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Abstract. A mathematical model for induction of the lac operon is derived using
biochemical kinetics and includes delays for transcription and translation. Local analysis
of the unique equilibrium of this nonlinear model provides conditions for stability. Tech-
niques are developed to determine Hopf bifurcations, and stability switching is found
for the delayed system. Near a double bifurcation point a hysteresis of solutions to two
stable periodic orbits is studied. Global analysis provides conditions on the model for
asymptotic stability. The biological significance of our results is discussed.

1. Introduction. The classical example of positive feedback or induction of a bac-
terial gene is the lac operon for Escherichia coli. The biological theory for induction of
a gene was developed by Jacob and Monod in the late 1950s. The first mathematical
model for this process was developed by B. C. Goodwin [8]. Subsequently, several models
for induction have been developed and analyzed [9, 12, 19, 21, 22]. These models use
a single nonlinear production term for the mRNA of the induced gene, then have 1 to
n additional linear differential equations representing the subsequent reactions that lead
to the endproduct. The endproduct stimulates or induces the gene to produce more
endproduct.

Griffith [9] uses Lyapunov functions to show that a three-dimensional induction model
with only the origin as an equilibrium is globally asymptotically stable. Selgrade [21]
extends Griffith’s results and shows that when there are three equilibria, two equilibria
are stable and the third equilibrium is a saddle with a two-dimensional stable manifold
separating the domains of attraction of the other equilibria. For a four-dimensional
extension of the Griffith model, Ji-Fa [12] uses Lyapunov functions to find sufficient
conditions for stable equilibria. Selgrade [22] demonstrates that when this model is
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extended to five dimensions, there exist parameters where a Hopf bifurcation occurs
though these values clearly lie outside the range of biological significance.

With the lac gene of E. coli as an example, Mahaffy [16, 17] developed a mathematical
model] based more closely on this important biological case of induction. The lac operon
is normally repressed by the binding of a repressor to the operator region of the lac
gene. When E. coli has lactose as its primary source of carbon and energy, the repressor
protein is inactivated by an isomer of lactose (allolactose). Allolactose is produced in
the cell from lactose that is transported into the cell. This induces the lac gene to
produce large quantities of the three enzymes (-galactosidase, 3-galactoside permease,
and f-thiogalactoside acetyl transferase. The permease transports lactose into the cell,
where 3-galactosidase breaks lactose into simple hexose sugars, glucose and galactose,
that can be metabolized for energy. Figure 1.1 illustrates the primary reactions governed
by the lac operon. For transcription to begin the lac gene also requires cAMP and
CAP (catabolite gene activator protein). When the cell has glucose readily available,
metabolism of lactose is suppressed. Glucose inhibits the permease and excludes the
inducer from the cell. In addition, glucose acts as a catabolite repressor by affecting the
levels of cAMP and indirectly repressing the lac operon. This saves the cell energy when
a better source of carbon is available. More details of the biological processes can be
found in Beckwith [3], Beckwith and Zipser [4], and Miller and Reznikoff [11].

Knorre [13] showed experimentally that when a culture of exponentially growing cells
of E. coli is transferred from a glucose to a lactose medium, the activity of G-galactosidase
oscillates with a period of approximately 50 minutes for about four oscillations. This
result has inspired several mathematical models to explain the instabilities. Mahaffy
[16, 17] analyzed a model for the lac operon that includes the coupling of induction
and catabolite repression and a nonlinear degradation term. The study ignored the
glucose inhibition and exclusion controls and concentrated on the instabilities that arose
from the delayed negative feedback of catabolite repression. Analysis of the linearized
model found critical delays when a Hopf bifurcation occurred, which resulted in stable
periodic solutions about an equilibrium. A later experiment by Pih and Dhurjati [20]
reversed the experiment of Knorre and had exponentially growing cells on a lactose
medium shifted to a glucose medium where again oscillations were observed in the (-
galactosidase activity. Their explanation suggests that the catabolite inhibition of the
lac operon system regulates the protein activity and leads to oscillations in concurrence
with the results of Mahaffy [17].

In this paper we examine the stability properties of a mathematical model based more
closely on the biochemical processes of induction for the lac operon without the catabolite
repression. We show that for some parameters there is global stability. For other cases
we find the existence of Hopf bifurcations and stability switches. These analyses are
presented below.

