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The phenomenon of super-resolution in time-reversal acoustics is analyzed theoretically and with
numerical simulations. A signal that is recorded and then retransmitted by an array of transducers,
propagates back though the medium, and refocuses approximately on the source that emitted it. In
a homogeneous medium, the refocusing resolution of the time-reversed signal is limited by
diffraction. When the medium has random inhomogeneities the resolution of the refocused signal
can in some circumstances beat the diffraction limit. This is super-resolution. A theoretical treatment
of this phenomenon is given, and numerical simulations which confirm the theory are presented.
© 2002 Acoustical Society of America.@DOI: 10.1121/1.1421342#
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I. INTRODUCTION

In time-reversal acoustics a signal is recorded by an
ray of transducers, time-reversed, and then retransmitted
the medium. The retransmitted signal propagates b
through the same medium and refocuses approximately
the source. The refocusing is approximate because of
finite size of the array of transducers~receivers and transmit
ters!, which is called atime-reversal mirror~TRM; see Fig.
1!. The possibility of refocusing by time reversal has ma
important applications in medicine, geophysics, nondest
tive testing, underwater acoustics, wireless communicatio
etc., and has been studied in a variety of settings~Fink, 1997,
1999; Hodgkisset al., 1999; Dowling and Jackson, 1990!. In
the frequency domain, time reversal is equivalent to ph
conjugation which has been studied extensively in op
~Porter, 1989!.

Time-reversed signals propagate backwards through
time-independent medium and go through all the multi
scattering, reflections, and refraction that they underwen
the forward direction, which is why refocusing occurs. Ho
ever, the size of the TRM is often small compared to
propagation distance, that is, the aperture of the time-reve
mirror is small, and only a small part of the advancing wa
is captured and time reversed. In homogeneous media
spatial resolution of the time-reversed signals is limited
diffraction and is inversely proportional to the aperture s
and proportional to the wavelength times the propaga
distance. In the notation of Fig. 1, the time-reversed a
backpropagated signal due to a point source will focus i
region around the source with spatial width of orderlL/a.
Here,l is the wavelength of the carrier signal for the puls
L is the distance from the source to the TRM, anda is the
size of the TRM.

In underwater acoustics, typical parameters are: pro
gation speedc051.5 km/s, wavelengthl51 m, propagation

a!Electronic mail: blomgren@math.stanford.edu
b!Electronic mail: papanico@math.stanford.edu
c!Electronic mail: zhao@math.uci.edu
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distanceL51 – 50 km, TRM sizea550– 100 m. In nonde-
structive testing with ultrasound these lengths are scaled
factor of 1023, so that typical wavelengths arel51 mm.

If the medium is randomly inhomogeneous the focus
resolution of the backpropagated signal can be better than
resolution in the homogeneous case. This is referred to
super-resolution. Roughly speaking, the random inhomog
neities produce multipathing and the TRM appears to h
an aperture that is larger than its physical size, aneffective
aperture ae.a. This means that the recompressed pulse
narrower than in the homogeneous medium and we h
super-resolution with a spatial scale of orderlL/ae . This
phenomenon was observed in underwater acoustics ex
ments~Dowling and Jackson, 1990; Hodgkisset al., 1999;
Kupermanet al., 1997! as well as in the ultrasound regim
~Derodeet al., 1995; Fink, 1997, 1999!.

An attempt at a theoretical explanation of supe
resolution by multipathing is given in Dowling and Jacks
~1992!. This, however, requiresensemble averagesin ran-
dom media and does not account for the remarkable stab
of the compressed pulse, without any averaging, as see
the actual experiments. In Fig. 2, numerical computatio
with time-harmonic signals illustrate the lack of any reso
tion realization-by-realization, while on average the reso
tion is remarkable. For time-harmonic signals, time rever
is the same as phase conjugation on the TRM~usually called
the phase conjugation mirror, in this setting!.

The key to the statistical stability of time-reversed s
nals is their frequency spread. This stabilization of pulses
been seen in other contexts in stochastic equations and
dom media~Solna and Papanicolaou, 2000!, but not in con-
nection with time reversal, as it is presented and analy
here.

In this paper, we explore analytically and numerica
the phenomenon of super-resolution in time reversal in
regime of parameters where the effects of the random
dium are fully developed. This regime can be describ
roughly as follows. The propagation distance,L, the carrier
wavelength,l, the aperture of the TRM,a, the correlation
111(1)/230/19/$19.00 © 2002 Acoustical Society of America
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length of the medium fluctuations,l, and the variance of the
sound-speed fluctuations,^m2&, are scaled by a single pa
rametere5l/L, which we assume to be small. We assu
also thatl;l and that̂ m2&;e. In this regime

~i! The propagation distance is much larger than the c
relation length of the inhomogeneities, which is lar
or comparable to the wavelength.

~ii ! The aperture of the TRM is relatively small so that t
effect of the random medium and multipathing can
felt.

~iii ! The random fluctuations of the propagation speed
weak so that waves are scattered mostly in the
ward direction.

Many situations in underwater acoustics and in ultraso
propagation fall into this regime. The objectives of this pap
are to

~i! Systematically calculate statistics of the backpro
gated phase-conjugated field using transport
Wigner equations in the frequency domain.

FIG. 1. Setting for time-reversal acoustics. A point source emits a w
which is received on a screen of widtha—the time-reversal mirror
~TRM!— at a distanceL from the source. The domain of numerical solutio
of the ~parabolic! wave equation is shown with a dotted line, and DTB
stands fordiscrete transparent boundary conditions.
J. Acoust. Soc. Am., Vol. 111, No. 1, Pt. 1, Jan. 2002
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~ii ! Derive aneffective apertureformula for a TRM in
random media. In particular, we show that the effe
tive aperture for a finite aperture or Gaussian TRM

ae~L!5aA11
L3g

a2 ,

whereg is a constant with dimensions of reciproc
length that depends on the statistics of the fluctuati
of the propagation speed~see Sec. VII for details!. It
is assumed that the effective aperture is still sm
compared to the propagation distance,ae(L)!L.

~iii ! Show that for a pulse in the time domain, supe
resolution is linked to theeffective aperture, ae , of
the TRM, and that self-averaging due to the frequen
spread of the signal makes super-resolution in ti
reversal statistically stable.

In Sec. II, we set up equations for backpropagated fie
and quantities of interest in the frequency domain. In S
III, we introduce an invariant embedding approach in ord
to derive transport- and Winger equations for the tim
reversed signal originating from a point source. Then, in S
IV, the diffraction limit for a homogeneous medium is calc
lated, in both the frequency and time domain for Gauss
and finite aperture TRMs. Scaling for the Wigner equati
for the transport limit, from which the effective aperture w
be derived, is introduced in Sec. V. Pulse stabilization in
time domain and the beam approximation are discusse
Secs. VI and VII, respectively. Details of the numeric
implementation and numerical results are shown in Sec. V
The concept of dynamic TRM placement is introduced
Sec. IX and is explored with numerical simulations. Final
in Sec. X we consider time reversal in a waveguide and sh
the results of several numerical simulations without discu
ing here the theory that explains them. In the Appendix
explain carefully the various scaling limits which lead
super-resolution and statistical stability in the time domain
described here.

e,
medium
FIG. 2. Time-harmonic waves in random media. Propagation distance 1000 m, TRM width 50 m, width of numerical domain 150 m, width of random
112.5 m, contrast65%, 428 realizations.~a! Amplitude of the mean: Homogeneous~light! and average over random realizations~dark! case.~b! Relative
variance,.O~1! except for a very small interval.~c! Individual realizations that show super-resolution~high! as well as no resolution at all~low!.
231Blomgren et al.: Time-reversal acoustics
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II. BACKPROPAGATED FIELDS

The time-reversed signal is synthesized from tim
harmonic waves by the inverse Fourier transform. We s
with the Helmholtz equation for time-harmonic wav
u(x,y,z)e2 ivt

uxx1uyy1uzz1k2n2~x,y,z!u50. ~1!

Here,k5v/c0 is the wave number,c0 is a reference speed
c(x,y,z) is the propagation speed andn(x,y,z)
5c0 /@c(x,y,z)# is the index of refraction. When the time
reversal mirror has small aperture~beam geometry! and the
fluctuations in the propagation speed are weak, we can
the parabolic or paraxial approximation~see Tappert, 1977!.
We let u5eikzc(x,y,z) and ignore backscattering in th
Helmholtz equation~the termczz) to obtain a parabolic ini-
tial value problem for the wave amplitudec, in which the
direction of propagationz plays the role of time~see Bam-
bergeret al., 1988!

