certral saddle-nale homaoclinic.
save output- les ash.6, s.6, d.6

Table 17.1: Detailed AUTO -Commandsfor running demo mtn.
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Figure 17.2: Approximation by a large-period cycle
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node homaclinic orbit
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Chapter 18

HomCon t Demo : kpr.

18.1 Koper’s Extended Van der Pol Model.

The equation- le kpr.c contains the equations

et (ky 23+ 32 )\
x 2y+ z (18.1)
62(3/ Z)v

[ IR
nonon

with ¢, = 0.1 and ¢; = 1 (Koper 1995).
To copy acrossthe demo kpr and compile we type

@dnkpr

18.2 The Primary Branch of Homoclinics.

First, we locate a homaclinic orbit using the homotopy method. The le kpr.c already con-
tains approximate parametervaluesfor a homaoclinic orbit, namely A = PAR(1)=-1.851185, k =
PAR(2)=-0.15. The les c.kp.1 and h.kp.1 specify the appropriate constarts for cortinuation
in 2" =PAR(11)(alsoreferredto as PERIOPand the dummy parameterw;= PAR(17)starting
from a small solution in the local unstable manifold;

make first
Among the output there is the line
BR PT TYLAB PERIOD L2-NORM ... PAR(17)
1 29 Uz 2 1.900184E+01 1.693817E+00 ... 4.433433E-09 ...

which indicatesthat a zeroof the arti cial parameterw; hasbeenlocated. This meansthat the
right-hand end point of the solution belongsto the plane that is tangert to the stable manifold
at the saddle. The output is storedin les b.1,s.1,d.1L Upon plotting the data at label 2
(seeFigure 18.1) it can be noted that although the right-hand projection boundary condition is
satis ed, the solution is still quite away from the equilibrium.
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Figure 18.1: Projection on the (x,y)-plane of solutions of the boundary value problem with
2T = 19.08778.
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Figure 18.2: Projection on the (x,y)-plane of solutions of the boundary value problem with
2T = 60.0.
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The right-hand endpoint can be made to approad the equilibrium by performing a further
cortinuation in 7" with the right-hand projection condition satis ed ( PAR(17) xed) but with A
allowed to vary.

make second
the output at label 4, storedin kpr.2,
BR PTTY LAB PERIOD L2-NORM .. PAR(1)
1 35 UZ 4 6.000000E+01 1.672806E+00 ... -1.851185E+00 ...

provides a good appraximation to a homaoclinic solution (seeFigure 18.2).

The secondstageto obtain a starting solution is to add a solution to the modi ed adjoint
variational equation. This is achieved by setting both ITWISTand ISTARTto 1 (in h.kpr.3),
which generatesa trivial guesdor the adjoint equations. Becausehe adjoint equationsarelinear,
only asingleNewton step (by cortinuation in atrivial parameter)is requiredto provide a solution.
Rather than choosea parameterthat might be usedinternally by AUTO , in c.kp.3 we take the
cortinuation parameterto be PAR(11) which is not quite a trivial parameterbut whosea ect
upon the solution is mild.

make third

The output at the secondpoint (label 6) cortains the convergedhomaclinic solution (variables
( U@Q), UR), U(I)) andthe adjoint ( U(4), U(5), U(6))). We now have a starting solution
and are ready to perform two-parametercortin uation.

The fourth run

make fourth

cortinuesthe homaclinic orbit in  PAR(1)and PAR(2) Note that seweral other parameters
appear in the output. PAR(10)is a dummy parameterthat should be zero when the adjoint
is being computed correctly; PAR(29) PAR(30) PAR(33)correspnd to the test functions
19,1010 and 113, That thesetest functions were activated is speci ed in three placesin c.kp.4
and h.kpr.4 asdescribed in Section15.6.

Note that at the end-point of the branch (reached when after NMX=5@teps) PAR(29)is
appraximately zero which correspnds to a zero of iy, a non-cerral saddle-nale homaoclinic
orbit. We shall return to the computation of this codimension-wo point later. Before reading
this point, amongthe output we nd two zeroesof PAR(33)(test function 3) which givesthe
accuratelocation of two inclination- ip bifurcations,

BR PT TYLAB PAR(1) PAR(2) PAR(10) ... PAR(33)
1 6 UZ 10 -1.801662E+00 ... -2.002660E-01 -7.255434E-07 ... -1.425714E-04
1 12 UZ 11 -1.568756E+00 ... -4.395468E-01 -2.156353E-07 ...  4.514073E-07

That the test function really does have a regular zero at this point can be chedked from the
data savedin b.3 plotting PAR(33)asa function of PAR(1)or PAR(2) Figure 18.3presers
solutions¢(t) of the modi ed adjoint variational equation(for details seeChampneyset al. (1996))
at parameter values on the homaclinic branch before and after the rst detected inclination
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Figure 18.3: Projection on the (z,y)-plane of solutions ¢(t) at 1 (A = 1825470k =
0.1760749)and 2 (A= 1.686154k = 0.3183548).

Figure 18.4: Three-dimensionalblow-up of the solution curves¢(t) at labels 1 (dotted) and 2
(solid line) from Figure 3.8.
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Figure 18.5: Computed homaclinic orbits approading the BT point

ip. Note that these solutions were obtained by choosing a smaller step DSand more output
(smaller NPRin c.kpr.4. A blow-up of the region closeto the origin of this gure is shown in
Figure 18.4. It illustrates the ip of the solutions of the adjoint equation while moving through
the bifurcation point. Note that the data in this gure were plotted after rst performing an
additional cortinuation of the solutionswith respectto PAR(11)

Continuing in the other direction

make fifth
we approad a Bogdanw/-Takenspoint
BR PT TYLAB PAR(1) PAR(10) PAR(33)
1 50 EP 13 -1.938276E+00 ... -7.523344E+00... 6.310810E+01

Note that the numerical approximation has ceasedio becomereliable, since PAR(10)has now
becomelarge. Phaseportraits of homaclinic orbits betweenthe BT point and the rst inclination
ip are depictedin Figure 18.5. Note how the computed homaclinic orbits approading the BT
point have their endpoints well away from the equilibrium. To follow the homaclinic orbit to the
BT point with more precision, we would needto rst perform cortinuation in 7" ( PAR(11) to
obtain a more accuratehomaclinic solution.

18.3 More Accuracy and Saddle-Node Homoclinic Orbits.

Continuation in 7" in order to obtain an approximation of the homaclinic orbit over a longer
interval is necessaryor parametervaluesnear a non-hyperbolic equilibrium (either a saddle-nale
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or BT) where the convergenceto the equilibrium is slower. First, we start from the original
homaclinic orbit computedvia the homotopy method, label 4, which is well away from the non-
hyperbolic equilibrium. Also, we shall no longer be interestedin in inclination ips so we set
ITWIST=0in c.kp.6, and in order to compute up to PAR(11)=1000 we set up a user-de ned
function for this. Running AUTO with PAR(11)and PAR(2)asfree parameters

make sixth
we obtain amongthe output

BR PT TYLAB PERIOD L2-NORM ... PAR(2)
1 35 UZ 6 1.000000E+03 1.661910E+00... -1.500000E-01

We can now repeat the computation of the branch of saddlehomaclinic orbits in PAR(1)and
PAR(2)from this point with the test functions vy and ¢, for non-cerral saddle-nale homaoclinic
orbits activated

make seventh
The saddle-nale point is now detectedat

BR PT TYLAB PAR(1) PAR(2) PAR(29) PAR(30)
1 30 UZ 8 1.765003E-01 .. -2.405345E+00 2.743361E-06 2.309317E+01

which is storedin s.7. That PAR(29)(v) is zerced shavsthat this is a non-cerral saddle-nale
connectingthe certre manifold to the strong stable manifold. Note that all output beyond this
point, although a well-posedsolution to the boundary-value problem, is spuriousin that it no
longerrepresems a homaclinic orbit to a saddleequilibrium (seeChampneyset al. (1996)). If we
had chosento, we could cortinue in the other direction in order to approad the BT point more
accurately by reversingthe signof DSin c.kp.7.

The les c.kp.9 and h.kpr.9 cortain the constarts necessaryfor switching to cortinuation of
the certral saddle-nale homaoclinic curve in two parametersstarting from the non-cerral saddle-
node homaclinic orbit storedaslabel 8in s.7.

make eighth

In this run we have activated the test functions for saddleto saddle-nale transition points along
curvesof saddlehomaclinic orbits (v;5 and ). Among the output we nd

BR PT TYLAB PAR() .. PAR(2) PAR(35) PAR(36)
1 38 UZ 13 1.765274E-01 .. -2.405284E+00 9.705426E-03 -5.464784E-07

which correspndsto the branch of homaclinic orbits leaving the locusof saddle-nalesin a second
non-cenral saddle-nale homaclinic bifurcation (a zero of ).

Note that the parameter valuesdo not vary much betweenthe two codimension-ivo non-
certral saddle-nale points (labels 8 and 13). Howewer, Figure 18.6shaws clearly that between
the two codimension-wo points the homaclinic orbit rotates betweenthe two componerts of the
1D stable manifold, i.e. betweenthe two boundariesof the certer-stable manifold of the saddle
node. The overall e ect of this processs the transformation of a nearby \small* saddlehomoaclinic
orbit to a \big" saddlehomaclinic orbit (i.e. with two extra turning points in phasespace).

Finally, we can switch to cortinuation of the big saddlehomaclinic orbit from the new codim
2 point at label 13.
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make ninth

Note that AUTO takesalargenumber of stepsnearthe line PAR(1)=Q while PAR(2)approades
2.189... (which is why we chosesud a large value NMX=50n c.kp.9). This particular
computation endsat

BR PT TYLAB PAR(1) L2-NORM ... PAR(2)
1 500 EP 24 -1.218988E-05 2.181205E-01 ... -2.189666E+00

By plotting phaseportraits of orbits approading this endpoint (seeFigure 18.7)we seea \canard-
like" like transformation of the big homaclinic orbit to a pair of homaoclinic orbits in a gure-of-
eight con guration. That we geta gure-of-eight is not a surprisebecause PAR(1)=0correspmpnds
to asymmetry in the di erential equations(Koper 1994);note alsothat the equilibrium, storedas
( PAR(12), PAR(13), PAR(14) in d.9, approathesthe origin aswe approad the gure-of-eight
homaclinic.