2. The model and local analysis. In this section we discuss a mathematical model
for the lac operon, which is based on Fig. 1.1. A model examining only the induction
process due to lactose is formulated using biochemical kinetics and several simplifying
assumptions. A derivation of the model follows the steps outlined in Mahaffy [16]. The
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Fi1G. 1.1. Diagram of the lac operon showing the key biochemical
reactions involved in induction

principal differences between the model studied here and the one developed before are
the omission of catabolite repression and the inclusion of differing reaction rates for the
production and degradation of 3-galactoside permease and 3-galactosidase.

The induction model examines the concentrations of the mRNA (y;) transcribed from
the lac gene, 3-galactoside permease (y2) and [-galactosidase (y3) translated from the
mRNA, and lactose (y4) that is transported into the cell. After a rescaling of the vari-
ables, a reasonable mathematical model for the lac operon is given by the following
system of four differential equations:

. 1+ kiyh
= — b y
v 1+y§ 1Y1
Y2 = y1 — baye, (2.1)

Y3 = r3y1 — bays,

Ya = Sy2 — Y3ya-
With k; > 1, the first of these equations shows that the production of mRNA increases
with increasing concentrations of the inducer, lactose, entering the cell, while mRNA

is lost by a standard linear decay. The production of both enzymes depends linearly
on the amount of mRNA, and they use standard linear decay (mostly through dilution
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from growth of the cell). The concentration of the internal lactose (y;) depends on
the external concentration of lactose (.5), which is assumed to be constant, and the
concentration of the permease. The lactose is metabolized by 3-galactosidase, which
results in the nonlinear degradation term.

This model has many similarities to the induction models that have been studied
previously [9, 12, 19, 21], but there are some significant differences. Most studies have
examined equations of the form:

1+k’1y£l
= " _}
A 1L
yizyi—lfbiylv i=21"~an'

Below our analysis compares and contrasts the model (2.1), which is based on the lac
operon, to other induction models given by (2.2).

The expression of the lac operon requires transcription of the gene, then transla-
tion of the resultant mRNA to produce the enzymes, §3-galactoside permease and g-
galactosidase. These processes require a significant amount of time (about 30-60 sec.)
as compared to the reaction times for the other biochemical species. Thus, it is appropri-
ate to include time delays for transcription and translation. After rescaling, these delays
are included as a single delay to create a system of delay differential equations that is
the same as (2.1) except for the first equation,

1+ Kk [y4(t - T)]p

MO = T

- blyl (t)v

Yo (t) = y1(t) — baya(t), (2.3)

ys(t) = rayi(t) — bays(t),

Ya(t) = Sya(t) — ys(t)ya(t).

Our analysis below examines the stability properties of both systems (2.1) and (2.3).
Our analysis begins by examining equilibria. The models of the form (2.2) have one to
three equilibria depending on the values of the parameters, and thus exhibit a hysteresis
as the parameters change. It has been argued that when there are three equilibria, the
lower one represents basal levels of enzyme production, while the upper value is the
induced state [9]. The middle equilibrium is a saddle node with its stable manifold being
the separatrix between the other equilibria. However, this argument is not consistent with
the biology of this problem since E. coli is either in an induced state or not depending
on the environmental parameters, suggesting a unique equilibrium that is controlied by
the external concentration of lactose. System (2.1) has a unique equilibrium point given
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Note that the delayed system has the above constant functions for its equilibrium. It is
easily seen that the equilibrium (2.4) increases as the concentration of external lactose
(5) increases.

Studies of (2.2) show that when n < 3, there are no Hopf bifurcations. If a unique
equilibrium exists, then it is a global attractor [9]. When there are three equilibria, then
the state space separates into two domains of attraction with two attracting equilibria
[21]. Selgrade [22] was only able to prove the existence of a Hopf bifurcation for the
largest equilibrium for n > 5. Existence of periodic solutions for (2.2) with n = 4,
the same dimension as (2.1), remains an open question though Ji-Fa [12] has proven a
sufficient condition for stability.

To study the local stability, our model for the lac operon is linearized about its unique
equilibrium. The linearization of (2.1) vields

U1 —by 0 0 f'(¥y) Y1

(7 1 =b 0 0 Y2

. = , 2.5
U3 T3 0 b 0 Y3 (25)
Vs 0 S =Yy Vs Vs

where
Fi(gy) = B 0P (bars) (K = 1)p(Sby)"!
1 (L+74)? ((bars)? + (Sbs)*)?
With g, = Sby/(bary), it can be shown that the characteristic equation for (2.5) is given
by

£G5S by — by)
by

A similar linearization about the equilibrium solution for the model of the lac operon

with delays (2.3) vields its characteristic equation, which is an exponential polynomial

given by the following:

e M f(Ga)SA(by — b3)
ba N

(A+ b A+ba)(A+ b)) (A +Ty) — 0. (2.7)

3. Local stability and a Hopf bifurcation. The mathematical model given by
(2.1) contains seven kinetic parameters (eight for (2.3) including the delay). Biologically,
the kinetic decay rates, b, and b3 should be approximately equal since 3-galactoside
permease and 3-galactosidase are stable proteins. The primary decrease in concentration
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of yo and y3 is due to dilution caused by cell growth, i.e., by and bs are approximately
equal to In(2) divided by the cell doubling time. For the biologically important case
where by = by, we have the following result:

THEOREM 3.1. If by = bs, then the equilibrium of (2.1) or the delayed system (2.3) is
locally stable.