2ikcz1D'c1k2~n221!c50,

cuz505c0~x;k!, x5~x,y!,

where D'is the transverse Laplacian ~2!

We note that the parabolic approximation is not valid
the immediate neighborhood of a point source. The
Helmholtz equation must be solved near the source and
matched with the parabolic equation further away from
We will use a Gaussian beam in the frequency domain a
initial wave amplitudec0 , that is, a Gaussian in the tran
verse space coordinates. We take the pulse to be Gauss
time as well, which means a Gaussian in the wave numbk
or frequencyv. By Fourier synthesis, the wave function
the time domain is given by

C~ t,x,y,z!5E eiv~z/c02t !c~x,y,z;v/c0!dv. ~3!

We will also use a point source and consider it as the limi
a Gaussian in space whose width is very small or zero.

The Green’s functionG(z,z0 ;x,j;k) with a point source
at (z0 ,j) satisfies

2ikGz1DxG1k2m~x,z!G50,

G~z0 ,z0 ;x,j;k!5d~x2j!.

Here, z.z0 , m~x,z!5n2~x,z!21, ~4!

By reciprocityG(z,z0 ;x,j;k)5G(z0 ,z;j,x;k). If the initial
source distribution atz050 is c0(h;k) then the wave field a
z5L is

c~y,L;k!5E G~L,0;y,h;k!c0~h;k!dh. ~5!

In time-reversal problems it is convenient to introdu
the tensor product of two Green’s functions

G~L,x,y;j,h;k!5G~L,0;x,j;k!G~L,0;y,h;k!,
~6!

G~0,x,y;j,h;k!5d~x2j!d~y2h!,

becauseG(L,y,y;j,h;k) describes the response, at t
source plane, of a point source ath, whose signal is recorde
232 J. Acoust. Soc. Am., Vol. 111, No. 1, Pt. 1, Jan. 2002
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on the TRM aty, phase-conjugated, backpropagated and
served atj. In the following section we derive an equatio
for G, which is a form of invariant embedding.

Using G(L,y,y;j,h;k), the time-harmonic, phase
conjugated, and backpropagated field at the source planz
50, can be written as

cB~j,L;k!5E G~L,0;y,j;k!c~y,L;k!xA~y!dy

5E E xA~y!c0~h;k!G~L,0;y,j;k!

3G~L,0;y,h;k!dh dy

5E E xA~y!c0~h;k!G~L,y,y;j,h;k!dh dy.

~7!

Here,xA(y) is the aperture function for the TRM occupyin
the regionA and is equal to 1 ifyPA, and 0 otherwise. We
use the same notation for other aperture functions as w
The backpropagated, time-reversed field is obtained by F
rier synthesis

CB~j,L,t !5E cB~j,L;v/c0!e2 i tv dv. ~8!

Here,t is relative time, on the scale of the pulse width. Th
travel time to and from the TRM has been eliminated.

III. INVARIANT EMBEDDING AND THE WIGNER
EQUATION

From the equation for the Green’s functio
G(z,z0 ;x,j;k), we can derive an equation fo
G(L,x,y;j,h;k)

2ik
]G

]L
1~Dx2Dy!G1k2~m~x,L !2m~y,L !!G50

~9!
G~0,x,y;j,h;k!5d~x2j!d~y2h!.

Here,Dx andDy are the Laplacians in the transverse varia
x andy, respectively. We introduce the following change
transverse variables:

X5
x1y

2
, x5X2

Y

2

Y5y2x, y5X1
Y

2
~10!

Dx2Dy5~¹x2¹y!~¹x1¹y!522¹X¹Y .

This transforms Eq.~9! into

2ik
]G

]L
22¹X¹YG1k2S mS X2

Y

2
,L D2mS X1

Y

2
,L D DG

50,
~11!

G~0,X,Y;j,h;k!5
def

dS X2
Y

2
2j D dS X1

Y

2
2h D .

With the Fourier transform defined by
Blomgren et al.: Time-reversal acoustics
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f̂ ~p!5
1

~2p!d E
Rd

eip•xf ~x!dx,

~12!

f ~x!5E
Rd

e2 ip•x f̂ ~p!dp,

and the scaling ruled(x)5uaudd(ax) for d functions ind
dimensions, withd51,2, here we introduce the Wigner di
tribution

W~L,X,P;j,h;k!

5
1

~2p!d E eiP•YG~L,X,Y;j,h;k!dY. ~13!

It satisfies the Wigner equation~Fourier transform inY of the
G equation!

k
]W

]L
1P•¹XW

5
ik2

2 E e2 iQ•Xm̂~Q,L !

3FWS L,X,P1
Q

2 D2WS L,X,P2
Q

2 D GdQ, ~14!

with the initial condition

W~0,X,P;j,h;k!5
1

~2p!d e2 iP•~j2h!d~X2@j1h#/2!.

~15!

Here, m̂(P,L) is the Fourier transform ofm(x,L) in the
transverse variablex. We can recoverG from W by a Fourier
transform, and in particular

G~L,y,y;j,h;k!5E W~L,y,P;j,h!dP. ~16!

Thus, the phase-conjugated, backpropagated time harm
field is given by

cB~j,L;k!5E E c0~h;k!xA~y!

3S E W~L,y,P;j,h,k!dPDdy dh, ~17!

in terms of the solutionW of the Wigner equation~14!.

IV. DETERMINISTIC DIFFRACTION LIMIT

In this section we will use the expression~17! for the
backpropagated field and the invariant embedding
Wigner equations from Sec. III to calculate the determinis
diffraction limit for a time-dependent pulse, emanating fro
a point source in space.

For a homogeneous medium, withm[0, the solution to
the Wigner equation~14! with the initial condition~15! is

W~L,X,P;j,h!5
1

~2p!d e2 iP•~j2h!

3d~X2@LP/k#2@j1h#/2!. ~18!

Now, Eq. ~16! gives
J. Acoust. Soc. Am., Vol. 111, No. 1, Pt. 1, Jan. 2002
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G~L,y,y;j,h;k!5E W~L,y,P;j,h!dP

5
1

~2p!d S k

L D d

e2 i ~k/L !~y2@j1h#/2!•~j2h!.

~19!

From this we get the following expression for the phas
conjugated and backpropagated time harmonic field:

cB~j,L;k!

5E E c0~h,k!xA~y!
1

~2p!d

3S k

L D d

e2 i ~k/L !~y2@j1h#/2!•~j2h!dy dh

5S k

L D dE x̂AS k

L
~h2j! Dc0~h,k!ei @k~j22h2!/2L#dh

5S k

L D d

ei ~kj2/2L !E x̂AS k

L
~h2j! De2 i ~kh2/2L !c0~h,k!dh.

~20!

Here, x̂A is the Fourier transform of the aperture functio
xA . If the source is ad function in space~point source!,
c0(h)5d(h), then the expression forcB simplifies to

cB~j,L;k!5S k

L D d

eikj2/2Lx̂AS 2kj

L D . ~21!

We will now use this result for two different types o
time-reversal mirrors. First, we consider a finite apertu
TRM, from which we have edge diffraction effects. Then, w
consider a TRM with a Gaussian aperture function. We co
ment briefly on the resolution limits in time reversal for the
two kinds of TRMs.

A. Finite aperture TRM

For simplicity we consider only one transverse dime
sion,d51. Let xA(y) be the indicator function of a TRM o
size a centered aty50. The Fourier transform ofxA(y) is
x̂A(P)5sin (Pa/2)/pP. Plugging this into Eq.~21! gives

cB~j,L;k!5
1

pj
sinS kja

2L Deikj2/2L. ~22!

The diffraction-limited resolution can be measured by t
distancejF from the origin to the firstFresnel Zone, that is,
the first zero of the phase-conjugated backpropagated fie

jF5
2pL

ka
5

lL

a
. ~23!

If the pulse is a point source in space and a Gaussian in
time domain with carrier frequencyv0 , that is

C0~h,t !5d~h!
1

A2ps t
2

e2~ t2/2s t
2
!e2 iv0t,

~24!

c0~h,v!5
1

2p
d~h!e2@~v2v0!2s t

2/2#,
233Blomgren et al.: Time-reversal acoustics
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FIG. 3. The left figure shows the spatial diffraction pattern of the amplitude of~25! at timet50. The right figure is a space-time contour plot of the amplitu
of ~25! and shows the parabolic shift in arrival time. Here, the pulse width iss t51.33 ms, the TRM widtha550 m, the propagation speed isc0

51500 m/s, the propagation distance isL51000 m, and the period of the carrier is 0.22 ms at 4.5 KHz.
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then thetime-reversedand backpropagated signal in time
the source plane is

CB~j,L,t !