18.4 Three-Parameter Continuation.

We now considercurvesin three parametersof eat of the codimension-wo points encourered
in this model, by freeingthe parametere = PAR(3) First we cortinue the rst inclination ip
stored at label 7in s.3

make tenth

Note that ITWIST=1in h.kpr.10, sothat the adjoint is also cortinued, and there is one xed
condition IFIXED(1)=13 sothat test function ;3 has beenfrozen. Among the output there is
a codimension-threepoint (zero of v9) wherethe neutrally twisted homaoclinic orbit collideswith
the saddle-nale curve

BR PT TYLAB PAR(1) .. PAR(2) PAR(3) PAR(29)
1 28 UZ 14 1.282702E-01 ... -2.519325E+00 5.744770E-01 -4.347113E-09 ...

The other detectedinclination ip (at label 8in s.3 is cortinued similarly
make eleventh
giving amongits output another codim 3 saddle-nale inclination- ip point

BR PT TYLAB PAR(1) .. PAR(2) PAR(3) PAR(29)
1 27 UZ 14 1.535420E-01 ... -2.458100E+00 1.171705E+00-1.933188E-07 ...

Output beyond both of thesecodim 3 points is spuriousand both computationsend in an MX
point (no corvergence).

To continue the non-cenral saddle-nale homaclinic orbits it is necessaryto work on the data
without the solution ¢(t). We restart from the data saved at LAB=8and LAB=13n s.7and
s.8respectively. We could cortinue these codim 2 points in two ways, either by appending the
de ning condition ;4 = 0to the cortinuation of saddle-nale homaclinic orbits (with IEQUIB=2
etc.), or by appending )9 = 0 to the corntinuation of a saddlehomaclinic orbit (with [EQUIB=1
The rst approad is usedin the example mtn, for cortrast we shall adopt the secondapproad
here.
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make twelfth
make thirteenth

The projection onto the (¢, k)-plane of all four of thesecodimension-to curvesis givenin Figure
18.8. The intersectionof the inclination- ip lines with one of the non-cenral saddle-nale homo-
clinic lines is apparert. Note that the two non-certral saddle-nale homaoclinic orbit curvesare
almost overlaid, but that asin Figure 18.6the orbits look quite distinct in phasespace.

18.5 Detailed AUTO -Commands.

AUTO -COMMAND ACTION

I mkdir kpr createan empty work directory

cd kpr changedirectory

demo('kpr") copy the demo les to the work directory
run(c='kpr.1',h="kpr A9 cortinuation in the time-length parameter PAR(11)
sv('1l) save output- les as b.1,s.1,d.1
run(c='kpr.2',h="kpr 2', s="1") | locate the homaclinic orbit; restart from s.1
sv('2") save output- les as b.2,s.2,d.2
run(c='kpr.3',h="kpr 3", s='2") | generateadjoint variables; restart from s.2
sv('3") save output- les as b.3,s.3,d.3
run(c='kpr.4',h="kpr 4' s='3") | cortinue the homaclinic orbit; restart from s.3
ap('3) append output- les to b.3,s.3,d.3
run(c='kpr.5',h="kpr 5" s='3") | cortinue in reversedirection; restart from s.3
ap('3) append output- les to b.3,s.3,d.3
run(c='kpr.6',h="kpr .6', s='2") | increasethe period; restart from s.2

sv('6") save output- les as b.6,s.6,d.6

Table 18.1: Detailed AUTO -Commandsfor running demo kpr.
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Figure 18.8: Projection onto the (PAR(3),PAR(2)) -plane of the non-ceriral saddle-nale homo-
clinic orbit curves(labeled 1 and 2) and the inclination-ip curves(labeled 3 and 4)

AUTO -COMMAND

ACTION

run(c="kpr.7',h="kpr. 7 ,s='6) recomputethe branch of homaclinic orbits; restart from s.6
sv('7") save output- les as b.7,s.7,d.7

run(c="kpr.8',h="kpr. 8,5s=7) corntinue certral saddle-nale homaoclinics; restart from s.7
sv('8") save output- les as b.8,s.8,d.8

run(c="'kpr.9',h="kpr. 9',s="8) cortinue homaclinics from codim-2 point; restart from s.8
sv('9") save output- les as b.9,s.9,d.9

run(c="'kpr.10',h="kpr .10',s="3") | 3-parametercurve of inclination- ips; restart from s.3

sv('10" save output- les as b.10,s.10,d.10

run(c='kpr.11',h="kpr 11" ,s="3") | another curve of inclination- ips; restart from s.3

sv('11") save output- les as b.11,s.11,d.11

run(c='kpr.12',h="kpr 12" ,s="7") | continue non-certral saddle-nale homaclinics; restart from s.7
sv('12") save output- les as b.12,s.12,d.12

run(c="'kpr.13',h="kpr .13',5="8") | cortinue non-certral saddle-nale homaclinics; restart from s.8

ap('12)

append output- les to b.12,s.12,d.12

Table 18.2: Detailed AUTO -Commandsfor running demo kpr.
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Chapter 19

HomCon t Demo : cir.

19.1 Electronic Circuit of Freire et al.

Considerthe following model of a three-variable electroniccircuit (Freire, Rodr guez-Luis,Gamero
& Ponce1993)

= [ B+v)a+ By aza®+ bs(y )]/,
y = pxr (B+ry)y =z by 2)? (19.1)
z = .

Theseautonomousequationsare also consideredin the AUTO demo tor.
First, we copy the demointo a new directory and compile

@dneir

The systemis cortained in the equation- le cir.cand the initial run-time constarts are storedin
c.cir.land h.cir.1 We begin by starting from the data from cir.datfor a saddle-fa@ushomaoclinic
orbit at » = 0.721309,6 = 0.6, v = 0, r = 0.6, A3 = 0.328578and B3 = 0.933578,which was
obtained by shaooting over the time interval 2" = PAR(11F 36.13. We wish to follow the branch
in the (3, v)-plane, but rst we perform cortinuation in (7, ) to obtain a better appraximation
to a homaclinic orbit.

make first
yields the output
BR PT TYLAB PERIOD L2-NORM ... PAR(1)
1 21 UZ 2 1.000000E+02 1.286637E-01 ... -7.213093E-01

1 42 Uz 3 2.000000E+02 9.097899E-02 ... -7.213093E-01
1 50 EP 4 2.400000E+02 8.305208E-02 ... -7.213093E-01

Note that » = PAR(1)remainsconstart during the cortinuation asthe parametervaluesdo not
change, only the the length of the interval over which the appraximate homaoclinic solution is
computed. Note from the eigervalues,storedin d.1 that this is a homaoclinic orbit to a saddle-
focuswith a one-dimensionalunstable manifold.

Wenow restart at  LAB=3correspndingto atime interval 21" = 200,and changethe principal
cortinuation parametersto be (v, 7). The new constarts de ning the cortinuation are given in
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c.cir.2and h.cir.2 We alsoactivate the test functions pertinent to codimension-iwo singularities
which may be encourtered along a branch of saddle-f@us homaoclinic orbits, viz. s, 14, 15, g
and v1o. This must be speci ed in three ways: by choosing NPSI=5and appropriate IPSI(l)

in h.cir.2 by adding the correspnding parameter labels to the list of cortinuation parameters
ICP(l) in c.cir.2 (recall that these parameter indices are 20 more than the correspnding v
indices),and nally adding USZR functions de ning zerosof theseparametersin c.cir.2 Running

make second

resultsin

BR PT TY LAB PAR(1) PAR(2) PAR(25) PAR(29)

1 17 UZ 5 -7.256925E-01 ... 4 535645E-01 ... -1.765251E-05 -2.888436E-01
1 75 UZ 6 -1.014704E+00 ... 9.998966E-03 ... 1.664509E+00-5.035997E-03
1 78 UZ 7 -1.026445E+00 ... -2.330391E-05 ... 1.710804E+00 1.165176E-05
1 81 UZ 8 -1.038012E+00... -1.000144E-02 ... 1.756690E+00 4.964621E-03
1 100 EP 9 -1.164160E+00 ... -1.087732E-01 ... 2.230329E+00 5.042736E-02

with results saved in b.2,s.2,d.2  Upon inspection of the output, note that label 5, where
PAR(25) O, correspndsto aneutrally-divergen saddle-fe@us,s = 0. Label 7, where PAR(29)
0 correspndsto a local bifurcation, 9 = 0, which we note from the eigervaluesstoredin d.2
correspndsto a Shil’nikov-Hopf bifurcation. Note that PAR(2)is also appraximately zero at
label 7, which accordswith the analytical obsenation that the origin of (19.1) undergaesa Hopf
bifurcation when 5 = 0. Labels6 and 8 are the user-de nedoutput points, the solutionsat which
are plotted in Fig. 19.1. Note that solutions beyond label 7 (e.g., the plotted solution at label 8)
do not correspnd to homaclinic orbits, but to point-to-cycle heteraclinic orbits (c.f. Section2.2.1
of Champneyset al. (1996)).

We now cortinue in the other direction alongthe branch. It turns out that starting from the
initial point in the other direction resultsin missinga codim 2 point which is closeto the starting
point. Instead we start from the rst saved point from the previouscomputation (label5in s.2:

make third
The output
BR PT TYLAB PAR(1) PAR(2) PAR(22) PAR(24)
1 9 UZ 10 -7.204001E-01 ... 5.912315E-01 -1.725669E+00 -3.295862E-05
1 18 UZ 11 -7.590583E-01 ... 7.428734E-01 3.432139E-05 -2.822988E-01
1 26 UZ 12 -7.746686E-01 ... 7.746147E-01 5.833163E-01 1.637611E-07
1 28 EP 13 -7.746628E-01 ... 7.746453E-01 5.908902E-01 1.426214E-04

contains a neutral saddle-f@us (a Belyakov transition) at LAB=10(v4, = 0), a double real

leading eigervalue (saddle-facusto saddletransition) at LAB=11 (v, = 0) and a neutral saddle
at LAB=12v, = 0). Data at seral points on the completebranch are plotted in Fig. 19.2. If

we had continued further (by increasing NMX the computation would end at a no corvergence
error TY=MXwing to the homaclinic branch approading a Bogdano/-Takenssingularity at small

amplitude. To computefurther towardsthe BT point we would rst needto cortinueto a higher
value of PAR(11)
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Figure 19.1: Solutions of the boundary value problem at labels 6 and 8, either side of the
Shil'nikov-Hopf bifurcation

Figure 19.2: Phaseportraits of three homaclinic orbits on the branch, showving the saddle-faus
to saddletransition
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19.2 Detailed AUTO -Commands.