Proof. The proof of this result follows immediately. When by = bs, the characteristic
equations (2.6) and (2.7) reduce to a factored polynomial with the four negative roots
—~by, —bs, —bs, and —73. Thus, the equilibrium is locally asymptotically stable for either
systermn.

Because of the continuous dependence of the eigenvalues from the characteristic equa-
tions (2.6) and (2.7), it follows from Theorem 3.1 that if b, is close to by, then the equi-
librium of (2.1) or (2.3) is locally stable. However, as by and b3 separate with by > bs,
then it is apparent that the last term on the left-hand side of (2.6) could become suf-
ficiently negative that the sign of the A coefficient becomes negative, which implies by
the Routh-Hurwitz criteria [7] that at least one eigenvalue has positive real part and the
equilibrium of (2.1) is locally unstable. Example 3.1 below illustrates this situation. As
is often the case, the delayed system (2.3) is easier to destabilize.

The special case p = 1 allows the complete analysis of (2.6), which is summarized in
the following theorem:

THEOREM 3.2. If p =1, then the equilibrium of (2.1) is locally stable.
Proof. The characteristic equation (2.6) can be expanded to a fourth-degree polyno-
mial, A* + a1 A3 + a2)? + az) + a4 = 0, where
ar = by + by + b3 + 75,
ag = biby + bibs + bi1ys + babs + boys + b3y,

"(§4)S(ba — b
a3 = bibabs + b1ba¥s + bi1bsyy + babslys — 715.)5( = bs) b(2 2 3),
ay = b1babs7ys,

with f’(§4) = (k‘l —1)[)%7‘%/([)27‘3-{-863)2 and Y3 = T‘3(b27‘3+k1Sbg)/(blbg(b2T3+Sb3)). The
Routh-Hurwitz criterion {7] gives all roots of (2.6) in the left half-plane, if the following
determinants are positive:

a a a; a3 0
Dy ="} 3>O, D3;=11 a2 a4} >0,
1 a9

a; as
a; a3 0 0
1 az Qay 0

D, = >0

! 0 ay das 0

0 1 as a4

Note Dy = ayDj3, and so it suffices to show that Dy > 0 and D3 > 0. The expansions
of both Dy and D3 in MAPLE yield long expressions that have only positive terms after
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finding a common denominator and using the simplify command. Thus, the equilibrium
of (2.1) is locally asymptotically stable.

Before proceeding with our first example, we discuss the technique employed for finding
a Hopf bifurcation for the delayed system (2.3). As the delay 7 is varied with all other
parameters fixed, the technique of Mahaffy [15] is used to determine the value of the
critical delay where this Hopf bifurcation occurs. Define the following expressions:

PA) = (A +b1) (A4 b2} (A + b3) (A + )

and
_ F'(54)5(bs — b3)
Q f—s ——_b——.
2
With these expressions the characteristic equation (2.7) is written
P(\) = Qie ™. (3.1)

For a Hopf bifurcation to exist, (3.1) must be satisfied for A = iw with w real.

Our technique for determining the critical delay, 7., is to first find w such that the
magnitudes of both sides of (3.1) agree. Then the argument of the right-hand side is
aligned with the argument of the left-hand side by adjusting 7. For a Hopf bifurcation
to exist, there must be an w such that the magnitude and argument of both sides of
(3.1) are equal. Note that |P(iw)| is monotonically increasing in w with P(0) > 0 and
|P(iw)| > |Quw| for large w, since P is quartic in w. Thus, it requires a careful choice of
parameters to satisfy |P(iw*)| = |Qw*| for some w*. If this condition is satisfied, a Hopf
bifurcation occurs when

arg(P(iw")) = —g sgn(Q) — w*Ter + 2km

or

rer(k) = wi (Qkﬂ n gsgn(Q) - @(w*)) . k=0,1,...,

where ©(w*) = arctan(w*/b;) + arctan(w”/bs) + arctan(w*/b3) + arctan(w*/7,) and
sen(Q) = Q/|Q.