5
1

2p E cBS j,L,
v

c0
De2@~v2v0!2s t

2
#/2e2 ivtdv

5E 1

~2p!2i j
~e~ ivja/2c0L !2e2~ ivja/2c0L !!

3e~ ivj2/2c0L !e2@~v2v0!2s t
2/2#e2 ivt dv

5
1

~2p!3/2i js t
e2 iv0~ t2~j2/2c0L !!

3$e~ iv0ja/2c0L !e2@~ t2j2/2c0L !2ja/2c0L#2/2s t
2

2e2 iv0ja/2c0Le2@~ t2j2/2c0L !1ja/2c0L#2/2s t
2
%. ~25!

Diffraction from the two edges of the TRM is see
clearly. At the wavefront, wheret5j2/2c0L, we have

CBS j,L,
j2

2c0L D
5

A2p

s t

1

2p2j
sinFv0ja

2c0L Ge2j2/2@2s tc0L/a#2
. ~26!

If the width of the pulse in times t is large compared to
l0 /c0 , the time period, then the variance of the Gaussian
CB is

2s tc0L

a
5

2s tc0

l0

l0L

a
@jF5

l0L

a
. ~27!

Thus, the diffraction limit is determined by the carrier fr
quency. A plot ofCB(j,L,0) is shown in Fig. 3.

B. Gaussian TRM

We now consider the case where the aperture funct
xA , is a normalized, isotropic Gaussian with variancea
234 J. Acoust. Soc. Am., Vol. 111, No. 1, Pt. 1, Jan. 2002
n

n,

xA~y!;
1

~2pa2!d/2 e2uyu2/2a2
. ~28!

In this case, the phase-conjugated backpropagated t
harmonic field from a point source is

cB~j,L;k!5S k

2pL D d

e2a2k2uju2/2L2
eikuju2/2L. ~29!

The resolution of the refocused signal is proportional to
variance of this Gaussian, which islL/a.

If the pulse is a point source in space and a real Gau
ian in time with carrier frequencyv0 , then

C0~h,t !5d~h!
1

A2ps t
2

e2t2/2s t
2
e2 iv0t,

~30!

c0~h,v!5
d~h!

2p
e2@~v2v0!2s t

2/2#.

We use the inverse Fourier transform to synthesize the s
averaging, time-reversed, and backpropagated signal a
source plane

CB~j,L,t !5
1

2p E cBS j,L,
v

c0
De2@~v2v0!2s t

2
#/2e2 ivt dv

5
1

2p E S v

2pc0L D d

e2~a2v2j2/2c0
2L2!eivj2/2c0L

3e2@~v2v0!2s t
2
#/2e2 ivt dv

5
1

2p S i

2pc0L D d

.
dd

dtd
@e2 iv0~ t2@j2/2c0L# !

3e2~a2v0
2j2/2c0

2L2!A2p/@~a2j2/c0
2L2!1s t

2#

3e@ i ~ t2@j2/2c0L# !1@a2v0j2/c0
2L2##2/@~2a2j2/c0

2L2!12s t
2
#.

~31!
Blomgren et al.: Time-reversal acoustics
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Here,j2/2c0L is the a parabolic shift in time of the front an
d51,2. A plot of the absolute value of this function att50 is
shown in Fig. 4. When the aperture is small,a/L!1, and the
time duration of the pulse is large compared to the ti
period of the carrier,s t@l0 /c0 , then the width of the com-
pressed pulse in space is approximatelyl0L/a. With the
parameters as in Fig. 4, this ratio is 6.6 m, which is roug
the width at midlevel of the curve shown.

V. SCALED WIGNER EQUATION AND THE
TRANSPORT LIMIT

In order to study the effect of random inhomogeneit
we introduce a scaling of parameters as follows:~i! The
wavelengthl is short compared to the propagation distan
L and we lete5l/L!1 be a small, dimensionless parame
which scales all other variables.~ii ! The wavelength is com

FIG. 4. The spatial shape of the compressed pulse with a Gaussian ap
function at timet50, from ~31!. Here, the pulse width iss t51.33 ms, the
TRM width is a550 m, the propagation speed isc51500 m/s, propagation
distance isL51000 m, and the time period of the carrier is 0.22 ms. N
the absence of Fresnel zones for a Gaussian TRM.
J. Acoust. Soc. Am., Vol. 111, No. 1, Pt. 1, Jan. 2002
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parable to the correlation length,l, that is l;l. This allows
full interaction between the waves and the random mediu
which is an interesting case to study.~iii ! The fluctuations,
m5n221, of the index of refraction are weak and isotrop
umu;Ae. If the fluctuations are very strong or very anis
tropic ~as in a layered medium! the parabolic wave equatio
cannot be used. If they are very weak then stochastic eff
will not be observable.

We want to analyze long-distance and long-time pro
gation, so we rescale the space variables byx→x/e, L
→L/e. We do not rescale the timet→t/e in ~8! because in
this papert is alwaysrelative time on the scale of the puls
width. So, it will remain of order one. The Green’s functio
in the scaled variables is

Ge~L,0;x,j;k!5GS L

e
,0;

x

e
,
j

e
;kD ,

~32!

Ge~L,x,y;j,h;k!5Ge~L,0;x,j;k!Ḡe~L,0;y,h;k!,

andGe satisfies the scaled equation

2ike
]Ge

]L
1e2~Dx2Dy!G

e1k2Ae

3FmS x

e
,
L

e D2mS y

e
,
L

e D GGe50,

~33!

Ge~0,x,y;j,h;k!5
1

e
dS x2j

e D dS y2h

e D .

The scaling of the initial conditions forGe is adjusted so tha
the wave energy is independent of the small parametere.

Since we are interested in the local coherence of w
fields, within a few wavelengths or correlation lengths, w
introduce the scaled change of variables

ture
ve
FIG. 5. Comparison of the theoretical formula~56! at timet50, for a medium withL5600 m,ae5195 m,g52.1231025 m21. The left figure shows a plot
of ~56! for a homogeneous medium,g50, with a TRM of width a540 ~light/wide Fresnel zone!, and the random medium withg52.1231025 and a
540 ~dark/narrow Fresnel zone!. The right figure shows a plot of~56! for a homogeneous medium,g50, with a5ae5195 ~light!, and the random medium
with g52.1231025, anda540 ~dark!. The match confirms the validity of~57!. The values ofae andg originate from the numerical estimates of the effecti
aperture summarized in Table I in Sec. VIII.
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, x5X2

eY

2
,

~34!

eY5y2x, y5X1
eY

2
,

so that Dx2Dy5(¹x2¹y)(¹x1¹y)522/e¹X¹Y . In the
new variablesGe(L,X,Y;j;h;k) satisfies

2ik
]Ge

]L
22¹X¹YGe

1
k2

Ae
S mS X

e
2

Y

2
,
L

e D2mS X

e
1

Y

2
,
L

e D DGe50,

~35!

Ge~0,X,Y;j,h;k!5
1

e
dS X

e
2

Y

2
2

j

e D dS X

e
1

Y

2
2

h

e D .

We again letWe(L,X,P;j,h;k) be the Fourier transform o
Ge(L,X,Y;j,h;k) in Y, and thenWe satisfies

k
]We

]L
1P•¹XWe

5
ik2

2Ae
E e2~ iQ•X/e!m̂S Q,

L

e D
3FWeS L,X,P1

Q

2 D2WeS L,X,P2
Q

2 D GdQ, ~36!

with the initial condition

We~0,X,P;j,h;k!5
1

~2p!d e2 iP•@~j2h!/e#dS X2
j1h

2 D .

~37!

By the asymptotic theory which we review briefly in th
Appendix, the average Wigner function̂ We(L,X,
P;j,h;k)&→W(L,X,P;j,h;k), ase→0, andW satisfies the
transport equation
236 J. Acoust. Soc. Am., Vol. 111, No. 1, Pt. 1, Jan. 2002
k
]W

]L
1P•¹XW5

pk3

4
,

E R̂S P22Q2

2k
,P2QD

3@W~L,X,Q;j,h;k!2W~L,X,P;j,h;k!#dQ, ~38!

W~0,X,P;j,h;k!5e@2 iP•~j2h!/e#/~2p!ddS X2
j1h

2 D ,

whereR is the correlation function

R~z,x!5^m~h,y!m~h1z,y1x!&, ~39!

and R̂(p,P) is its Fourier transform in (z,x), that is, the
power spectral density of the fluctuations of the refract
index.