AUTO -COMMAND

ACTION

' mkdir cir createan empty work directory

cd cir changedirectory

demo('cir’) copy the demo les to the work directory
us(‘cir") usethe starting data in cir.datto create s.dat

run(c='"cir.1',h="cir. 1',s="dat") | increasethe truncation interval; restart from s.dat
sv('l) save output- les as b.1,s.1,d.1

run(c='"cir.2',h="cir. 2's="1) cortinue saddle-faus homaclinic orbit; restart from s.1
sv('2") save output- les as b.2,s.2,d.2

run(c='"cir.3',h="cir. 3',s='2) generateadjoint variables; restart from s.2

ap(2)

append output- les as b.2,s.2,d.2

Table 19.1: Detailed AUTO -Commandsfor running demo cir.
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Chapter 20

HomCon t Demo : she.

20.1

The following systemof v e equationsRucklidge & Mathews (1995)

A Heteroclinic Example.

= purt+tzxzy zu,
y 2%
dozxu+tdopz 9oz+ dxu+ duz)/4(1+ o) (20.1)

ou/4 oQu/4r?+ 3(1+ o)rz/do
Cu/4  (u/4

hasbeenusedto describe shearinginstabilities in uid corvection. The equationspossess rich
structure of local and global bifurcations. Here we shall reproduce a single curve in the (o, u)-
plane of codimension-onehetercclinic orbits connectinga non-trivial equilibrium to the origin
for Q = 0 and ¢ = 4. The de ning problem is cortained in equation-le she.¢, and starting
data for the orbit at (o, 1) = (0.5,0.163875)are stored in she.dat with a truncation interval of
PAR(11)=85.07.

We begin by computing towards ;. = 0 with the option IEQUIB=-2which meansthat both
equilibria are solved for as part of the cortinuation process.

1< = e R

@dnshe
make first
This yields the output
BR PT TY LAB PAR(3) L2-NORM PAR(1)

1 5 2 4.528332E-01 3.726787E-01 ... 1.364973E-01
1 10 3 3.943370E-01 3.303798E-01 ... 1.044119E-01
1 15 4 3.358942E-01 2.873213E-01 ...  7.515570E-02
1 20 5 2.772726E-01 2.433403E-01 ...  4.952636E-02
1 25 6 2.181955E-01 1.981358E-01 ... 2.845849E-02
1 30 EP 7 1.581633E-01 1.512340E-01 ... 1.292975E-02

!The last parameter used to store the equilibria ( PAR(21)) is overlaped here with the first test-function. In

this example, it is harmless since the test functions are irrelevant for heteroclinic continuation.
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Alternativ ely, for this problem there exists an analytic expressionfor the two equilibria. This is

speci ed in the subroutine pvls of she.c Re-runningwith 1EQUIB=-1
make second
we obtain the output
BR PT TYLAB PAR(3) L2-NORM PAR(1)

1 5 2 4.432015E-01 3.657716E-01 ... 1.310559E-01
1 10 3 3.723085E-01 3.142439E-01 ...  9.300982E-02
1 15 4 3.008842E-01 2.611556E-01 ... 5.933966E-02
1 20 5 2.286652E-01 2.062194E-01 ...  3.179939E-02
1 25 6 1.555409E-01 1.491652E-01 ... 1.239897E-02
1 30 EP 7 8.107462E-02 9.143108E-02 ...  2.386616E-03

This output is similar to that above, but note that it is obtained slightly moree cien tly because
the extra parameters PAR(12-21) represeting the coordinates of the equilibria are no longer
part of the cortinuation problem. Also note that AUTO has chosento take slightly larger steps
along the branch. Finally, we can cortinue in the opposite direction along the branch from the

original starting point (again with IEQUIB=-1).
make third
BR PT TYLAB PAR(3) L2-NORM PAR(1)

The results of both computations are preserted in Figure 20.1, from which we seethat the orbit

shrinksto zeroas PAR(1)z:! O.
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1 5 8 4.997590E-01 4.060153E-01 ... 1.637322E-01
1 10 9 5.705299E-01 4.551872E-01 ... 2.065264E-01
1 15 10 6.416439E-01 5.031844E-01 ... 2.507829E-01
1 20 11 7.133301E-01 5.500668E-01 ... 2.959336E-01
1 25 12 7.857688E-01 5.958712E-01 ... 3.415492E-01
1 30 13 8.590970E-01 6.406182E-01 ...  3.872997E-01
1 35 EP 14 9.334159E-01 6.843173E-01 ... 4.329270E-01



20.2 Detailed AUTO -Commands.

AUTO -COMMAND

ACTION

run(c='she.l'\h='she .1' s='dat’)
sv('1)

' mkdir she createan empty work directory

cd she changedirectory

demo('she’) copy the demo les to the work directory
us('she’) usethe starting data in she.datto create s.dat

cortinue heteroclinic orbit; restart from s.dat
save output- les as b.1,s.1,d.1

run(c='she.2',h='she .2' s='dat’)
sv('2)

repeat with IEQUIB=-1
save output- les as b.2,s.2,d.2

run(c='she.3',h='she .3’ s=2")
ap('2)

continue in reversedirection ; restart from s.2
append output- les to b.2,s.2,d.2

Table 20.1: Detailed AUTO

-Commandsfor running demo she
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Figure 20.1: Projectionsinto (z, y, z)-spaceof the family of heteraclinic orbits.
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Chapter 21

HomCon t Demo : rev.

21.1 A Reversible System.

The fourth-order di erential equation
u////+ Pu"+ U uS =0

arisesin a number of contexts, e.g., as the travelling-wave equation for a nonlinear-Sérodinger

equationwith fourth-order dissipation (Buryak & Akhmediev 1995)and asa model of a strut on

a symmetric nonlinear elastic foundation (Hunt, Bolt & Thompson 1989). It may be expressed
asa system

U = U

Uy = U

2 - (21.1)
Uz = Ug

w, =  Pugy up+ud

Note that (21.1) is invariant under two separatereversibilities

Rl (U17U27U3,U4,t) 7! (U17 Uz, Uz, Ug, t) (212)
and
R2 (u17u27u37u47t) 7I ( Uy, Uz, U3, Usq, t) (213)
First, we copy the demointo a new directory
@dnmev

For this example,we shall make two separatestarts from data stored in equation and data les
rev.c.1,rev.dat.1and rev.c.3,rev.dat.3respectively. The rst of thesecorntains initial data for a
solution that is reversibleunder R; and the secondfor data that is reversibleunder R5.

21.2 An R;-Reversible Homoclinic Solution.

The rst run

make first
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starts by copying the les rev.c.land rev.dat.1to rev.cand rev.dat The orbit cortained in the
data le isa\primary" homaclinic solution for P = 1.6, with truncation (half-)interval PAR(11)
= 39.0448429. which is reversibleunder ;. Note that this reversibility is speci ed in h.rev.1lvia
NREV=1 (IREV(l), 1=1,NDIM) =0 1 O 1. Note also,from c.rev.1that we only have onefree
parameter PAR(1) becausesymmetric homaclinic orbits in reversible systemsare genericrather
than of codimensionone. The rst run resultsin the output

BR PT TYLAB PAR(1) L2-NORM MAXU(1)

1 7 Uz 2 1.700002E+00 2.633353E-01 4.179794E-01
1 12 UZ 3 1.800000E+00 2.682659E-01 4.806063E-01
1 15 UZ 4 1.900006E+00 2.493415E-01 4.429364E-01
1 20 EP 5 1.996247E+00 1.111306E-01 1.007111E-01

which is consisten with the theoretical result that the solution tendsuniformly to zeroas P! O.
Note, by plotting the data savedin s.1that only \half " of the homaclinic orbit is computedup
to its point of symmetry. SeeFigure 21.1.

The secondun cortinuesin the other direction of PAR(1), with the test function v, activated
for the detection of saddleto saddle-f@ustransition points

make second

The output

BR PT TYLAB PAR(1) L2-NORM MAXU(1) ... PAR(22)
1 11 UZ 6 1.000005E+00 2.555446E-01 1.767149E-01 ... -3.000005E+00
1 22 UZ 7 -1.198325E-07 2.625491E-01 4.697314E-02 ... -2.000000E+00
1 33 UZ 8 -1.000000E+00 2.741483E-01 4.316007E-03 ... -1.000000E+00
1 44 UZ 9 -2.000000E+00 2.873838E-01 1.245735E-11 ... 2.318248E-08
1 55 EP 10 -3.099341E+00 3.020172E-01 -2.749454E-11 ... 1.099341E+00

shows a saddle to saddle-faus transition (indicated by a zero of PAR(22) at PAR(1)=-2
Beyondthat labelthe rst componert of the solution is negative and (up to the point of symmetry)
monotonedecreasing.SeeFigure 21.2.