Below we present a series of examples that show local instabilities of (2.1) and (2.3)
with numerical simulations suggesting stable Hopf bifurcations. Bifurcation diagrams are
provided to illustrate how changes in some parameters affect our model of the lac operon.
Previous studies of repression models have shown that the parameter influencing stability
most is p [1, 14, 18]. Yagil and Yagil [23] analyzed kinetic experiments for the inducer
IPTG, which binds like allolactose to the lac repressor to form the inactive complex.
They found that most strains of E. coli require two molecules of IPTG (p = 2) to create
the inactive complex, but some strains only need one molecule of IPTG (p = 1). (The
active lac repressor has both dimeric and tetrameric forms that bind to the promoter
and suppress transcription, but apparently the inactive tetrameric form does not require
the inducer bound to all four sites.) Below we present two examples where the model can
become unstable with p = 2. Theorem 3.2 shows that when p = 1, our model without
delays for the lac operon is always locally stable. The next section provides some global
stability results for p = 1.
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F1G. 3.1. Bifurcation curves for k1 vs. 7. Solid lines show stability
changes, while dashed lines give other purely imaginary eigenvalues.
).1) ExAMPLE 3.1. Our first example considers a case when by > b3 (by = 2 and b3 =
the and examines the behavior of the model (2.3) as the strength of induction k; and
and delay 7 are varied. The other parameters are fixed with p = 2, by = 1, 3 = 0.1, .
- in S = 1. For each fixed k; > 1, (3.1) is used to compute which values of 7 result
for eigenvalues A with purely imaginary part. Figure 3.1 shows the bifurcation curves
lity (2.3) in the (k1, 7)-parameter space. Smaller values of k; (k; < 14.8) result in stabi
ical of (2.3) independent of the delay. The undelayed system (2.1) undergoes a supercrit
ons Hopf bifurcation as k, increases through a critical value near 14.9. Numerical simulati
of (2.1) for larger k; show stable limit cycles about the equilibrium.
fig. A second phenomenon, which is readily apparent from the bifurcation diagram in ]
ydel 3.1, is the existence of stability switches for the system (2.3). The genetic control mc
ical of repression with delays was shown to have a single critical delay with a supercrit
18]. Hopf bifurcation to stable periodic orbits for all delays larger than the critical delay |
As For this model of induction if we fix k; = 17, then it is clear that (2.1) is unstable.
sed the delay increases to 0.86, the System (2.3) becomes stable. When 7 is further increa
her to 12.77, System (2.3} once again loses stability. For this value of k; there are no furt

hes stability switches, but Fig. 3.1 shows that for some k; values multiple stability switc
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occur. Stability switches have been observed in other models with delays {5, 6] and
represent an interesting property resulting from the infinite number of solutions to the
characteristic equation (2.7).

Another result that is evident from Fig. 3.1 is the existence of double bifurcation points
where two pairs of eigenvalues have purely imaginary parts. In our example, a double
bifurcation point occurs at k; = 74.71 and 7 = 6.301 with eigenvalues A = £0.09995:¢ and
+0.8346:. Guckenheimer and Holmes [10] show that a variety of behaviors is possible
near a double bifurcation point. In our model we observe a hysteresis between two stable
limit cycles that depend on initial conditions in the region where two pairs of eigenvalues
have positive real part.

Figure 3.2 shows a phase portrait in the (y1, Y2, y3)-phase space with two stable limit
cveles for ky = 120 and 7 = 6.3 about the equilibrium point (24.8,12.4,24.8,0.5)T. The
larger orbit has a period of 65, while the smaller orbit has a period of 7.5. At k; = 120,
there are a pair of eigenvalues A = £0.873i when 7 = 5.99 and a pair of eigenvalues
A = £0.095¢ when 7 = 6.97. At 7 = 6.3, these pairs of eigenvalues each have positive
real part (A = 0.0017 £ 0.0995¢ and A = 0.0031 = 0.838i), which yield two 2-dimensional
attracting unstable manifolds each containing a stable periodic orbit. To numerically
obtain both orbits we first found the smaller stable periodic orbit using 7 = 6, since its
domain of attraction there is very large. The parameter 7 was increased to 6.3 to obtain
the solution pictured in Fig. 3.2. As 7 is increased further to about 6.9, the domain of
attraction for the unstable manifold of the large period orbit become sufficiently large
that numerical simulations move to this stable periodic orbit. With these initial data the
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Fic. 3.2. Numerical simulation of (2.3) with k1 = 120 and 7 = 6.3.
The phase portrait shows the two stable periodic orbits possible in
the (y1,y2, y3)-plase space.
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F1G. 3.3. Bifurcation curves for b vs. 7. Solid lines show stability
changes, while dashed lines give other purely imaginary eigenvalues.

delay is slowly decreased to 6.3 to obtain the other orbit seen in Fig. 3.2. The transitions
between these two unstable manifolds give numerical simulations that are toroidal as one
would expect. Thus, this example shows a hysteresis of solutions between two stable
periodic orbits depending on initial data. Similar simulations have been produced for
another delay differential equation by Bélair and Campbell [5].