It is important to note that the initial condition forW in
~38! depends on the small parametere, even though we have
passed to the asymptotic limit in the equation. Smalle means
high-frequency asymptotics, that is, long propagation d
tances compared to the wavelength, as well as long prop
tion distances compared to the correlation length, which p
duces the incoherent scattering terms on the right-side of

FIG. 6. Structure of the numerical domain: In the center strip the rand
medium is at full strength~75% of the thickness!, then there is a smooth
transition layer~5%–10%! where the strength decreases. In the outer la
the medium is homogeneous, allowing for effective implementation of d
crete transparent boundary conditions.
axi
ed, and
nly 2
FIG. 7. Numerical simulation of time reversal. The width of the time-reversal mirror and the numerical domain are 50, and 200 m, respectively. The mmum
contrast is610%, that isumu<0.1. The left figure shows the signal as received on the TRM plane. This signal is restricted to the mirror, time-revers
re-emitted into the medium. The right figure shows a spatial section through the refocused signal. Here, the propagation distance is very short, o00 m,
or about 20 correlation lengths. We see that there is not enough randomness to observe super-resolution.
Blomgren et al.: Time-reversal acoustics
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equation in~38!. By keeping thee dependence of the initia
conditions we retain coherent diffraction effects in the tra
port approximation, which are clearly important in time r
versal.

In the Appendix we discuss several scaling limits
which multipathing effects are relevant. We also discuss
validity of the paraxial approximation in these limits. In pa
ticular, the paraxial approximation may be violated in t
transport limit, but its validity is restored in the narrow bea
limit of Sec. VII.

VI. PULSE STABILIZATION

As we noted in the Introduction, time reversal of tim
harmonic or very narrow-band signals~phase conjugation! is
statistically unstable. This means that

^cB~j,L,k!&

5E E F E W~L,y,P;j,h;k) !dPGc0~h,k!xA~y!dy dh

~40!

gives no information at all about the behavior ofcB(j,L,k)
for individual realizations of the medium, as demonstrated
Fig. 2, which is obtained by numerical simulations. How
it, then, that super-resolution in time reversal is clearly s
in a variety of physical experiments where there is no
semble of random media or averaging? This issue is not
dressed in the time-reversal literature and poor understan
of it tends to make super-resolution counterintuitive a
somewhat mysterious, especially to those familiar with ph
conjugation.

The explanation is that super-resolution is a tim
domain phenomenon and it is the recompressed puls
spaceand time that is statistically stable. Pulse stabilizati
in randomly layered media is well understood~Solna and
Papanicolaou, 2000!, and references therein, and the reas
for this stabilization is similar to the one encountered in tim
reversal here. In the asymptotic limit of high-frequency, sh
J. Acoust. Soc. Am., Vol. 111, No. 1, Pt. 1, Jan. 2002
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correlations, and long propagation distances, described in
previous section, we also have statistical decorrelation of
wave functions for different frequencies. ForkÞk8 we have

^cB~L,j,k!cB~L,j,k8!&'^cB~L,j,k!&^cB~L,j,k8!&,
~41!

in the limit e→0. This is the property that gives pulse stab
lization in the time domain. To see this, we note that t
time-reversed, backpropagated field is

CB~L,j,t !5E e2 ivtcB~L,j,v/c0!dv, ~42!

and thus

^CB~L,j,t !2&5 K S E e2 ivtcBS L,j,
v

c0
Ddv D 2L

5E E e2 i ~v11v2!tK cBS L,j,
v1

c0
D

3cBS L,j,
v2

c0
D L dv1 dv2

'E E e2 i ~v11v2!tK cBS L,j,
v1

c0
D L

3K cBS L,j,
v2

c0
D L dv1 dv2

5^CB~L,j,t !&2. ~43!

This means that for anyd.0, the probability

P$uCB~L,j,t !2^CB~L,j,t !&u.d%

<
^~CB~L,j,t !2^CB~L,j,t !&!2&

d2 '0, ~44!

by the Chebyshev inequality and~43!. That is

CB~L,j,t !'^CB~L,j,t !&, ~45!
pulse i
FIG. 8. In this simulation the propagation distance is 600 m. Now, we clearly see the super-resolution phenomenon: the peak of the recompressedn the
random medium~upper! is sharper than the one for the homogeneous medium~lower!. ~All other parameters are as in Fig. 7.!
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narrower,
FIG. 9. In this simulation the propagation distance is 1000 m. Although the first peak of the recompressed signal in the random medium is much
there is really no super-resolution in this case because of the large sidelobes. The limits of the numerical simulations are discussed in Sec. II.~All other
parameters as in Fig. 7.!
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so that the time-reversed and backpropagated field isself-
averaging in this asymptotic regime. Put in another way, av
eraging over frequencies is like averaging over realizatio
in the appropriate asymptotic regime, as discussed in the
Appendix. This is why super-resolution is observed in phy
cal situations as well as in numerical simulations. In S
VIII we will discuss Figs. 7, 8, and 9, where the se
averaging property is quite clearly seen in the numer
simulations.

From~43! it is clear that, in general, fluctuation statisti
of the time-reversed and backpropagated field depend
the two-frequency correlation functio
^cB(L,j,v1 /c0)cB(L,j,v2 /c0)&. This differs substantially
from its incoherent limit ^cB(L,j,v1 /c0)&
3^cB(L,j,v2 /c0)& only when uv12v2u'e(v11v2)/2.
The two-frequency correlation function can be expressed
terms of the two-frequency Wigner function, for which
transport equation like~38! can be derived for its evolution

TABLE I. The table shows the propagation distance,L in meters; the nu-
merically estimated effective aperture,ae

E in meters; the corresponding es
timate for g, in inverse meters, using Eq.~57!; a ‘‘theoretical’’ effective
aperture,ae

T , computed using~57! with g52.1231025 ~the median of the
estimatedg’s!; and the number of realizations used for each estimated
of (ae

E ,g). The other parameters are: TRM width,a540 m; maximal con-
trast 10%, width of the numerical domain 150 m; width of the rand
media 112.5 m.

L ae
E g ae

T N

300 77 2.0031025 77 207
350 86 1.6931025 92 418
400 104 1.8331025 109 202
450 123 1.8631025 127 202
500 150 2.1131025 147 205
600 195 2.1231025 190 213
650 217 2.0831025 213 260
700 248 2.1931025 238 202
750 266 2.0531025 263 235
800 275 1.8131025 289 201
850 293 1.7131025 316 223
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in L. The additional information obtained this way affec
only the tail of the time-reversed and backpropagated fiel
phenomenon that is well understood in randomly laye
media ~Solna and Papanicolaou, 2000; Aschet al., 1991!.
Tail behavior, that is, large-t behavior of~8!, and hence two-
frequency statistics, is important in a more refined theory
super-resolution where there are several sources of diffe
strengths, in different but nearby locations in space as we
in time. We then want to find theoretical limits of when the
sources can be discriminated in the time-reversed and b
propagated field, and for that we do need to know the
behavior.

VII. BEAM GEOMETRY

We will assume from now on that the differencej2h is
of ordere and we will drop thee in the phase of the initial

FIG. 10. The estimated values ofg for Table I. The estimate stabilizes as th
propagation distance increases,until the numerical setup cannot capture a
equately the multipathing and the rapidly growing effective aperture. In
setup we can simulate an effective aperture up to about twice the widt
the random medium.

ir
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ure shows
compre
hat is
d the blue
FIG. 11. Dynamic TRM placement: 600-m propagation. The left figure shows the pulse in space-time as received on the TRM plane. The center fig
a spatial cut through the peak of the recompressed pulse using static TRM placement. The right figure shows a spatial cut through the peak of the ressed
pulse using optimal dynamic TRM placement. Note that each plot is for one random realization of the medium. The maximum contrast is 10%, tumu
<0.1. The TRM is 50 m wide and the numerical domain 200 m wide. The red curves correspond to time reversal in a homogeneous medium an
curves to time reversal in the random medium.
-
ce

e
e
-

condition in the transport equation~38!. This means that we
will restrict our attention to the behavior of the time
reversed, backpropagated field in the vicinity of the sour

We will now introduce thebeam approximationfor the
J. Acoust. Soc. Am., Vol. 111, No. 1, Pt. 1, Jan. 2002
.

the solutionW of the transport equation~38!. This is simply
a diffusion approximation inP space that is valid when th
power spectral densityR̂(p,P) is peaked near zero in th
transverse wave numberP. We will describe this approxima
FIG. 12. Dynamic TRM placement: 1000-m propagation.~For parameter information see the caption for Fig. 11.!
239Blomgren et al.: Time-reversal acoustics



the
eak is
FIG. 13. The recompressed pulse for homogeneous~left! and random~right! media. The propagation distance is 800 m, the domain width is 100 m, and
maximal contrast is 10%. The boundary conditions are:DTBC. TRM width 100 m. Here, we can clearly see super-resolution as the recompressed p
narrower in the random medium.
er
us
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S
tio
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r

l-
tion qualitatively without introducing a small paramet
or doing a formal asymptotic analysis. We do this beca
it is a relatively simple and well-known approximatio
and in any case does not involve high-frequency asympto
or statistical considerations like the derivation of~38!.
The narrow-beam approximation is discussed further in
Appendix.