21.3 An R,-Reversible Homoclinic Solution.
make third

Copiesthe les rev.c.3and rev.dat.3to rev.cand rev.dat and runs them with the constars
storedin c.rev.3and h.rev.3 The orbit cortained in the data le is a \multi-pulse” homaclinic
solution for P = 1.6, with truncation (half-)interval PAR(11) = 47.4464189. which is reversible
under R,. This reversibility is speci ed in h.rev.lvia NREV=s1 (IREV(l), I1=1,NDIM) =10
1 0. The output

BR PT TYLAB PAR(1) L2-NORM MAXU(1)
1 15 UZ 2 1.700000E+00 3.836401E-01 4.890015E-01
1 16 LP 3 1.711574E+00 3.922135E-01 5.442385E-01
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Figure 21.1: R;-Rewersible homaoclinic solutions on the half-interval z/7" 2 [0,1] where T =
39.0448429%oor P approading 2 (solutions with labels 1-5 respectively have decreasingampli-
tude)

-0.50]
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Figure 21.2: R,-reversible homaoclinic orbits with oscillatory decay asx ! 1 (correspnding
to label 6) and monotonedecy (at label 10)
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1 19 UZ 4 1.600000E+00 4.329404E-01 7.769491E-01
1 31 UZ 5 1.000000E+00 4.808488E-01 1.083298E+00
1 86 UZ 6 -9.664802E-10 5.158463E-01 1.258650E+00

contains the label of a limit point ( ILP wassetto 1in c.rev.3 which correspndsto a \coa-
lescence"of two reversible homaoclinic orbits. The two solutions on either side of this limit point
aredisplayedin Figure 21.3. The computation endsin a no-corvergencepoint. The solution here
is depicted in Figure 21.4. The lack of convergenceis due to the large peak and trough of the
solution rapidly moving to the left as P! 2 (cf. Champneys& Spence(1993)).

Continuing from the initial solution in the other parameterdirection

make fourth
we obtain the output

BR PT TYLAB PAR(1) L2-NORM MAXU(1) ...
1 7 UZ 8 1.600000E+00 3.701709E-01 3.836833E-01
1 33 UZ 9 9.999980E-01 3.614405E-01 1.775035E-01
1 93 UZ 10 -7.819855E-06 3.713007E-01 4.698309E-02

which again endsat a no corvergenceerror for similar reasons.
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Figure 21.3: Two Ry-reversible homaclinic orbits at P = 1.6 correspnding to labels 1 (smaller
amplitude) and 5 (larger amplitude)

0.00 0.20 0. 40 0.60 0.80 1.00
0.10 0.30 0.50 0.70 0.90 X/ T

Figure 21.4: An R,-reversible homoclinic orbit at label 8
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21.4 Detailed AUTO -Commands.

AUTO -COMMAND

ACTION

I mkdir rev
cd rev
demo('rev')

createan empty work directory
changedirectory
copy the demo les to the work directory

cp rev.c.1 rev.c
cp rev.dat.l rev.dat
us('rev’)

get equations le to rev.c
get the starting datato rev.dat
usethe starting data in rev.datto create s.dat

ap('3)

run(c="rev.1l',h='rev. 1',s='dat’) |increase PAR(1)

sv('1l) save output- les as b.1,s.1,d.1
run(c="rev.2',h='rev. 2's='1" cortinue in reversedirection; restart from s.1
ap('1) append output- les to b.1,s.1,d.1

cp rev.c.3 rev.c get equations le with newvalue of PAR(11)
cp rev.dat.3 rev.dat get starting data with di erent reversibility
us('rev') usethe starting data in rev.datto create s.dat
run(c="rev.3',h="rev. 3',s='dat’) |restart with di erent reversibility

sv('3") save output- les as b.3,s.3,d.3
run(c="rev.4',h='rev. 4' s="3") cortinue in reversedirection; restart from s.3

append output- les to b.3,s.3,d.3

Table 21.1: Detailed AUTO

-Commandsfor running demo rev.
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Chapter 22

HomCon t Demo : Homo clinic branch
switc hing.

This demoillustrates homaoclinic branch switching, which is an implemertation of Lin's method
(Lin 1990, Sandstede1993, C. 2001) as descrited in Oldeman et al. (2001). We use a direct
branch switching method to switch from 1- to 2- and 3-homaclinic orbits near an inclination ip

bifurcation in amodel dueto Sandstedewhich wasintroducedin Chapter 16. This alsoshovshow
to obtain a homaclinic orbit through cortinuation of a periodic orbit born at a Hopf bifurcation.
Thereafter, we illustrate homaoclinic branch switching for the FitzHugh-Nagumo equationsand a
5th-order Korteweg-DeVries model.

22.1 Branch switching at an inclination flip in Sand-
stede’s model.

Considerthe system(Sandstedel99%:)

ar+ by ar® azx(2 3x),
br + ay %x(bx + ay) + az2y, (22.1)
cz+ px+ 3rz+ a(z?(Q x)  9?).

| f= =

asgivenin the le sib.g wherefor simplicity we havesetx= 0,5= 1and~ = 3.

We study an inclination ip that existsfor ¢ = 0.375,b = 0.625and ¢ = 0.75. This
correspndsto the situation wherethe eigervaluesof the equilibrium at the origin area + b = 1,
a b= 025andc = 0.75. Hence,the correspnding bifurcation diagram consistsof a
complicated structure involving a fan of in nitely many n-periodic and n-homaclinic orbits for
arbitrary n and a region with horseshe dynamics; seealso Homburg & Krauskopf (2000) and
the referencegherein.

This computation starts from an equilibrium at (2/3, 0, 0), which existsfor a = = « = 0.
Also, b is setto 0.625 (the value we would like it to be) and cis setto 2.5 in stpnt. Choosing
c= 2 at this stageleadsto corvergenceproblems. This equilibrium is not the onecorrespnding
to the homaclinic orbit, but it is an equilibrium with complex eigervalues, that we can follow
until it reacdhesa Hopf bifurcation. A periodic orbit emanatesfrom this Hopf bifurcation and can
be followed to the homaclinic orbit. Howewer, rst we needto changea from 0 to 0.375.
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All the following commands,exceptfor demo('sib’) are contained within the le 'sib.auto’
which you can either executein a batch mode by ertering
> auto sib.auto
or step by step using
AUTO>demofile('sib.auto’)
We start by copying the demoto the current work directory and running the rst step

demo('sib’)
ld('sib")
rn()
sv('l)
The equilibrium is followed in a until « (or PAR(1) is at our desiredvalue, 0.375.
BR PT TYLAB PAR(1) U(1) u(2) U(3)

1 1 EP 1 0.000000E+00... 6.666667E-01 0.000000E+00 0.000000E+00
1 6 EP 2 3.750000E-01 ... 6.666667E-01 -1.333333E-01 0.000000E+00

The output is savedin the les b.1, s.land d.1 Next we cortinuein o (PAR(4) until a Hopf
bifurcation is found:

rn(c="sib.2',s="1")

sv('2)
or, alternatively,
cc("IRS",2)
cc("ICP",[4])
rn(s='1")
sv('2")
BR PT TYLAB PAR(®4) U(l1) U(2) U(3)

1 18 HB 3 3.184290E-01 ... 6.543750E-01 -1.347543E-01 7.701025E-02

The output is saved in the les b.2, s.2and d.2 This Hopf bifurcation can then be cortinued
into a periodic orbit. The periodic orbit everntually reatesa homaclinic bifurcation. We cortinue

in u=PAR(5)and PAR(10) which correspndsto the period, and stop when the period is equal
to 35.

rn(c="sib.3',s="2")

sv('3")
BR PT TYLAB PAR(5) L2-NORM ... PERIOD
3 5 5 -2.418809E-03 6.705689E-01 ...  1.089749E+01
3 40 8 -1.294950E-02 6.145469E-01 1.412970E+01
3 81 EP 13 -1.046566E-04 4.018291E-01 3.499999E+01
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The output is savedin the les b.3, s.3and d.3. Note that i rst decreasesnd then increases
towards 0, which is preciselywhat we expect in this model, ashomaclinic orbits occur on the line

1= 0in the («a, u)-plane. It is now instructive to look at a phasespacediagram to seewhat is

goingon.

plot('3")

Selecting'solution' for Type, [5,6,7,8,9,10,11,12,13br Label, [0] for X and [1] for Y, we obtain
the diagram depictedin Figure 22.1(a), wherethe periodic orbit grows from the Hopf equilibrium
to a homaclinic orbit.
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Figure 22.1: Periodic orbit growing from a Hopf bifurcation to a homaoclinic orbit (a). The
unshifted homaclinic orbit (b).

Note however, that the homaclinic orbit hasthe wrong left-hand and right-hand end points.
This canbe seenby plotting the solution correspndingto Label [13]using't' vs. X' (coordinate
[0]), asdepictedin Figure 22.1(b).

Hence,in order to cortinue this asa real homaclinic we have to give HomCort specialinstruc-
tions, to do a phase-shiftin time. This can be done by setting ISTART=4 Moreover, sincewe
have not speci ed the value of the equilibrium at the origin in sib.g we needto set IEQUIB=1to
let HomCort detectthe equilibrium. Note that in this casethis is not strictly necessaryhowever,
we do this for instructional purposes.

Now we use HomCort to cortinue the homaclinic orbit in ¢ and 1 (PAR(3) PAR(5), to get
the desiredvaluec= 2.0.

rn(c="sib.4',h='sib.s hift ''s ='3")

sv('4")
BR PT TY LAB PAR(3) L2-NORM PAR(5)
3 15 EP 14 -2.000000E+00 4.018899E-01 2.661459E-09

The output is savedin the les b.4, s.4and d.4. Note that PAR(5)F 1. remains zero, which is
exactly what we expect.
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Next we want to add a solution to the adjoint equationto this solution. This is achieved by
making the change ITWIST = 1 savedin h.sib.wist Also, we setISTARTo 1 to tell HomCont
that it is should not try to shift the orbit anymore.

rn(c="sib.5',h="sib.t wist',s ='4")
sv('5")

or, alternatively,

cc("IRS",14)
cc("ICP",[5,8])
cc("NMX",2)
che("ITWIST",1)
chc("ISTART",1)
rn(s='4")
sv('5")

where chc means\changeHomCort constart”. The output is storedin b.5 s.5and d.5.