ExAMPLE 3.2. When b3 > by, all of the coefficients of the characteristic equations
(2.6) and (2.7) are positive, which makes it more difficult to destabilize the systems of
differential equations. This example studies the Hopf bifurcation curves for 7 versus by
over an extremely limited range, 0.0006 < by < 0.002, while b3 is fixed at 0.01. Figure
3.3 illustrates the bifurcation curves with the other parameters fixed at k; = 10, b; = 10,
rs =1, 5 = 0.1, and p = 4. The figure shows that very large delays are needed to
destabilize this example.

In this example the undelayed system (2.1) is locally stable. In fact, the minimum
delay that results in a Hopf bifurcation is 7 = 150.33 and by = 0.0013. As in the previous
example, the bifurcation diagram shows stability switches. For 7 > 150.33, our model
(2.3) is stable for small by, then undergoes a supercritical Hopf bifurcation as b, increases,
and finally restabilizes as by increases further. For example, when 7 = 1000, System (2.3)
is unstable for 0.0008542 < b, < 0.001875. It is readily apparent from Fig. 3.3 that there
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are some values of by that result in stability switches as 7 is increased, as occurred in the
previous example.

EXAMPLE 3.3. As seen in Example 3.1, when by > b3, the nondelayed system (2.1)
can be unstable for a value of p as low as 2. Example 3.2 had b, < by, but required
large delays for a Hopf bifurcation. If by < b3, a much larger value of p is needed for the
nondelayed system to become unstable. Consider the case b; = 1 and b; = 10. Fix the
other parameters k; = 10, by = 1, ry = 1, and S = 0.1. Analysis of the characteristic
equation (2.6) using MAPLE showed that the lowest integer value of p that caused
instabilities for (2.1) is 160. This is clearly outside the realm of biological interest, but
it compares similarly to the results of Selgrade [22] who showed that (2.2) with n = 5
required p > 205 for a Hopf bifurcation.

4. Global analysis. The previous section provided a local analysis and numerical
simulations demonstrating the existence of periodic solutions for our models of the lac
operon. In this section we first establish that all positive solutions of (2.1) or (2.3) re-
main bounded and provide asymptotic bounds for these solutions. Next we prove for a
range of the parameters that when the Hill coefficient p = 1, the solutions of (2.1) or
(2.3) asymptotically approach the unique equilibrium. The arguments use differential
inequalities, which do not depend on whether delays are present in the differential equa-
tions. However, the choice of the sequence of times, t7, presented below does require
consideration of the delay. Our techniques follow the work of Banks and Mahaffy [1, 2],
which can be referenced for more details.

Let R} be the positive orthant with ordered quadruples (Y1, Y2, y3,94)" and y; > 0
for 7 =1,...,4. From the system of differential equations (2.1) is is clear that R is
invariant, i.e., all solutions of (2.1) with initial conditions in R} remain in R] for all
t > 0. (Suppose y;(t) = 0 at some ¢. Then ¢;(¢) > 0. Hence, y; is nondecreasing at ¢, and
the solution cannot become negative.) This argument extends easily to the system of
delay differential equations (2.3) with nonnegative initial data to show solutions remain
nonnegative.

The positive feedback of induction implies that k; > 1. Since y4 > 0, f(yy) = (1 +
kiy4)/(1+yY) is bounded between 1 and k. In contrast to work on the repression model
[1], which requires sequential establishment of upper then lower bounds, we establish
lower and upper bounds simultaneously in the models for the lac operon to decrease
some of the notational complications.

Our analysis begins by finding a lower bound and an upper bound for y;(t). Let
2410) = 31(0) = z¥1(0) with 24! = 1 - b2i! and 24} = k) — by 2", Then 2l () < gy (t) <
z¥1(t) for all £ > 0, since 281 (t) < 9y (t) < 241(t). However,

ANt) = 1 + [ :(0) — 1 et and (1) = ki + { »1(0) — b e ot
bl b1 bl bl

Thus given some ¢} > 0 (sufficiently small), there exists ¢} > 0 such that both z{'(t) >
b —ei=Liand 201(t) < B 4l = U] forall t > t}. Thus, L <y, (t) < U] for t > t}.