The physical basis for the narrow-beam approximat
is this: When we are in the transport regime and the aper
of the TRM is small, that is,a!L in Fig. 1, then only mul-
tiply scattered waves that stay near thez axis contribute sig-
nificantly to the time-reversed and backpropagated field.
the wave goes over many correlation lengths in the direc
of propagation but only over a few in the transverse dir
tion. This is what makes the power spectral density appea
be peaked in the transverse direction.

A quick derivation of the beam approximation is as fo
lows. We expandW around the pointP up to second order on
the right side of~38! to obtain
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]W

]L
1P•¹XW5

pk3

4 E R̂S P22Q2

2k
,P2QD

3@¹W~P!1 1
2 ¹¹W~P!~Q2P!#•~Q2P!dQ, ~46!

W~0,X,P;j,h;k!5
1

~2p!d e2 iP•~j2h!dS X2
j1h

2 D ,

where¹¹W is the matrix of second derivatives ofW. The
gradient term on the right is zero becauseR̂ is even, so~46!
becomes

k
]W

]L
1P•¹XW5

pk3D~P!

8
DPW~P!,

~47!

W~0,X,P;j,h;k!5
1

~2p!d e2 iP•~j2h!dS X2
j1h

2 D ,
e
r-resolutio
FIG. 14. Homogeneous medium on the left, random medium on the right. Here, we haveWaveguideboundary conditions with TRM width 100 m. We captur
all the energy inside the waveguide on the TRM, so the waveguide effect is much stronger than the random-medium effect. There can be no supen
in this setting.
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that we are

FIG. 15. Homogeneous medium on the left, random medium on the right. Type of boundary conditions:DTBC with TRM width 60 m. We can clearly see
super-resolution as the recompressed peak is narrower in the random medium case. The fluctuations in the sidelobes are partly due to the fact
pushing the paraxial approximation beyond its limit; the 10% contrast is stretching the ‘‘low-contrast’’ assumption.
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where DP is the Laplacian in wave number space and
wave number diffusion constantD(P) is given by

D~P!5
defE R̂S P22Q2

2k
,P2QD uP2Qu2dQ. ~48!

When this wave number diffusion constant, which is a rec
rocal length, is essentially independent of the wave num
P, then Eq.~47! is the narrow-beam approximation to th
transport equation~38!. In many interesting scaling limits th
phase-space diffusion coefficientD does turn out to be con
stant, as we discuss in the Appendix.

For D constant, Eq.~47! can be solved by elementar
methods. To get the time-reversed, backpropagated field
need G(L,y,y;j,h;k), which is the inverse Fourier trans
form of W at Y50. Thus

G~L,y,y;j,h;k)5 W(L,y,P;j,h;k)dP

er-
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e

5F k

2pLGd

e2 ik/L~y2j1h/2!•~j2h!

3e2pk2DL~j2h!2/2. ~49!

Let

g5
pD

8
. ~50!

Then, the mean phase-conjugated and backpropagated
harmonic field is given by

^cB~j,L,k!&

5E E F E W~L,y,P;j,h;k) !dPGc0~h,k!xA~y!dy dh

5S k

L D d

eikj2/2LE x̂AS k

L
~h2j! D

3e2 ikh2/2Lc0~h,k!e2gLk2~j2h!2
dh. ~51!

Comparing this result with the exact solution of the det
, degrade t

FIG. 16. Homogeneous medium on the left, random medium on the right. Type of boundary conditions:Waveguidewith TRM width 60 m. The waveguide
effects are quite strong, but an argument for super-resolution can be made, since the peak is better defined. Randomness does not, in any casehe
results.
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FIG. 17. Homogeneous medium on the left, random medium on the right. Type of boundary conditions:Waveguidewith TRM width 50 m. The waveguide
effects are quite strong, but there is super-resolution since the peak is better defined in the random medium.
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ministic phase-conjugated and backpropagated field~20!, we
see that the effect of the random medium is just the Gaus
factor e2gLk2(j2h)2

. Using ~51! we can now compute anef-
fective aperturefor the phase-conjugated~or time-reversed!
and backpropagated mean field due to a point source in
case of Gaussian TRM and finite aperture TRM, in both
frequency and the time domain.

A. Gaussian TRM

For a point source and a Gaussian aperture of the f
~28!, we obtain from~51!

^cB~j,L;k!&5S k

2pL D d

e2~@a2/2L2#1gL !k2j2
eikj2/2L. ~52!

Comparing this with the deterministic field~29! we deter-
mine aneffective aperturefor the TRM for the mean time-
harmonic wave

ae5aA11
2gL3

a2 . ~53!

This result was also derived in a different way in Dowlin
and Jackson~1992!. We will see that it is essentially univer
sally valid in the beam approximation, both in the frequen
and in the time domain. It is clearly not valid unless

ae~L !

L
!1, ~54!

which means that theeffectiveTRM aperture size must b
242 J. Acoust. Soc. Am., Vol. 111, No. 1, Pt. 1, Jan. 2002
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consistent with the beam approximation. From~53! and from
the numerical experiments that we report in Sec. VIII, it
clear thatae(L)@a when the propagation distanceL is large.

The self-averaging, time-reversed, and backpropaga
field can be calculated exactly as in the deterministic case
replacinga with ae in Eq. ~31!. If ae5ae(L) is much smaller
than the propagation distanceL, as it must be by~54!, then
our analysis for the deterministic field carries over, whi
means that we get the sameae in the time domain.

Super-resolution is now precisely the phenomenon
having the self-averaging, time-reversed, and backpro
gated field be essentially equal to the deterministic field w
a replaced byae , which is much larger thana for large L.
The width in space of the recompressed field is proportio
to l0L/ae , wherel0 is the wavelength of the carrier wave

B. Finite aperture TRM

With a finite aperture TRM the formula for the com
pressed pulse is more complicated. Stochastic, multipath
effects modify edge diffraction from the TRM, in the tim
domain, in a complicated way. The mean phase-conjuga
and backpropagated time-harmonic field is

^cB~j,L;k!&5
1

pj
sinS kja

2L Deikj2/2Le2gLk2j2
. ~55!

We do a Fourier synthesis to get the self-averaged, tim
reversed, and backpropagated signal in the time domain f
point source, Gaussian pulse. The result is a combinatio
~25! and ~31!
Blomgren et al.: Time-reversal acoustics



CB~j,L,t !5E cBS j,L,
v

c0
De2@~v2v0!2s t

2
#/2e2 ivt dv

5E 1

2p i j
@eivja/2c0L2e2~ ivja/2c0L !#eivj2/2c0Le2~g2Lv2j2/c0

2
!e@~v2v0!2s t

2/2#e2 ivt dv

5
1

2p i j
Ap/@~s t

2/2!1~g2Lj2/c0
2!#e2 iv0~ t2@j2/2c0L# !e2~g2Lv0

2j2/c0
2
!

3$eiv0ja/2c0Le@ i ~ t2@j2/2c0L# !2 i ~ja/2c0L !1~2g2Lv0j2/c0
2
!#2/ @2s t

2
1~4g2Lj2/c0

2
!#

2e~2 iv0ja/2c0L !e~@ i ~ t2@j2/2c0L# !1 i ~ja/2c0L !1~2g2Lv0j2/c0
2
!#2!/@2s t

2
1~4g2Lj2/c0

2
!#%. ~56!
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In Fig. 5 we show formula~56! at t50, with various param-
eter values. We use the effective aperture formula

ae5aA11
2gL3

~a/2!2, ~57!

which is like the Gaussian TRM effective aperture formu
~53! but with the constants adjusted using the numerical
sults presented in Sec. VIII.