BR PT TYLAB PAR(5) L2-NORM ... PAR(S)
3 2 EP 15 2.550843E-09 4.018898E-01 ...  -1.000000E-02

Here PAR(8) is a dummy (unused) parameter and p just stays whereit is. Now that we have
obtained the solution of the adjoint equation, we are able to detect inclination ips. This canbe
achieved by setting NPSIto 1, IPSI(1) to 13, and monitoring PAR(32)

rn(c="sib.6',h="sib.i f,s='5")
sv('6")
BR PT TYLAB PAR(®4) L2-NORM ... PAR(5) PAR(32)
3 11 UZ 16 7.117745E-02 4.018899E-01 ... 1.243774E-11 -2.366987E-07

The output is storedin b.6, s.6and d.6. Hencean inclination ip wasfound at o = 0.7117745.
Now we are ready to perform homaoclinic branch switching, using the techniquesdescribed in
(Oldeman et al. 2001). Our rst aimisto nd a 2-homalinic orbit. The ingredierts we need
are: a homaclinic orbit where n-homaclinic orbits are closeby, and the solution to the adjoint
equationto obtain the Lin vector. Sinceboth ingredierts are there, we can now cortinuein y, &,
and 7}, to obtain the initial Lin gap. Recallfrom Chapter 15 that the Lin gapse; correspnd to
PAR(19+i*2) and the time intervals 7; correspnd to PAR(20+i*2). We stop whene; = 0.2. We
needto specify ITWIST=2 to tell HomCort we aim to nd a 2-homcclinic orbit, sothat it will

split it up in three parts with two potential Lin gaps. We e ectiv ely have a 9-dimensionalsystem
at this point.

rn(c="sib.7',h='sib.hb s2', s='6")
sv('7")
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BR PT TYLAB PAR(20) L2-NORM ... PAR(21) PAR(5)

3 10 18 3.458968E+01 4.468176E-01 ..  7.877123E-07 -1.558861E-11
3 20 19 2.736992E+01 4.468176E-01 ..  2.911187E-05 -1.639739E-09
3 30 20 1.737196E+01 4.468171E-01 ..  4.422734E-03 -3.101671E-05
3 38 EP 21 1.014512E+01 4.467963E-01 ..  2.000000E-01 -1.486151E-02

The output is storedin b.7, s.7and d.7. Herewe seethat 77, the time it takesto make the rst
loop with respect to the Poincare section,decreasesThis is illustrated in Figure 22.2. Next we
are ready to closethis gap, by cortinuing in «, u, and £, while keeping7; at a constart value.
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Figure 22.2: Behaviour of the secondpieceof the “broken homaclinic orbit' when creating a Lin
gap (a). Projection of the \brok en homaclinic orbit* onto the (z, y)-plane, wherees; = 0.2. To
include all the piecesnecessaryto obtain this gure, the \X" box must cortain [0,3,6] and the
\Y" box must contain [1,4,7](b).

rn(c="sib.8',h="sib.hb s2', s='7")

ap('6")
BR PT TYLAB PAR(®4) L2-NORM ... PAR(5) PAR(21)
3 3 UZ 22 7.399999E-02 4.467807E-01 .. -1.431624E-02 1.937464E-01
3 32 EP 23 1.992281E-01 4.465901E-01 .. -6.054949E-03 2.292996E-06

The output is appendedto b.6, s.6and d.6. Now we have obtained a 2-homcclinic orbit at label
24. Howewer, the homaclinic orbit is still split in three parts. We can switch badk to a normal
orbit by setting ITWISTbad to 0 and cortinuing in the usualway. Here we cortinue bad to the
inclination ip point in a and p.

rn(c='sib.8',h="sib. hom',s="6")

ap('6’)
BR PT TYLAB PAR(4) L2-NORM ... PAR(5)
3 7 UZ 24 1.499999E-01 4.944903E-01 .. -3.602482E-03
3 30 EP 25 7.614033E-02 4.987463E-01 .. -2.648395E-06
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Sothe 2-homcelinic orbit corvergesbadk to the 1-homcclinic orbit at the inclination ip bifur-
cation. The output is appendedto b.6, s.6and d.6. The resulting 2-homcclinic orbits can be
seenusing

plot('6")
and is depictedin Figure 22.3(a).
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Figure 22.3: The 2-homaclinic orbit as a is changed(a). The two di erent 3-homcclinic orbits

(b).

Next, we aim to nd a 3-homaclinic orbit. To do so, we restart at the inclination ip point
at label 16 and set ITWIST=3 Moreover, we needto cortinue in one more gap, o= PAR(23)and,
onceagain, stop whene;=PAR(21)=02. Note that the dimensionof the boundary value problem
we cortinue is now equalto 12. This is not to be confusedwith the setting of NDIM=3n the
parameter le, becauseHomCort handlesthis internally.

rn(c="sib.10',h="sib. hbs3',s ='6")

sv('10')
BR PT TYLAB PAR(20) .. PAR(21) PAR(23) PAR(5)
3 10 26 3.458963E+01 .. 7.878940E-07 6.421573E-07 -1.062630E-11
3 20 27 2.736987E+01 .. 2.911260E-05 6.515911E-07 -1.636554E-09
3 30 28 1.737189E+01 .. 4.422894E-03 1.440898E-04 -3.101882E-05
3 38 EP 29 1.014512E+01 .. 2.000000E-01 6.974453E-02 -1.486151E-02

The output is storedin b.10 s.10and d.10 Now we needto subsequetty closethe Lin gaps.
Our strategy is to keep7; xed. We rst continuein «, u, £; and e, until e; = 0.

rn(c="sib.11',h='sib. hbs3', s='10")
ap('6’)
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BR PT TYLAB PAR(4) PAR(5) PAR(21) PAR(23)
3 6 UZ 30 8.199998E-02 .. -1.297904E-02 1.769949E-01 6.371836E-02
3 32 EP 31 1.984145E-01 .. -6.054949E-03 2.307164E-06 3.624489E-02

The output is appendedto b.6, s.6and d.6. Note that this cortinuation is very similar to
the one where we found a 2-homaclinic orbit. In fact we have now found a 2-homcclinic orbit
(numerically) followed by a "broken' 1-homcclinic orbit; only the meshis not aligned.

The next step is to closethe gap correspnding to ¢, to obtain a 3-homaclinic orbit. We
replacethe continuation parametere, by 75, becausel; (PAR(22) still hasto be decreasedrom
its high value (35) and £; needsto stay at O.

rn(c="sib.12',h="sib. hbs3',s ='6")

ap('6’)
BR PT TYLAB PAR(4) PAR(5) PAR(22) PAR(23)
3 16 UZ 32 1.983953E-01 .. -6.055361E-03 2.013107E+01 1.824909E-08
3 24 UZ 33 1.800000E-01 .. -6.502928E-03 1.275539E+01-3.142935E-02
3 30 UZ 34 1.669900E-01 .. -6.892692E-03 9.417449E+00-1.031790E-06
3 32 EP 35 1.781716E-01 .. -6.553641E-03 9.502999E+00-7.203666E-02

The output is appendedto b.6, s.6and d.6. Note that we have found two zerosof PAR(23)
at labels 32 and 34, respectively. The two zeroscorrespnd to two di erent 3-homaclinic orbits,
which, when followed from periodic orbits, both emanatefrom from the samesaddle-nale bifur-
cation. Thesetwo 3-homaclinic orbits are depictedin Figure 22.3(b). We canfollow both of these
bad to the inclination ip point, by setting ITWISTbad to O:

rn(c="sib.13',h='sib.h om s='6")

ap('6')
BR PT TYLAB PAR(4) L2-NORM ... PAR(5)
3 13 UZ 36 1.299993E-01 5.048071E-01 ... -2.339037E-03
3 30 EP 37 9.272363E-02 5.065599E-01 ... -2.767140E-04

rn(c="sib.14',h='sib.h om s='6")

ap('6’)
BR PT TYLAB PAR(®4) L2-NORM ... PAR(5)
3 4 UZ 37 1.449997E-01 5.473471E-01 ... -4.794005E-03
3 30 EP 39 8.394009E-02 5.526047E-01 ... -7.367526E-05

All the output is appendedto b.6, s.6and d.6. The bifurcation diagram and the paths we
followed when closingthe Lin gapsare depictedin Figure 22.4. It is possibleand straightforward
to obtain 4,5, 6, . .. -homaclinic orbits by extending the above strategy.
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Figure 22.4: Parameter spacediagram near an inclination ip. The curve through label 17
correspnds to a 1-homcclinic orbit. The opening of the Lin gaps occurs along the vertical
line from label 16 to label 23. The curves through labels 23 and 30 denote the path that is
followed when closingthe Lin gaps. The (approximately overlaid) curvesthough labels 25 and
35 corresnd to the 2- and one of the 3-homcclinic orbits. Finally, the curve through label 37
correspndsto the other 3-homaclinic orbit, which was obtained for PAR(22x T, = 1203201.

22.2 Branch switching for a Shil’nikov type homoclinic
orbit in the FitzHugh-Nagumo equations.

The FitzHugh-Nagumo (FHN) equations(FitzHugh 1961,Nagumo, Arimoto & Yoshizava 1962)
are a simpli ed versionof the Hodgkin-Huxley equations(Hodgkin & Huxley 1952). They model
nerve axon dynamicsand are given by

Uy = Ugy fa(u) w,

Wy = 6(“ rYw)7

(22.2)

where
fa(u) = w(u  a)(u 1)

Travelling wave solutions of the form (u, w)(z,t) = (u,w)(§), where¢ = = + ¢t are solutions
of the following ODE system:

v,

cv+ fo(u) + w, (22.3)

1<
1

1<
]

1€
1

E(u yw).

In particular we considersolitary wave solutionsof (22.2). Thesecorrespnd to orbits homaclinic
to (u,v,w) = 0in system(22.3). In our numerical examplewe keep~ = 0.