1
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A similar argument shows that for 24! (t1) = yao(t]) = 231(¢}) and

. 1 k :
sl = <a —5{) —bgzél and 24! = (b—I +E}> ~ byzi!,

there exist €} and t, such that both z5'(t) > (1/(biby)) — 2y = L} and z3'(t) <
(ki/(biby))+2) = Uj fort > t}. Note that £} > =1 /by and t§ > t]. Thus, L} < yu(t) < U
for t > t.

The same method applied in parallel shows that if z§! (¢}) = y4(t]) = 2§ (¢}) and

1 k
zlj1 =73 <b1 5}) - b;;zél and 24t =71y <b—3 + 5%) — b2yt

then there exist cd and t}, such that both 24! (t) > (r3/(b1bs)) — e} = L} and z4'(¢)
(kyrs/(bibs)) + el = Ul for t > t}. Note that e} > elry/by and t} > t{. Thus, L}
y3(t) < U for t > ).

The differential equation for y; has a nonlinear decay, which makes analysis of this
equation slightly different from the methods used in Banks and Mahaffy [1]. It is essential
that a positive lower bound for y; exists for decay of y;. The differential inequality for the
lower bound of y4 uses the lower bound of y, for production and the upper bound of y3
for the decay rate. With a related change for finding an upper bound for y;4, the analysis
continues in a similar manner. Let ¢t} = max{t}, ¢3}. If 2{!(t]) = ya(t],) = 2}'(t},) and

1 kyrs
1 _ gl 173 1
2y _S<b1b2 2> (bb3+€>24,

k T
sul _ A0 RS U 731 ul
24 S (blbg + 2> (blbf} Ed) z-l )

then there exist £} and t} such that both 2{1(t) > (Sby/(k1bors)) — e} = L] and 2§!(t) <
(Skiby/(bars)) + el = U} for t > t}. Again £} must be taken sufficiently small and
tl >l . Thus, L] < ya(t) < Ut for t >t}

Having established a set of upper and lower bounds for the solution of (2.1), we proceed
to iterate and improve those bounds using the same techniques applied above. At the nth
iteration we assume that we have L? < y,(t) < U for t > t?. From our procedure above
and the monotonic properties of the nonlinear function we can find 5"“ sufficiently small
and 77! such that if ¢t > ¢}*!, then

= L (1_“81_@)_7) _entl

IA \/\

- by 1+ (LZ)” 1
1 (1+k((U}) 1 1
<y () < — | |+ et =0T
——yl()-— bl ( 1+(U?)p 1 1
Similar arguments yield /"' sufficiently small and t?‘” with ¢ = 2, 3,4 such that
‘ 1
L;l+1 = b_QLn-Ll 6;—'1 S y2(t) S EUFAJ _‘_Fn#—] Un+1- t Z t§+l,
LSL—H = E_LT—H _ €§+1 S yg(t) ; Un*l + gL—H = ,r;H-l t2 t§z+1’
3 3
SLn+1 S[JTH—I
Ln+1 = Lr,12+1 _ €§+1 S yi(t) S Ln2+1 + 34»1 = U'ﬂ‘#l’ t Z tz+1.
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upper bounds for the solution is monotonically decreasing and bounded below: so it
converges to a limit, say U* — U,

following equations:
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By taking the ¢ sufficiently small and converging to zero, we construct monotonic
sequences {L!'} and {U]'}. The former sequence is monotonically increasing and bounded
above: so the sequence converges to a limit, ie., LT — LF. Similarly, the sequence of

From the arguments above it can easily be seen that the limiting sequences satisfy the

LD LAV G B ALIAL AL GO Y L AL LG L OB Y BN DV LAL LALGL G 1AL LIALIA VLA DN Y U

following equations:

. * 0 *\p
LT:'L (M) U;:1<M)_>.

b \ 1+ (L) b \ 1+ (U)”
L= b%L;, U = b—lef»
L= Z;;L;, Ui = Zf 7
L= ‘”{/Lf Up = SL(?.