In all calculations we use the estimateg52.12
31025 m21 that we obtained from direct numerical simul
tions. This is discussed further in the next section.
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The effective aperture formula~57!, or ~53!, cannot be
used whenL so small that there is not enough multipathin
or so large that the beam approximation is not valid. We m
have ae(L)!L. Using ~57!, this means thatL!(8g)21

'6 km. The range 300–400 m to 1 km is roughly where t
effective aperture formula is valid for random media like t
one we simulated. At 600 m the effective TRM aperture
already 195 m, nearly five times larger than the physical s
of the TRM, which is 40 m.
At the wavefront,t5j2/2c0L, expression~56! becomes
CBS j,L,t5
j2

2c0L D5
1

2p i jA p

s t
2

2
1

g2Lj2

c0
2

e2@~a2/4c0
2L21~2s t

2g2Lv0
2/c0

2
!!j2/~2s t

2
1~4g2Lj2/c0

2
!!#

•$eiv0ja/2c0Le2~ i2ag2v0
2j3/~2c0

3s t
2
14c0g2Lj2!!2e2 iv0ja/2c0Lei2ag2v0

2j3/~2c0
3s t

2
14c0g2Lj2!%. ~58!
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VIII. NUMERICAL SIMULATIONS

In this section we present the results of some numer
experiments highlighting the theoretical results of the pre
ous sections. We transmit a time-dependent pulse through
random medium. It is synthesized from 64 frequenci
which allow for enough zero padding to avoidaliasingprob-
lems, and at the same time allow for a sufficient number
energy-carrying frequencies to resolve time-domain effe
The unit of length is the peak-energy wavelength,l0 . We
use a discretization with 10 points per wavelength, i.e.,Dx
5Dz50.1l0 . For the random medium fluctuationsm we
take a Gaussian random field with exponential correlati
constructed spectrally. The correlation length is;10l0 , and
the maximum contrast is 5%, or 10%.

We use a second-order accurate Crank–Nicholson~CN!
discretization of the paraxial wave equation

2ikcz1cxx1k2mc50, ~59!

2ikdz
1cn,m1 1

2dx
1dx

2~cn,m1cn11,m!

1 1
2k

2~mn11,mcn11,m1cn,mcn,m!50, ~60!
al
i-
he
,

f
s.

,

where

dz
1cn,m5

cn11,m2cn,m

Dz
~61!

dx
6cn,m56

cn61,m2cn,m

Dx
.

This numerical approach may seem overly direct, for th
are widely used phase-screen methods which do not req
subwavelength resolution~Dashenet al., 1985; Flatte´ et al.,
1987!. However, for this series of numerical simulations w
really wanted to resolve everything. Our code is limited
2D. Extension of this direct approach to 3D is no long
viable in the long-range regime where we would want to u
it. There are, however, good numerical methods for solv
the paraxial wave equation in 3D~Bécacheet al., 1998!.

We use discrete transparent boundary conditions~DT-
BCs! to limit the numerical domain while simulating an in
finite medium. They are obtained by matching the inter
CN-finite-difference-time-domain~CN-FDTD! scheme with
243Blomgren et al.: Time-reversal acoustics
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an exact exterior CN-FDTD, yielding an exactdiscreteradi-
ating boundary condition. This is worked out in detail
Arnold ~1995!.

We have validated our implementation of the DTBCs
long distances, up to 1000 m for random media and up
5000 m for homogeneous media, by comparing the soluti
in domains of widthxP@2w,w# to the ones in domains o
double the width,xP@22w,2w#. In a random medium, or a
medium with scatterers, the DTBCs work very well as lo
as the random medium or the scatterers are sufficiently
away from the boundary. In practice this means about 4–l,
with a resolution of 10 points perl. In this setting, the esti-
mated error is of the order of machine precision.

In the numerical simulations we use a random medi
at full strength in the center 75% of the numerical doma
The strength smoothly approaches zero in a region of 5
10% of the domain width in order to avoid artificial refle
tions from the numerical random-homogeneous interface
the outermost layer of the domain the medium is homo
neous. This allows for effective DTBCs~see Fig. 6!.

The code is written entirely inMATLAB , compiled under
MATLAB 5.2 with compiler 1.2 andMATLAB 5.3 with compiler
1.2.1. A typical simulation, with a 1000-m3200-m numerical
domain, and 64 frequencies, completes in approximately
h, on a dual-Pentium III Xeon 550-MHz Linux workstatio
where the embarrassingly parallel nature of the problem
exploited.

A. Numerical results

We show numerical results for propagation through r
dom media with maximum fluctuations contrast of 10%, i.
umu<0.1. This is actually quite a bit of randomness and
really pushing the validity of the paraxial approximatio
The reason we use such high contrast is to observe su
resolution phenomena in a numerical domain that is mana
able on a small network of workstations.

The width of the finite aperture TRM is 50 m, and th
numerical domain in 200 m wide. Simulations for three d
ferent propagation distances are shown:~i! When the propa-
gation distance is short, only 200 m. As can be seen in Fig
this distance is too short for the randomness to have an
pact on the resolution of the self-averaging, time-revers
and backpropagated signal.~ii ! With a propagation distanc
of 600 m the super-resolution effect is quite noticeable. T
peak of the recompressed signal in the random medium
about 40% higher and quite a bit narrower than the one in
homogeneous medium. This is very stable from realizatio
realization; Fig. 8 shows a typical case.~iii ! As we increase
the propagation distance to 1000 m, more energy spills ou
the domain by radiation through the boundaries, and mul
athing contributing to super-resolution is lost. In Fig. 9 w
are past the limit of what our numerical setup can do.

B. Numerical limits

For a given width of the numerical domain, and of t
random medium, there is a limit to how long a propagat
distance can be used in the numerical experiments. As
effective apertureae exceeds the size of the domain, th
configuration can no longer accurately model an infinite m
244 J. Acoust. Soc. Am., Vol. 111, No. 1, Pt. 1, Jan. 2002
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dium. In Table I we show estimates forae and for the
medium-characterizing parameterg, in inverse meters, for
different propagation distances with fixed domain and TR
widths.

It is reasonable to expect the growth ofae(L) with L for
the finite aperture case to be similar to the one for a Gaus
aperture, that is,;AgL3 as in Eq.~53!. We have found from
the numerical simulations thatae , a, andg are related by Eq.
~57!, for a finite aperture TRM. If we use this formula t
estimateg, we might expect it to approach a constant as
sample an increasing part of the random medium. Howe
Table I and Fig. 10 show that this is not the case. Given
width of the numerical domain, there is a range of propa
tion distances for which the estimatedg is close to constant
For larger propagation distances there is a drop-off since
numerical setup cannot adequately capture the multipath
and the growing effective aperture. The numerical limitatio
of the effective aperture formula~57! are more severe in ou
setup than the theoretical ones coming from the beam
proximation, which are discussed at the end of Sec. VII.

Our numerical calculations show that it is hard to sim
late super-resolution with long propagation distances.
have used more than 200 time-harmonic realizations
propagation distance to estimateg andae , whereas the self-
averaging for Figs. 7–9 uses only 64 frequencies, and
realization of the random medium, and therefore cannot
expected to be as stable statistically. By using more frequ
cies, and widening the medium, these simulations should
come more stable statistically.

IX. DYNAMIC TRM PLACEMENT

It is possible that the main part of the energy misse
statically placed time-reversal mirror. This can occur wh
the medium has a systematic drift~cross wind!, or when the
randomness is anisotropic. In such cases it may be adva
geous to be able to move the TRM laterally so as to cap
as much energy as possible. In this section we consider
effects of dynamic placement of the TRM. At this time, w
do not have a theory that covers dynamic TRM placeme
so the study is numerical.

We dynamically move the TRM with infinite speed, th
is, we place the TRM in the optimal lateral location where
captures the most energy.

We show two realizations, each for the time-reversal
periment for a propagation distance of 600 m~Fig. 11! and
1000 m ~Fig. 12!, comparing the centered static placeme
with the dynamic placement. For the first realization in F
11, the pulse energy is quite smeared out when it reaches
TRM plane, and the statically placed screen just barely m
ages to capture enough information to resolve the sou
The dynamically placed TRM recompression is appro
mately three times better, and clearly super-resolves
source. In the second realization in Fig. 11, the pulse ene
is still quite concentrated when it reaches the TRM plane,
it is a little bit off-center, so moving the mirror enhances t
recompression.