190



We aim to nd a 2-homaclinic orbit at a Shil'nikov bifurcation. All the commandsgiven
herearein the le fnb.auto. First we obtain a homaclinic orbit using a homotopy technique (see
Friedman, Doedel & Monteiro (1994)), using ISTART=3for the parametervaluesc = 0.21 a =
0.2,¢ = 0.0025.

demo('sib")
ld(‘'fnb")
rn()
sv('1l)
Among the output we see:
BR PT TYLAB PERIOD L2-NORM ... PAR(16)
1 20 Uz 3 2.922565E+01 2.379162E-01 ... -1.680003E-09

and a zero of PAR(16) meansthat a zero of an arti cial parameter has been located and the
right-hand end point of the correspnding solution belongsto the plane that is tangert to the
stable manifold at the saddle. This point still needsto comecloserto the equilibrium, which we
can achieve by further increasingthe period to 300, while keepingPAR(16)at O:

rn(c="fnb.2',h="fnb.1 bos='1")
sv('2)
BR PT TYLAB PERIOD L2-NORM .. PAR(1)
1 190 UZ 10 3.000000E+02 7.379317E-02 .. 1.792864E-01

Next we stop using the homotopy technique and increasethe period even further, to 1000.

rn(c="fnb.3',h="fnb.3 L s='2")
sv('3")
BR PT TYLAB PERIOD L2-NORM ... PAR(1)
1 80 UZ 13 1.000000E+03 4.041827E-02 ... 1.792865E-01

A cortinuation in PAR(1F « and PAR(O)F ¢ needsto be performedto arrive at the placewhere
we wish to nd a 2-homcclinic orbit: « = 0. At the sametime we monitor PAR(21)to locate

Belyakov points.

rn(c='fnb.4',h="fnb.4 L, s='3")
sv('4")
BR PT TYLAB PAR(1) L2-NORM .. PAR(0) PAR(21)
1 6 UZ 15 1.318124E-01 3.287104E-02 ... 2.171656E-01 -6.312189E-06
1 23 UZ 19 -8.545741E-08 1.561579E-02 ... 2.742181E-01 -9.887718E-02

Hence,there existsa Belyakov point at (a,c) = (0.13181240.217656).At label 19we have a lower
value of ¢ than at the Belyakov point, and by inspection of the le d.4 we can obsene that the
equilibrium hasonepositive eigervalue and a complexconjugatepair of eigervalueswith negative
real part, and concludethat this orbit is of Shil'nikov type. Beforestarting the homaclinic branch
switching, we calculate the adjoint to obtain a "Lin vector":
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rn(c="fnb.5',h="fnb.5 L s="4")
sv('5")
BR PT TYLAB PAR(8) L2-NORM PAR(2)
1 2 EP 28 -1.000000E+00 1.561579E-02 2.500000E-03

Next, we cortinuein the time 77 (PAR(20), the gape; (PAR(21) and ¢ (PAR(0)), and by setting

ISTARE-2 we try to locate a 2-homcclinic orbit:

rn(c="fnb.6',h="fnb.6 ', s='5")
sv('6")
In fact we nd many of them, exactly asis predicted by the theory:
BR PT TYLAB PAR(20) PAR(0) PAR(21)
1 175 UZ 45 1.647952E+02 ... 2.742181E-01 -2.313522E-11
1 179 UZ 46 1.448063E+02 ... 2.742181E-01 1.481383E-11
1 183 UZ 47 1.248379E+02 ... 2.742181E-01 2.171338E-16
1 188 UZ 48 1.048192E+02 ... 2.742181E-01 5.215295E-11
1 192 UZ 49 8.487422E+01 ... 2.742181E-01 3.106887E-15
1 197 UZ 50 6.463349E+01 ... 2.742181E-01 -1.803730E-10

Eadch of thesehomaclinic orbits di er by about 20in the value 77. This is about the time it takes
to make onehalf-turn closeto and around the equilibrium, sothat orbits di er by the number of
half turns around the equilibrium beforea big excursionin phasespace.Note that the variation
of ¢ is sosmall that it doesnot appear.

A plot of 77 vs. ¢; givesinsight into how the gap is openedand closedin the cortinuation
process.This is depictedin Figure 22.5. We are now in a position to cortinue ead of theseorbits
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Figure 22.5: A plot of ¢; as a function of 77 during our computation of Shil'nikov-type two-
homaclinic orbits. Each zerocorrespndsto a di erent orbit.

asa normal homaclinic orbit by setting ISTART=Iand ITWIST=0 We leave this asan exerciseto
the reader.
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22.3 Branch switching to a 3-homoclinic orbit in a
S5th-order Korteweg-De Vries model

In Champneys& Groves(1997) the following water wave model was considered:
2 " 1 3 2 1 N2 Al
— + ar+ = — + = :
157“ br” + ar 27“ 2(7’ ) [»r] = 0. (22.4)
It represeis solitary-wave solutionsr(z + at), 7! Oasxz! 1 of the 5th-order PDE

Ty + =l rxza brm:mv + 3TT:E + ZTI'wa + T zxz=0,

15
wherea is the wave speed. The ODE correspndsto a Hamiltonian systemwith Hamiltonian
1 1 1 15 1
H= éfﬁ EGQ% T D12 ébqi + Zp% + éqg%
and
/ 2 n / / 2 "
q1 =T, G2 = 1, pP1= 1_57' + br rr, p2:1—57"-

System(22.4) is alsoreversible under the transformation

t7! t) (Q17q27p17p2) 7! (q17 42, plvp?)v

but we do not exploit the reversible structure (IREV=0), and instead useit as an example of
Hamiltonian system. This systemexhibits an orbit ip for a reversible Hamiltonian system. In
Hamiltonian systems,homaclinic orbits are codimension-zerophenomena,and we have to add
an additional parameter \ that breaksthe Hamiltonian structure in this system,by introducing
arti cial friction. Thus, the actual systemof equationsthat is usedfor cortinuation is

= (M + J)r H(z),

wherex = (q1, g2, p1,p2) and J is the usual skew symmetric matrix in R*. It is now possibleto
cortinue a homaclinic orbit in HomCort in two parameters(A and either a or b); seealso Beyn
(1990).

An explicit solution existsfor a = 3/5(2b+ 1)(b  2),b 1/2, and it is given by

— 1 3 1/2
r(t) = 3(b+ E)semQ ([Z(2b+ 1] t) .

It correspndsto a reversible orbit pip_for b > 2 (a > 0) We start from this explicit solution,
using ISTART=2for a = 3and b= (' 65+ 3)/4:

demo('kdv")
[d(‘'kdv")
rn()
sv('l)
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BR PT TYLAB PAR(0) L2-NORM ... PAR(2)
1 1 EP 1 3.000000E+00 5.565438E+00 ..  0.000000E+00
1 2 EP 2 3.049592E+00 5.491407E+00 ...  1.807155E-17

Here PAR(OF a, PAR(1xb, and PAR(2F= A. We have only done a very small cortinuation to
give AUTO a chanceto createa good meshand avoid corvergenceproblemslater. Next, we set
ITWIST=1and calculate the adjoint:

rn(c="kdv.2',h="kdv.2 bs='1")

sv('2")
BR PT TYLAB PAR(1) L2-NORM ... PAR(8)
1 2 EP 3 2.765575E+00 5.491418E+00 ... -6.250114E-04

We now needto move bad to the orbit ip at a = 3:

rn(c='kdv.3',h='kdv.3 ', s='2")

sv('3")
BR PT TYLAB PAR(0) L2-NORM ... PAR(2)
1 14 UzZ 5 3.000000E+00 5.476133E+00 ... 1.483821E-09

Now all preparationsare doneto start homoclinic branch switching. This is very similar to the
technique usedin Sandstede'sanodel in Section22.1;to nd a 3-homaclinic orbit, we open 2 Lin
gaps,until 77 = 3.5, while alsovarying A=PAR(2)

rn(c='kdv.4',h='kdv.4 ', s='3")

sv('4)
BR PT TYLAB PAR(2) PAR(20) PAR(21) PAR(23)
1 10 8 b5.797610E-10 .. 1.672717E+01-8.381610E-08 -6.988443E-07
1 19 Uz 9 1.399137E-09 ... 1.012493E+01 6.452744E-12 1.379764E-07
1 20 10 2.122922E-09 ... 9.001030E+00 1.032750E-07 4.022729E-07
1 29 EP 11 2.154196E-06 ... 3.499999E+00 7.959776E-04 3.999453E-04

We then look for an orbit with ¢« < 3 and closethe gap correspnding to ¢;=PAR(21) for
decreasingu.

rn(c="kdv.5',h="kdv.5 ', s='4")

sv('5")
BR PT TYLAB PAR(1) PAR(2) PAR(21) PAR(23)
1 10 12 2.579042E+00 ... 2.154861E-06 7.659464E-04 3.829183E-04
1 13 UZ 13 2.320452E+00 ... 3.933752E-11 1.088379E-10 1.552594E-08
1 20 EP 14 -1.906119E-01 ... -1.022044E-03 -7.600151E-01 -3.446967E-01

and nally closethe gap correspnding to o= PAR(23)
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BR PT
23
30
51
58
60

Y

TY LAB

uz

uz
uz
EP

15
16
17
18
19

rn(c='kdv.6',h="kdv.6 ', s='5")

PAR(1)

2.320450E+00 ...
2.320380E+00 ...
2.336952E+00 ...
3.080847E+00 ...
3.134237E+00 ...

sv('6")

PAR(2) PAR(22) PAR(23)
2.198310E-12 1.487623E+01-4.392295E-10
-1.004669E-09 1.027163E+01-5.060989E-07
2.374866E-07 3.482932E+00 1.195914E-04
2.673602E-12 3.500044E+00-1.934478E-10
-5.614124E-07 3.778288E+00-3.398845E-04

so that a three-homalinic orbit is found. Here the zero at label 17 is the one we are looking
for. Label 15 is a false positive since T,= PAR(22) s still too high. At label 18, a=PAR(1) has
changedconsiderablyto the extend that « > 3 and a second3-homcclinic orbit is found. Note
that for all zerosof PAR(23) ¢, the parameter A= PAR(2)is alsozero (within AUTO accuracy),
which it hasto beto remainwithin the original Hamiltonian system. Setting ISTART=1a normal
\trivial" cortinuation (with NMX=31of the orbit correspndingto label 17 lets HomCont produce

a proper concatenated3-homcclinic orbit:

BR PT TYLAB

rn(c='kdv.7',h='kdv.7 ', s='6")

PAR(1)

sv('7)

L2-NORM .. PAR(2)

1 2 EP 20 2.336952E+00 7.505830E+00... 2.374866E-07

This 3-homatlinic orbit is depictedin Figure 22.6.

Figure 22.6: A 3-homcclinic orbit in a 5th-order Hamiltonian Korteweg-DeVries model.
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App endix A
Running AUTO using Command Mo de.

AUTO can be run with the interface described in Chapter 4 or with the commandsdescriked
belon. The AUTO aliasesmust have beenactivated; seeSection1.2; and an equations- le xxx.c
and a correspnding constarts- le c.xxx(seeSection3.1) must be in the current userdirectory.
Do not run AUTO in the directory auto/2000 or in any of its subdirectories.