These results can be summarized in the following theorem:

THEOREM 4.1. All solutions of (2.1) and (2.3) are bounded. Furthermore
there exists a T sufficiently large such that solutions of (2.1) and (2.3) sa
yi(t) < U +efort > T, where L} and U] are given by (4.1).
The lower limit L} and the upper limit Uj for the bounds on the solt

be solved in terms of L] and U}, vielding

. ShyL] SbsUy

T byraUs bors L}’
These are substituted into the equations for the lower and upper limi
bounding v, (¢), which give

and U =

e L ((bzrsUf)ﬂ + kl(SbaLD")
Vb \ (borsUs )P + (SbyLy)P
and
g b <(bgr3L’{)P+k1(SbgUf)/’>
Vb U (barsLy)e + (ShUr)e )

It is clear that one of the solutions to these equations is always the equilit
From the previous section it is clear that there must be other solutions for
of the parameters. Consider Example 3.1. Solving (4.2) and (4.3) yield
polynomial in either L] or 'Y with three pesitive real solutions, 1.002, 2
{The other solutions are complex.} Thus, Theorem 4.1 shows that 1.002
for t sufficiently large. Numerical simulations (shown in Fig. 3.2) of the
rwo perjodic rhits gave a lovest value of %1 = 6.64. and the maximum of
= 57.1, which shows that the estimates above are conservative. The
i Example 3.1 are found ron: hy) with 0.501 < yo < 60.0, 1.002 < v
0.004 < yy < 59.%, which are again conservative estimates when compare
~alues found for either of the two stable periodic orbits.



50 JOSEPH M. MAHAFFY axp EMIL SIMEONOV SAVEV

The bounds in Theorem 4.1 provide a global asymptotic stability result whenever it
can be shown that L7 = U. The following corollary summarizes our stability result:

COROLLARY 4.1. If the equilibrium ¥, is the lowest (L} = 7,), highest (U} = ¥,), or
only positive solution to (4.2) and (4.3), then all positive solutions of (2.1) and (2.3)
asymptotically approach the unique equilibrium solution.

Proof. Suppose that the lowest positive solution of (4.2) and (4.3) is L] = %,. Then by
our arguments above, the sequence of lower bounds for the solution y; (¢) converges to L¥.
However, the upper bounds for y, (t) are linked to the lower bounds by (4.1). It is easily
shown that the only solution for Uy of (4.2) and (4.3) with L7 =3, is U = y,. Thus,
L} =7, = U/, and Theorem 4.1 gives the global asymptotic stability of the solutions of
(2.1) and (2.3).

Banks and Mahaffy [1] showed that a repression model (similar to (2.2)) with p = 1
was globally asymptotically stable. In Section 3, we showed that (2.1) with p = 1 is
locally stable. Furthermore, numerical studies of (2.1) and (2.3) with p = 1 indicate
that all positive solutions approach the equilibrium. Below we present conditions that
guarantee global asymptotic stability of the system of equations (2.1) or (2.3).

When p =1, (4.2) and (4.3) can be solved simultaneously to give a cubic equation in
L} (or Uy). One solution is 7, while the other two solutions are given by

,  4AB
B—0

. 4AB
B—o’
where 3 = bors, 0 = Sbs, and A = (kyo — 3)/o. Since there are only three, we can apply

Corollary 4.1 to obtain global stability of (2.1) or (2.3) unless 0 < z; < 7, < z2, where
z) and z, satisfy (4.4).

ry =

and zo =

(4.4)

2of

RN 4
2 2

1
+31/4

PrOPOSITION 4.1. If p = 1 and byry < Sbs, then all positive solutions of (2.1) or (2.3)
approach the unique equilibrium solution.

Proof. Since byrs < Sby, it follows that bory < k;Sbs as k; > 1. Thus, 3 — o < 0 and
kio— 3 > 0. This gives 443/(3 - o) < 0. It follows that x; < 0, which implies that 7, is
either the lowest or highest positive solution of (4.2) and (4.3). Corollary 4.1 completes
the proof.

PRrROPOSITION 4.2. If p = 1 and bor; > k) Sbs, then all positive solutions of (2.1) or (2.3)
approach the unique equilibrium solution.

Proof. Since byry > kySby, it follows that bory > Sbs. Thus, 443/(3 — o) < 0. The
remainder of the proof follows the previous proposition.

Propositions 4.1 and 4.2 provide easy conditions to test for global stability of the
unique equilibrium when p = 1. It remains to examine what happens when byrs; —k; Sby <
0 < bory — Sbz. It is easily seen in this case that (4.4) gives £; > 0. Note that the
discriminant in (4.4) can be written

il

(83— kio)(B3* + (3 —ky)Bo + ki0?)

A o2(8— o)
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When A = 0, it follows that 3% + (3 — ky)30 + k102 = 0. A simple calculation shows
Y, = A/2; s0o x; =y, = T2, and again the equilibrium solution of (2.1) and (2.3) is
globally asymptotically stable.