As discussed earlier, in Sec. 2, the 1000-m propaga
calculation cannot capture enough multipathing to give
Blomgren et al.: Time-reversal acoustics
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accurate picture of super-resolution. However, as can be
in the first realization shown in Fig. 12, dynamic placeme
can improve the recompression, even in this case. There
settings, as in the second realization, when the energy is
spread out, where dynamic placement does not help.

X. TIME REVERSAL IN A WAVEGUIDE

In this section we briefly explore numerically time r
versal in random media where the boundaries are stro
reflecting, so that the energy gets trapped as in awaveguide.
This is physically the case in underwater acoustics, wh
sound is reflected from the surface and from the bottom
the ocean, or in sound propagation in a channel.

Dirichlet- or Neumann-boundary conditions are,
course, a very simplified way to account for the physi
boundaries where the surface is rippled, and the bot
rough. However, it is still of interest to see how the refle
tions off the boundaries and the randomness of the med
interact. We use homogeneous Dirichlet boundary conditi
in our numerical simulations.

We compare time reversal through homogeneous
random media in a series of numerical calculations as
lows. The numerical domain has width 100 m, the propa
tion distance is 800 m, and the maximum contrast, in
random case, is 10%. The first and third numerical exp
ments ~Figs. 13 and 15!, are standard time reversal in a
infinite domain~radiating boundary conditions!, with a stati-
cally placed TRM. The second and fourth experiments ar
a waveguide with zero~Dirichlet! boundary conditions. In
the second case~Fig. 14!, the TRM is of the same width a
the domain, so it captures all available energy and the rec
pressed signals are very good for both the homogeneous
random media. In the fourth, and most interesting case~Fig.
16!, the TRM is 60 m~or 60% of the waveguide!, and we
clearly see how the randomness helps us achieve su
resolution. The sidelobes are eliminated by multipathing
side the waveguide.

We also consider smaller TRMs, in the same setting
make sure that the results for 60 m~Fig. 16! are not special
or a typical. In Fig. 17, where the TRM width is 50 m, w
see clearly that the incoherence induced by the random
dampens the sidelobes and the peak is much better reso
in the random case. This is super-resolution in a wavegu

XI. SUMMARY AND CONCLUSIONS

We have presented a detailed analytical and numer
study of how multipathing in random media enhances re
lution in time-reversed acoustics, that is, how sup
resolution arises in random media. We have clarified, in p
ticular, the statistical stabilization of the recompressed pu
in the time domain. We have also shown that when
propagation distance is large compared to the wavelen
and the correlation length of the inhomogeneities, and
time-reversal mirror is small, there is an exact expression
the effective size of the TRM, itseffective aperture~57!,
valid in both in the time- and frequency domain. Multipat
ing makes the effective size of the TRM much larger than
physical size. We have verified the theoretical results w
J. Acoust. Soc. Am., Vol. 111, No. 1, Pt. 1, Jan. 2002
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careful and extensive numerical calculations, using ex
nonreflecting boundary conditions in one transverse direc
to simulate an infinite medium. Full two-dimensional tran
verse propagation is intractable on a workstation, at pres
especially for long distances. This is because the disc
transparent boundary conditions are nonlocal.
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APPENDIX: COMMENTS AND REFERENCES FOR THE
TRANSPORT APPROXIMATION

The paraxial equation~2!, or ~4!, is a Schro¨dinger equa-
tion in which z plays the role of time and the fluctuation
m5n221 are the random, ‘‘time’’-dependent potentia
When these fluctuations ared-correlated inz, then we have
exact closed equations for moments of products of Gree
functions

K )
j 51

N

G~L,0,xj ,j;kj ! )
j 5N11

N1M

G~L,0,xj ,j;kj !L , ~A1!

wherej is the source location,xj are observation points, an
the wave numberskj may be the same or different. This
done in Furutsu~1993! or in the articles in Tatarskiiet al.
~1993!, and in a more mathematical way in Dawson a
Papanicolaou~1984!. In the case of two factors,N5M51,
the product is denoted byG, and satisfies~9!. The mean of its
Fourier transform~13! is the mean Wigner function that now
satisfies Eq.~38! exactly. The power spectral densityR̂ is a
function of P2Q only, so the transport equation~38! is a
convolution equation and can be solved explicitly. One c
then do the narrow-beam approximation as we did in S
VII, and this can be found in the literature in many places,
Furutsu~1993! as well as in this Appendix. The white nois
or d-correlation limit leading to~38! is also considered in
Bouc and Pardoux~1984!.

The mathematical idealization of havingd-correlated
fluctuations is relevant in many situations in underwa
acoustics and in many other propagation problems, as
will explain in this Appendix with a careful scaling of th
problem. Usingd-correlated fluctuations is convenient an
lytically but may obscure other limits that are relevant, su
as the high-frequency limit. This makes little difference f
single-frequency statistics but it needs to be analyzed ca
fully in order to explain pulse stabilization in the time do
main, as discussed in Sec. VI. That is why we presented
resolution analysis of time reversal in a random medium
we did here.

When backscattering is important, then the transport
proximation is more involved and must be used carefully
theory for the transport approximation using Wigner fun
tions is given in Ryzhiket al. ~1996!, where many other
references can be found. A recent survey of transport the
for random media is van Rossum and Nieuwenhuiz
~1999!. Time reversal in randomlylayeredmedia is analyzed
in Clouet and Fouque~1997!. Transport theory in a wave
guide is considered in Kohler and Papanicolaou~1977!.
245Blomgren et al.: Time-reversal acoustics
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1. Scaling I

We will now consider some specific scalings that res
in the phase-diffusion equation~47!, andhave the frequency
decorrelation property~41! that gives pulse stabilization.

We begin by rewriting the Schro¨dinger equation~2! or
~4! in dimensionless form. LetLz and Lx be characteristic
length scales in the propagation direction, the distanceL be-
tween the source and the TRM for example, and in the tra
verse direction, respectively, andk0 a characteristic wave
number. We introduce a dimensionless wave numberk8
5k/k0 with k05v0 /c0 and v0 a central frequency. We
rescalex and z by x5Lxx8, z5Lzz8 and rewrite~2! in the
new coordinates, dropping the primes

2ik
]c

]z
1

Lz

k0Lx
2 Dc1k2k0LzsmS xLx

l
,
zLz

l Dc50. ~A2!

The physical parameters that characterize the prop
tion problem are:~a! the central wave numberk0 ; ~b! the
strength of the fluctuationss; and~c! the correlation lengthl.
The length scalesLx , Lz , and the central wave lengthl0

52p/k0 characterize the propagation regime that we wish
consider. The random fluctuationsm are normalized to have
unit variance and unit correlation length. We introduce n
three dimensionless variables

d5
l

Lx
, e5

l

Lz
, b5

1

k0l
, ~A3!

which are, respectively, the reciprocals of thetransverse
scale relative to correlation, thepropagation distancerela-
tive to correlation, and the correlation length relative to t
centralwavelength. We will assume first that the dimension
less parametersb, s, andd are small

b!1, s!1, d!1. ~A4!

This is a regime of parameters where super-resolution p
nomena as described here can be observed. It is a h
frequency regime (l! l ,b!1), not the one on which this
paper is based, but it is important physically and is easie
deal with analytically. The ‘‘transport’’ regime (b;1) that
we analyze in the paper is taken up later, as is the reg
e!1 that gives white noise.

The Fresnel number is defined by

u5
Lz

k0Lx
2 5b

d2

e
. ~A5!

After multiplying by u we can rewrite the Schro¨dinger equa-
tion ~A2! in the form

2ikucz1u2Dxc1
k2

e1/2mS x

d
,
z

e Dc50, ~A6!

provided that we relatee to s andd by

e5s2/3d4/3. ~A7!

The asymptotic regime~A4! is realized with the order-
ing

u!e!d!1, ~A8!
246 J. Acoust. Soc. Am., Vol. 111, No. 1, Pt. 1, Jan. 2002
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which implies thatb!1 also holds, corresponding to th
high-frequency limit. We see from the scaled Schro¨dinger
equation~A6! that this regime has the following interpreta
tion. We have first take ahigh-frequencylimit u→0, then a
white-noiselimit e→0, and then abroad-beamlimit d→0.
We will now discuss briefly and interpret these limits. A fu
analysis is given in Papanicolaouet al. ~2001!. Other order-
ings are considered in the next section.