A.0.1 Basic commands.

@r: Type @rxxx torun AUTO . Restart data, if needed,are expectedin s.xxx and AUTO -
constarts in c.xxx This is the simplestway to run AUTO .

- Type @rxxx yyy to run AUTO with equations-le xxx.c and restart data-le s.yyy
AUTO -constarts must be in ¢c.xxx

- Type @rxxx yyy zzz to run AUTO with equations- le xxx.G restart data- le s.yyyand
constarts- le c.zzz

@R: The command @Rxxx is equivalent to the command @r xxx above.

- Type @Rxxx i to run AUTO with equations-le xxx.G constaris-le c.xxx.iand, if
needed restart data- le s.xxx

- Type @Rxxx i yyy to run AUTO with equations-le xxx.G constarts-le c.xxx.iand
restart data- le s.yyy

@sv : Type @svxxx to save the output-les fort.7, fort.8, fort.9, as b.xxx s.xxx d.xxx
respectively. Existing les by thesenameswill be deleted.

@ap : Type @apxxx to append the output- les fort.7, fort.8, fort.9, to existing data- les
b.xxx s.xx% d.xxx resp.

- Type @apxxx yyy to append b.xxx s.xxx d.xxx to b.yyy s.yyy d.yyy resp.

196



A.0.2 Plotting commands.

@p : Type @pxxx to run the graphicsprogram PLAUT (SeeChapter B) for the graphical
inspection of the data- les b.xxxand s.xxx

- Type @po run the graphicsprogram PLAUT for the graphical inspection of the output-
les fort.7 and fort.8.

@ps: Type @psfig.x to corvert a saved PLAUT gure ¢.x from compactPLOT10 format
to PostScriptformat. The converted le iscalled g.x.ps. The original le is left unchanged.

@pr : Type @prfig.x to corvert asaved PLAUT gure ¢.x from compactPLOT10 format
to PostScript format and sendit to the printer. The corverted le is called g.x.ps. The
original le is left unchanged.

A.0.3 File-manipulation.

@cp : Type @cpxxx yyy to copy the data- les b.xxx s.xxx d.xxx c.Xxxto b.yyy, s.yyy
d.yyy c.yyy respectively.

@mv: Type @mwxx yyy to move the data- les b.xxx s.xxx d.xxx c.xxx to b.yyy S.yyy
d.yyy c.yyy respectively.

@df : Type @dfto deletethe output- les fort.7, fort.8, fort.9.

@cl : Type @clto cleanthe currert directory. This commandwill deleteall les of the form
fort.*, *.0, and *.exe

@dl : Type @dlxxx to deletethe data- les b.xxx s.xxx d.xxx

A.0.4 Diagnostics.

@lp : Type @Ipto list the value of the \limit point function" in the output- le fort.9. This
function vanishesat a limit point (fold).

- Type @Ip xxx to list the value of the \limit point function" in the data-le d.xxx This
function vanishesat a limit point (fold).

@bp: Type @bpo list the value of the \branch-point function” in the output- le fort.9. This
function vanishesat a branch point.

- Type @bpxxx to list the value of the \branch-point function" in the data- le d.xxx This
function vanishesat a branch point.

@hb: Type @hho list the value of the \Hopf function” in the output- le fort.9. This function
vanishesat a Hopf bifurcation point.

- Type @hbxxx to list the value of the \Hopf function” in the data- le d.xxx This function
vanishesat a Hopf bifurcation point.
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@sp: Type @spo list the value of the \secondary-periodic bifurcation function" in the output-
le fort.9. This function vanishesat period-doubling and torus bifurcations.

- Type @spxxx to list the value of the \secondary-periodic bifurcation function" in the
data- le d.xxx This function vanishesat period-doubling and torus bifurcations.

@it : Type @it to list the number of Newton iterations per cortinuation stepin fort.9.

- Type @it xxx to list the number of Newton iterations per cortinuation stepin d.xxx
@st : Type @stto list the cortinuation step sizefor ead cortinuation stepin fort.9.

- Type @st xxx to list the cortinuation step sizefor ead cortinuation stepin d.xxx
@ev : Type @emo list the eigervaluesof the Jacobianin fort.9. (Algebraic problems.)

- Type @evxxx to list the eigervaluesof the Jacobianin d.xxx (Algebraic problems.)
@fl : Type @flto list the Floquet multipliers in the output- le fort.9. (Di eren tial equations.)

- Type @fl xxx to list the Floquet multipliers in the data- le d.xxx (Di eren tial equations.)

A.0.5 File-editing.

@e7 : To usethe vi editor to edit the output- le fort.7.
@e8 : To usethe vi editor to edit the output- le fort.8.
@e9 : To usethe vi editor to edit the output- le fort.9.

@j7 : Tousethe SGI jot editor to edit the output- le fort.7.
@j8 : To usethe SGI jot editor to edit the output- le fort.8.

@j9 : To usethe SGI jot editor to edit the output-le fort.9.

A.0.6 File-maintenance.

@Ilb : Type @Ibto run an interactive utilit y program for listing, deleting and relabeling
solutionsin the output- les fort.7 and fort.8. The original les are backedup as fort.7
and fort.8.

- Type @Ib xxx to list, deleteand relabel solutionsin the data- les b.xxxand s.xxx The
original les are badkedup as b.xxxand s.xxx

- Type @Ilb xxx yyy to list, deleteand relabel solutionsin the data- les b.xxxand s.xxx
The modi ed les arewritten as b.yyyand s.yyy
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@fc : Type @fc xxx to convert a user-supplieddata le xxx.datto AUTO format. The
corverted le is called s.dat The original le is left unchanged. AUTO automatically sets
the period in PAR(11). Other parametervaluesmust be setin stpnt (When necessary
PAR(11) may alsoberede ned there.) The constaris- le le c.xxxmust be presern, asthe
AUTO -constarts NTST and NCOL (Sections5.3.1and 5.3.2) are usedto de ne the new
mesh. For examplesof usingthe @fccommandseedemos lor and pen

@94t097 : Type @94t097xxx to convert anold AUTO 94 data- le s.xxxto newAUTO 97 format.
The original le is badked up as s.xxx This corversionis only necessaryfor les from
early versionsof AUTO 94.

A.0.7 HomCont commands.

@h : Use @hinstead of @rwhen using HomCort, i.e., when IPS=9 (see Chapter 15).
Type @hxxx to run AUTO /HomCont. Restart data, if needed,are expectedin S.xxx
AUTO -constarts in  c.xxxand HomCort-constarts in  h.xxx

- Type @hxxx yyy to run AUTO /HomCont with equations- le xxx.cand restart data- le
s.yyy AUTO -constarts must be in c.xxxand HomCort-constarns in h.xxx

- Type @hxxx yyy zzz to run AUTO /HomCont with equations- le xxx.G restart data- le
s.yyyand constaris- les c.zzzand h.zzz

@H: The command @Hxxx is equivalent to the command @hxxx above.

- Type @Hxxx i in orderto run AUTO /HomCont with equations- le xxx.cand constarts-
les c.xxx.iand h.xxx.iand, if needed restart data- le s.xxx

- Type @Hxxx i yyy to run AUTO /HomCont with equations-le XxxX.G constaris- les
c.xxx.land h.xxx.i and restart data- le s.yyy

A.0.8 Copying a demo.

@dm: Type @dnmxxx to copy all les from auto/2000/demos/xxxto the current userdirectory.
Here xxx denotesa demo name; e.g., abc. Note that the @dncommand also copiesa
Make le to the current userdirectory. To avoid the overwriting of existing les, always run
demosin a cleanwork directory.

A.0.9 Pendula animation.

@pn: Type @pnxxx to run the pendula animation program with data-le s.xxx (On SGI
madine only; seedemo penin Section9.10and the le auto/2000/pendula/README)

A.0.10 Viewing the manual.

@mn: Use Ghostviewto view the PostScript version of this manual.
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App endix B
The Graphics Program PLA UT.

PLAUT can be usedto extract graphical information from the AUTO output-les fort.7 and
fort.8, or from the correspnding data- les b.xxxand s.xxx To invoke PLAUT, usethe the @p
commandde ned in SectionA. The PLAUT window (a Tektronix window) will appear, in which
PLAUT commandscan be entered. FIXME: This is not correct anymore For examplesof using
PLAUT seethe tutorial demo ab, in particular, Sections7.7 and 7.10. Seealsodemo pp2in
Section9.3.

B.1 Basic PLAUT-Commands.

The principal PLAUT-commandsare

bd0 : This commandis useful for an initial overview of the bifurcation diagram as stored in
fort.7. If you have not previously selectedone of the default options d0, d1, d2, d3, or dj
descrilked below then you will be asked whether you want solution labels, grid lines, titles,
or labeled axes.

bd : This commandis the sameasthe bd0 command,exceptthat youwill be askedto erter the
minimum and the maximum of the horizontal and vertical axes. This is useful for blowing
up portions of a previously displayed bifurcation diagram.

ax : With the az commandyou can selectany pair of columnsof real numbers from fort.7
as horizorntal and vertical axis in the bifurcation diagram. (The default is columns1 and
2). To determine what these columnsrepresem, one can look at the screenouput of the
correspnding AUTO run, or one can inspect the column headingsin fort.7.

2d : Upon ertering the 2d command,the labels of all solutionsstoredin fort.8 will be listed
and you can selectone or more of thesefor display. The number of solution componerts is
also listed and you will be prompted to selecttwo of theseas horizontal and vertical axis
in the display. Note that the rst componert is typically the independen time or space
variable scaledto the interval [0,1].

sav : To save the displayed plot in a le. You will be asked to enter a le name. Eadc plot
must be stored in a separatenew le. The plot is stored in compact PLOT10 format,
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which can be corverted to PostScript format with the AUTO -commands @psand @p;
seeSectionB.4.

cl : To clearthe graphicswindow.

lab : To list the labels of all solutions storedin fort.8. Note that PLAUT requiresall labels
to be distinct. In caseof multiple labels you can usethe AUTO command @Ib to relabel
solutionsin fort.7 and fort.8.

end : To endexecutionof PLAUT.

B.2 Default Options.