Our final stability result requires one of the following hypotheses:

(H1) 1 < k; <9,

(H2) &7 < L(ky — 3~ /k? — 10k, + 9) and ky > 9.

(H3) b—;b—z > 2(ky — 3+ /k? = 10k; + 9) and k; > 9.
In (H2) and (H3) we need k; > 9 to avoid complex solutions on the right-hand side of
the first inequality.

THEOREM 4.2. Let p = 1 and suppose that byry — k1 Sby < 0 < byt — Sbs with one of
(H1), (H2), or (H3) being satisfied. Then all positive solutions of (2.1) or (2.3) approach
the unique equilibrium solution.

Proof. Note that when 8 — k1o <0 < 3—0 and A > 0, computations using MAPLE
show that 0 < x; <7, < z2, which fails to produce a stability result. However, if A < 0
with p = 1, then 7, is the only real solution of (4.2) and (4.3). The stability of the
equilibrium follows immediately.

For 3 —kio <0 < 8 —0 and A < 0, we must have 52 + (3 — k;)80 + k102 > 0.
However, by examining this inequality as a quadratic function in 3 /o, we see that the
inequality holds whenever one of (H1), (H2), or (H3) is satisfied. This completes the
proof of the theorem.

5. Discussion. The lac operon is a classical example of induction in E. coli with
many experimental studies having been performed. Several earlier models of induction
8, 9, 19, 21] fail to account for the specific biochemical kinetics of the lac operon. This
study examines the mathematical properties of a model derived from the induction pro-
cess for the lac operon, ignoring catabolite repression and the enzymatic inhibition of
3-galactoside permease by glucose, an endproduct of lactose catabolism. Our model is
a system of four delay differential equations, (2.3), that represent the intracellular con-
centrations of the key elements in the induction of the lac operon and the catabolism of
lactose.

Since experimental studies have shown oscillations in the intracellular concentration
of 3-galactosidase [13, 20}, our theoretical studies examined the possibility that the in-
duction process is the cause of these instabilities. Our model has a unique equilibrium
solution about which we performed a local analysis. When the decay rates of the en-
zymes 3-galactoside permease and 3-galactosidase are the same, our model is locally
stable. We showed that when the Hill coefficient p = 1, the system of equations without
the delay (2.1) is locally asymptotically stable. For higher values of p, Hopf bifurcations
can occur, and the system becomes unstable. Several examples illustrate the interesting
bifurcation properties for this particular model. We demonstrated the existence of double
bifurcation points that separated from a stable equilibrium into two distinct 2-D unsta-
ble manifolds each containing a stable periodic orbit. The preferred stable orbit, each
with its own distinct period and amplitude depending from which pair of eigenvalues it
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evolved, depended on the initial data. We also showed that this model allows multiple
stability switches as one of the parameters is varied.

Differential inequalities were used to show that all positive solutions eventually enter
a bounded invariant region. Under certain conditions on the parameters this region col-
lapses to the unique equilibrium solution, which gives global asymptotic stability of (2.3)
independent of the delay. In the case p = 1, very specific conditions on the parameters
are presented to guarantee asymptotic stability of the equilibrium.

Our model for the lac operon produces several interesting mathematical results as
noted above. We focused on the genetic control by induction to determine whether this
positive feedback could explain the observed oscillations in several experiments. Our
results suggest that experimental oscillations are not caused by the induction process.
One key to producing bifurcations is a disparity between the parameters by and bs.
However, these are the decay rates of the stable enzymes 3-galactoside permease and
3-galactosidase, which imply that b, and by are nearly equal. When we produce periodic
solutions in the model with delays, the period of the stable orbit is too short as compared
to experimental oscillations. The experimental oscillations are approximately the same
length as the cell doubling time, which is over 25 times greater than the combined delays
for transcription and translation, while our model produces oscillations around 4-10 times
the length of the delay. Finally, if we assume that one or two molecules of allolactose
combine with the repressor molecule to prevent it from binding the lac operon, then p is
small. We have shown that small values of p yield a very stable model.

In conclusion, our mathematical model supports the claim of Pih and Dhurjati [20]
that the observed oscillations are probably not caused by the induction process. Instead,
oscillations in [-galactosidase activity are likely the result of either some cell cycle event
or catabolite repression. Thus. our mathematical model of the lac operon in E. coli sup-
ports the biological claim that other cellular controls are responsible for the experimental
oscillations. Our analysis indicates that further modeling efforts could aid biologists in
understanding the key controlling events for certain biochemical processes in procaryotic
cells.
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