For the high-frequency limit, especially in random m
dia, we use the Wigner function as we explained before.
cu(z,x) be a solution of the rescaled Schro¨dinger equation
~A6!. The Wigner function depends on the propagation d
tancez, the transverse positionx, and wave vectorp, and is
given by

Wu~z,X,P!5E
Rd

dy

~2p!d eiP•Y

3cuS z,X2
uY

2 DcuS z,X1
uY

2 D . ~A9!

It satisfies the evolution equation

]Wu

]z
1

P

k
•¹XWu

5
ik

2Ae
E eiQ•X/dm̂S Q,

z

e D

3

WuS P2
uQ

2 D2WuS P1
uQ

2 D
u

dQ

~2p!d .

In the limit u→0 the solution converges in a suitable we
sense, for each realization, to the solution of the rand
Liouville equation

]W

]z
1

P

k
•¹XW1

k

2Ae
¹XmS x

d
,
z

e D •¹PW50. ~A10!

The initial condition atz50 is that W equals the limit
Wigner functionW0(X,P) of the initial wave function. This
is, of course, what we expect in the high-frequency lim
since the characteristics of~A10! are the ray equations in th
random medium.

We next consider the white-noise limite→0 in the ran-
dom Liouville equation~A10!. Then,We(z,X,P) converges
weakly ~in a probabilistic sense! to the stochastic proces
W(z,X,P) that satisfies the Itoˆ stochastic partial differentia
equation

dW5F2
P

k
•¹XW1

k2D

2
DPWGdz2

k

2
¹PW•dBS X

d
,zD .

~A11!

Here,B(X,z) is a Brownian random field, that is, a Gaussi
process with mean zero and covariance

^Bi~X1 ,z1!Bj~X2 ,z2!&

52S ]2R0~~X12X2!!

]Xi]Xj
Dmin$z1 ,z2%,
Blomgren et al.: Time-reversal acoustics



di
-
.

if-

rie

he

tia

io
e

.
fo

lin

r
rr
e
ua
h

a-
e
tw
it

bu
m

in
e

de-
the

to
t

by

on
c
he

-
as

-
e
h-

ell
where

R0~X!5E
2`

`

R~s,X!ds,

R~z,X!5^m~s1z,Y1X!m~s,Y!&,

and

D52 1
16 DR0~0!,

which is the negative Laplacian of the reduced covarianceR0

at zero. We call Eq.~A11! the Itô–Liouville equation. Note
that the Brownian field that enters the stochastic partial
ferential equation~A11! depends explicitly on the dimen
sionless correlation lengthd in the transverse direction
Therefore, the limit process also depends ond. Note also that
the average ofW, ^W(z,X,P)&, satisfies the phase-space d
fusion equation~47! but with a diffusion constantD that
differs from ~48!. The first argument ofR̂ in the integral in
~48! is now set to zero, which then becomes the Fou
transform of the reduced covarianceR0 . TheD above agrees
with ~48! after this change. A detailed discussion of t
white-noise limit is found in Papanicolaouet al. ~2001!, and
the theoretical background of stochastic partial differen
equations like~A11! is presented in Kunita~1997!.

From the Itô–Liouville equation ~A11! we can get
closed equations for all the moments of the Wigner funct
W, not only for its mean but for moments with different wav
numbersk as well. The wave number enters~A11! as a pa-
rameter. To have the decorrelation property~41!, we need to
show that

^W~z,X,P;k1!W~z,X,P;k2!&

'^W~z,X,P;k1!&^W~z,X,P;k2!& ~A12!

for k1Þk2 . This is true in the limitd→0, as is explained in
detail in Papanicolaouet al. ~2001!, because it is as if the
Brownian fieldsB in ~A11! have a spatial correlation of zero
After a scaling change this translates into decorrelation
different wave numbers.

We can summarize the results of performing the sca
limits u→0, followed bye→0, followed byd→0 by noting
that they represent a precise analytical way to study the
gime where the wavelength is much smaller than the co
lation length~high-frequency limit!, the propagation distanc
is much larger than the correlation length, and the fluct
tions are weak~white-noise limit!, and the transverse lengt
scale is much larger than the correlation length (d→0). The
first two limits are fully compatible with the paraxial or par
bolic wave approximation of Sec. II, while the last one r
quires that the beam, which is narrow because of the first
limits, must not be too narrow. Note that this scaling-lim
analysis is different from the one we use in the paper,
appropriate for underwater acoustics. It leads to the sa
phase-space diffusion equation~47! for ^W(z,x,p)&, but the
structure of the higher moments is different here, com
from ~A11!, than under the scaling followed in the paper. W
now consider this scaling.
J. Acoust. Soc. Am., Vol. 111, No. 1, Pt. 1, Jan. 2002
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2. Scaling II

The second scaling we want to consider is the one
scribed in Sec. V, where the wavelength is comparable to
correlation length,l; l , the small parametere5l/Lz!1,
and the standard deviation of the fluctuationss;Ae. The
scaled Schro¨dinger equation follows from~33! and has the
form

2ikecz1e2Dxc1k2e1/2mS x

e
,
z

e Dc50.

To connect with the precise scaling of~A6! we simply
have to setu5e, d5e, and e5s2, which implies thatb
51. This is the transport scaling. If, however, we want
follow this with the narrow-beam limit of Sec. VII, we mus
allow for different horizontal and vertical length scales
letting

z5
e

d
, ~A13!

which from ~A5! gives

z2u5eb.

With s5zAe, the scaled Schro¨dinger equation is now

2ikz2ebcz1~eb!2Dxc1k2z3AemS zx

e
,
z

e Dc50.

Letting e→0 with b andz fixed is thetransport limit. Let-
ting b/z→0 is the high-frequency, phase-space diffusi
limit, and lettingz→0 restores the validity of the paraboli
approximation. We refer to these last two limits as t
narrow-beam approximation.

The transport limit is analyzed in Ryzhiket al. ~1996!
and in Balet al. ~2001!, where a rigorous proof of conver
gence of the mean Wigner function is given. It is the same
~38! in Sec. V except that we now have the parametersb and
z, so that the average Wigner function satisfies

k
]W

]L
1P•¹XW5

pk3z4

4b4

~A14!

3E R̂S z2~P22Q2!

2kb
,
z~P2Q!

b D
3@W~L,X,Q;j,h;k!

2W~L,X,P;j,h;k!#dQ.

The narrow-beam limitb/z→0 followed by z→0 comes
from a two-term Taylor expansion of the integrand in~A14!,
leading to the phase-space diffusion equation~47!, with the
phase-space diffusion coefficient given by

D~P!5E R̂S z
P•Q

k
,QD uQu2dQ.

We must now letz→0 as well, otherwise the parabolic ap
proximation itself may be violated. This will then give th
same phase-diffusion coefficient obtained in the hig
frequency limit~A8! of the previous section.

What we have not been able to show in Balet al. ~2001!
is that in the transport limit the decorrelation property~A12!
holds exactly. However, formal asymptotic analysis as w
247Blomgren et al.: Time-reversal acoustics
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as numerical simulations indicate that this is true ev
though a mathematical proof is lacking at present.

Let us make some remarks that contrast the scaling
its of this and the previous section. The frequency deco
lation property is a consequence of the transport limite→0
and does not depend on the narrow-beam limitb/z→0 and
z→0. The narrow-beam limit not only gives an importa
analytical simplification leading to an easy-to-solve pha
space diffusion equation; it is in a way an essential par
the theory because without it the paraxial approximation
unlikely to hold in the transport limit. The validity of the
paraxial approximation is, however, re-established after
narrow-beam approximation. Note also thatz→0 brings in
the anisotropy between horizontal and transverse len
scales that is needed in the paraxial approximation.

The white-noise limitcorresponds to the ordering

e!u!d!1, ~A15!

with s5d22e3/2. It is different from both thetransport limit
of this section

e!b!z!1, ~A16!

as well as thehigh-frequency limit

u!e!d!1, ~A17!

~A8! of the previous section. However, our analysis~Papani-
colaou et al., 2001! shows that in all cases the avera
Wigner function satisfies the same phase-space diffu
equation~47!. We expect that the structure of the highe
order moments, including the frequency decorrelation pr
erty, will also be the same but we can only show this in
high-frequency limit~A8! and the white-noise limit~A15!,
where the Itoˆ –Liouville equation ~A11! characterizes the
Wigner function fully. The fact that several differen
asymptotic scale orderings lead to the same limit beha
explains why super-resolution and statistical stability in tim
reversal are seen very clearly both in physical experime
and in numerical simulations.

We also expect that the full-wave transport limit~Ryzhik
et al., 1996!, without the paraxial approximation, will hav
the frequency decorrelation property and hence pulse s
lization. This has been seen clearly in full-wave numeri
simulations in random media~Tsogka and Papanicolaou
2001; Barrymanet al., 2001!.
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