After ertering the commandsbdo, bd, or 2d, you will be asked whether you want solution labels,
grid lines, titles, or axeslabels. For quick plotting it is corveniert to bypassthese selections.
This can be done by the default commandsdo, di, d2, d3, or dj belon. Thesecan be enered
as a singlecommandor they can be ertered as pre xes in the bd0 and bd commands. Thus, for
example,one can enter the command d1bd0.

dO0 : Usesolid curves,shawving solution labels and symbols.

dl : Usesolid curves, except use dashedcurves for unstable solutions and for solutions of
unknown stability. Shav solution labels and symbols.

d2 : As di, but with grid lines.

d3 : As d1, exceptfor periodic solutionsusesolid circlesif stable,and open circlesif unstable
or if the stability is unknown.

d4 : Usesolid curves,without labelsand symbols.

If no default option do, d1, d2, d3, or d4 hasbeenselectedor if you want to override a default
feature, then the the following commandscan be used. These can be ertered as individual
commandsor as pre xes. For example,one can erter the command sydpbd0.

sy : Usesymbols for special solution points, for example,open square= branch point, solid
square= Hopf bifurcation.

dp : \Dieren tial Plot", i.e., shav stability of the solutions. Solid curves represem stable
solutions. Dashed curves are used for unstable solutions and for solutions of unknown
stability. For periodic solutions use solid/open circlesto indicate stability/instabilit y (or
unknown stability).

st : Setup titles and axeslabels.

nu : Normal usage(reset special options).
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B.3 Other PLAUT-Commands.
The full PLAUT program has se\eral other capabilities, for example,

scr : To changethe diagram size.

rss : To changethe sizeof special solution point symbols.

B.4 Printing PLAUT Files.

@ps : Type @ps fig.1 to corvert asaved PLAUT le ¢.1 to PostScript format in g.1.ps.

@pr : Type @pr fig.1 to corvert a PLAUT le g.1 to PostScript format and to print the
resulting le g.1.ps.
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App endix C

Graphical User Interface.

C.1 General Overview.

Please note: asof July 30,2002the GUI is being updated, sothe documertation is this chapter
is not being actively maintained. The old GUI is provided with this releaseof AUTO , but it is
unsupported and may not be included in future releases.

The AUTO 97 graphical userinterface (GUI) is a tool for creating and editing equations- les
and constarts- les; seeSection 3.1 for a description of these les. The GUI can also be usedto
run AUTO andto manipulate and plot output- les and data- les; seeSectionA for correspnding
commands.To usethe GUI for anewequation,changeto an empty work directory. For anexisting
equations- le, changeto its directory. ( Do not activate the GUI in the directory auto/2000 or
in any of its subdirectories.) Then type

@ auto,

or its abbreviation @ a. Here we assumethat the AUTO aliaseshave been activated; see
Section1.2. The GUI includesa window for editing the equations- le, and four groupsof buttons,
namely, the MenuBar at the top of the GUI, the Define Constants-buttons at the certer-left,
the Load Constants-buttons at the lower left, and the Stop- and Exit -buttons.

Note : Most GUI buttons are activated by point-and-click action with the left mouse
button. If a beepsoundresultsthen the right mousebutton must be used.

C.1.1 The Menu bar.

It contains the main buttons for running AUTO and for manipulating the equations- le, the
constarns- le, the output- les, andthe data- les. In atypical application, thesebuttons are used
from left to right. First the Equations are de ned and, if necessary Edited, before being
Written . Then the AUTO -constarts are Defined. This is followed by the actual Run of
AUTO . The resulting output- les can be Saved as data- les, or they can be Appendedto
existing data- les. Data- les canbe Plotted with the graphicsprogram PLAUT, and various
le operations can be done with the Files -button. Auxiliary functions are provided by the
Demos; Misc-, and Help-buttons. The Menu Bar buttons are described in more detail in
SectionC.2.
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C.1.2 The Define-Constants-buttons.

Thesehave the samefunction asthe Define -button on the Menu Bar, namelyto setand change
AUTO -constarts. Howewer, for the Define -button all constarts appear in one panel, while for
the De ne Constarts-buttons they are grouped by function, asin Chapter 5, namely Problem
de nition constarts, Discretization constarts, convergence Tolerances, cortinuation Step
Size, diagram Limits , designationof free Parameters, constarts de ning the Computation,
and constarts that specify Output options.

C.1.3 The Load-Constants-buttons.

The Previous -button can be usedto load an existing AUTO -constartis le. Sud a le is also
loaded, if it exists, by the Equations -button on the MenuBar. The Default -button can be
usedto load default valuesof all AUTO -constarts. Custom editing is normally necessary

C.1.4 The Stop- and Exit-buttons.

The Stop-button can be usedto abort executionof an AUTO -run. This should be done only
in exceptional circumstances. Output- les, if any, will normally be incomplete and should be
deleted. Usethe Exit -button to end a session.

C.2 The Menu Bar.

C.2.1 Equations-button.

This pull-down meru cortains the items Old, to load an existing equations- le, Newto load a
model equations- le, and Dempto load a selecteddemoequations- le. Equations- le namesare
of the form xxx.c The correspnding constaris- le c.xxxis alsoloadedif it exists. The equation
name xxxremainsactive until rede ned.

C.2.2 Edit-button.

This pull-down meru cortains the items Cut and Copy to be performedon text in the GUI
window highlighted by click-and-drag action of the mouse,and the item Paste, which places
editor bu er text at the location of the cursor.

C.2.3 Write-button.

This pull-down meru cortains the item Write , to write the loaded les xxx.cand c.xxx by the
active equationname,and the item Write Asto write these les by a selectednew name,which
then becomeghe active name.
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C.2.4 Define-button.

Clicking this button will display the full AUTO -constarts panel. Most of its text elds can be
edited, but somehave restricted input valuesthat can be selectedwith the right mousebutton.
Sometext elds will display a subpanelfor ertering data. To actually apply changesmadein the
panel, click the OK-or Apply-button at the bottom of the panel.

C.2.5 Run-button.

Clicking this button will write the constarts- le c.xxxand run AUTO . If the equations- le has
beenedited then it should rst be rewritten with the Write -button.

C.2.6 Save-button.

This pull-down meru cortains the item Save to save the output- les fort.7, fort.8, fort.9, as
b.xxx s.xx% d.xxx respectively. Here xxxis the active equation name. It alsocortains the item
Save As, to save the output- les under another name. Existing data- les with the selectedname,
if any, will be overwritten.

C.2.7 Append-button.

This pull-down meru contains the item Append to appendthe output- les fort.7, fort.8, fort.9,
to existing data- les b.xxx s.xxx d.xxx respectively. Here xxxis the active equation name. It
alsocontains the item Append To, to append the output- les to other existing data- les.

C.2.8 Plot-button.

This pull-down meru cortains the items Plot, to run the plotting program PLAUT for the
data- les b.xxxand s.xxx where xxxis the active equation name, and the item Nameto run
PLAUT with other data- les.

C.2.9 Files-button.

This pull-down meru cortains the item Restart , to rede ne the restart le. Normally, when
restarting from a previously computedsolution, the restart data is expectedin the le s.xxx where
xxx is the active equation name. Usethe Restart -button to read the restart data from another
data- le in the immediately following run. The pull-down meru alsocontains the following items :

Copy to copy b.xxx s.xxx d.xxx C.Xxx to b.yyy s.yyy d.yyy c.yyy resp.;

Append to appenddata-les b.xxx s.xxx d.xxx to b.yyy s.yyy d.yyy resp.;

Move to move b.xxx S.xxx d.xxx c.xxx to b.yyy s.yyy d.yyy c.yyy resp.;

Delete, to deletedata-les b.xxx s.xxx d.xxx

Clean, to deleteall les of the form fort.*, *.0, and *.exe
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C.2.10 Demos-button.

This pulldown meru cortains the items Select , to view and run a selectedAUTO demoin the
demodirectory, and Reset, to restorethe demodirectory to its original state. Note that demo
les can be copiedto the userwork directory with the Equations/Demao-button.

C.2.11 Misc.-button.

This pulldown meru cortains the items Tek Windowand VT102Windowfor openingwindows;
Emacsand Xedit, for editing les, and Print , for printing the active equations- le xxx.c
C.2.12 Help-button.

This pulldown meru cortains the items AUTO-constants , for help on AUTO -constarts, and
User Manual for viewing the usermanual; i.e., this documert.

C.3 Using the GUI.

AUTO -commandsare described in SectionA and illustrated in the demos.In Table C.1 we list
the main AUTO -commandstogether with the correspnding GUI button.

@r Run
@sv | Save
@ap | Append
@p Plot

@cp | Files/Copy

@mv| Files/Move

@cl Files/Clean

@dl Files/Delete
@dm| Equations/Demo

Table C.1: CommandMode - GUI correspndences.

The AUTO -command @rxxx yyy is givenin the GUI asfollows : click Files/Restart
and enter yyy asdata. Then click Run As noted in SectionA, this will run AUTO with the
currernt equations- le xxx.cand the current constarts- le c.xxx while expecting restart data in
s.yyy The AUTO -command @apxxx yyy is givenin the GUI by clicking Files/Append .

C.4 Customizing the GUI.

C4.1 Print-button.

The Misc/Print -button on the Menu Bar can be customizedby editing the le GuiConsts.hn
directory auto/2000/include
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C.4.2 GUI colors.

GUI colors can be customizedby creating an X resource le. Two model les can be found in
directory auto/2000/gui, namely, Xdefaults.1land Xdefaults.2 To becomee ectiv e, edit one of
these, if desired,and copy it to .Xdefaultsin your home directory. Color namescan often be
found in the system le /usr/lib/X11/rgb.txt .

C.4.3 On-line help.

The le auto/2000/include/GuiGlobal.lcortains on-line help on AUTO -constarts and demos.
The text can be updated, subject to a modi able maximum length. On SGI madines this is
10240bytes, which can be increased,for example,to 20480bytes, by replacing the line CC=
cc -Wf, -XNI10240 -Oin auto/2000/gui/Make le by CC= cc -Wf, -XNI20480 -O On other
madines, the maximum messagdength is the systemde ned maximum string literal length.
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