
PHYSICAL REVIEW E SEPTEMBER 1999VOLUME 60, NUMBER 3
Integrating the Kuramoto-Sivashinsky equation in polar coordinates:
Application of the distributed approximating functional approach
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An algorithm is presented to integrate nonlinear partial differential equations, which is particularly useful
when accurate estimation of spatial derivatives is required. It is based on an analytic approximation method,
referred to as distributed approximating functionals~DAF’s!, which can be used to estimate a function and a
finite number of derivatives with a specified accuracy. As an application, the Kuramoto-Sivashinsky~KS!
equation is integrated in polar coordinates. Its integration requires accurate estimation of spatial derivatives,
particularly close to the origin. Several stationary and nonstationary solutions of the KS equation are presented,
and compared with analogous states observed in the combustion front of a circular burner. A two-ring,
nonuniform counter-rotating state has been obtained in a KS model simulation of such a burner.
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I. INTRODUCTION

Recent studies of well-controlled experimental syste
and extensive use of computing have provided impetus
significant developments in the study of pattern formati
Even though the experimental systems~e.g., chemical sys-
tems@1#, convecting fluids@2#, flame fronts@3#! are governed
by complex nonlinear spatio-temporal dynamics, qualitat
aspects of pattern formation can be analyzed using simpl
models of the phenomena@4#. In particular, classification o
possible states of a system and determination of the inte
lationships between various stationary and nonstationary
terns are amenable to such analyses. These interrelations
though robust to some variations of the model, depend c
cally on the symmetries of the underlying system. Thus, i
crucial to retain all relevant symmetries in integrating
model system.

Cellular flame patterns stabilized on a circular poro
plug burner exhibit a wide array of complex spatio-tempo
states with novel features. In order to design and develop
efficient burner system, these time dependences of the fl
front need to be suppressed. One of the authors@3,5–7# has
carried out extensive experimental studies on a circu
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burner and categorized many complex states. The exp
ments, which are mounted in a larger combustion cham
involve the combustion of premixed air and fuel, providin
uniform conditions within the circular combustion front@3#.
The temperature outside this disk is significantly lower th
that of the flame front itself. For suitable control paramete
the flat uniform flame front undergoes spontaneous sym
try breaking, producing ordered patterns of brighter, ho
cells separated by darker, cooler cusps and folds. On var
control parameters, the system exhibits several types of n
stationary states including uniform rotations@3#, intermittent
motions@5#, and chaotic dynamics@6#. Qualitative aspects o
the patterns and their dynamics are believed to be relate
the symmetry of the system. For example, patterns consis
‘‘rings’’ of cells; the cells within a ring are very strongly
coupled, while the rings themselves are weakly coupled
each other. For example, one ring of cells can remain
tionary while a second undergoes motion that can be
simple as uniform rotation or as complex as ratcheting@5#.

The bifurcations leading to and from many of these co
plex states have not been analyzed primarily because
principal modes are unknown. Observations of analog
states in a model system will allow the determination of t
principal modes and help the development of the relev
normal form analyses. A phenomenological model for t
flame front that includes a modification of the Brusselator@8#
has also been used for this purpose@9–11#.

The Kuramoto-Sivashinsky~KS! equation@12,13# is one
of the simplest models describing the spatio-temporal evo
tion of a flame front@14#. It is derived by making a series o
3353 © 1999 The American Physical Society
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3354 PRE 60DE S. ZHANGet al.
simplifying assumptions on a pair of diffusion equations~for
a single chemical species and temperature! coupled to fluid
equations@15,16#. At low driving, the solution to the KS
equation is smooth, and can exhibit spatio-temporal ch
for certain control parameters. The low-dimensional dyna
ics generated by the KS equation in one dimension
square domains have been the subject of intense theore
and computational study@12–14,16–21#. Of interest to us
are the structure and properties of cellular solutions of
KS equation in a circular domain.

We consider a form of the KS equation that describes
evolution of a fieldu(x,t) according to

]u

]t
52eu22“2u2“

4u2~“u!22hu3, ~1!

wheree is a measure of the driving force and other para
eters have been eliminated by suitable rescaling of the v
ables. The cubic term, with a small coefficienth, helps sta-
bilize the numerical integration. The fieldu(x,t) models the
perturbation of a planar flame front in the direction of prop
gation.

The integration of the KS equation~with fixed values ofe
andn! is carried out in a circular domain whose radiusR is
used as the control parameter. Motivated by experime
conditions, we require the field to be in the trivial state@i.e.,
u(x,t)50# outside this domain. In order to preserve t
O(2) symmetry~of the burner!, it is necessary to carry ou
the integration of the model in plane polar coordina
(r ,f). The absence of periodic boundary conditions rend
spectral methods unsuitable for the integration, and sugg
the use of an implicit grid method. In polar coordinates,
Laplacian“25(] rr 12r 21] r1r 22]ff) contains a~coordi-
nate! singularity at the origin. Even though the singulari
can be avoided by partitioning each diameter into an e
number of equally spaced lattice points, the presence
small denominators at grid points close to the origin ma
integration of the model sensitive to the accuracy of the s
tial derivatives. The nonseparable cross derivatives pre
in the expansion of the“4 term complicate the computatio
further @22#. The inability of traditional methods to provid
sufficient accuracy to maintain numerical stability has p
vented the integration of the KS equation in polar coor
nates. These problems are exacerbated in the study of
stationary patterns.

In this paper we employ a method to obtain an analy
approximation to a function that is sampled on a discr
grid. The basic tool for discretizing the KS equation in spa
is an ‘‘approximate identity kernel’’ known as a ‘‘distribute
approximating functional’’~DAF!. Methods to estimate the
function and a finite number of derivatives to a specifi
accuracyon and offthe discrete grid have been develop
@23–38#. These methods are coupled with a semi-impli
algorithm to carry out our integrations.

The remainder of the paper is organized as follows. S
tion II gives a brief description of the DAF formalism an
methods to obtain the analytic approximations. Section
describes the semi-implicit solution method and its appli
tion to discretize the KS equation. In Sec. IV, we pres
several stationary and nonstationary cellular states obta
by integrating the KS equation. A modal decomposition
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the states based on a Fourier-Bessel expansion, and the
plications of the results, are discussed in Sec. V while
concluding Sec. VI includes a brief discussion of our resu

II. DISTRIBUTED APPROXIMATING FUNCTIONALS

The theory of distributed approximating functiona
~DAF’s! has been extensively discussed@23–29#. It was in-
troduced@23,24# as a means of fitting or approximating
continuousL2 function using~possibly noisy! values known
only on a discrete set of points and estimating linear tra
formations of the function, particularly its derivatives. Th
most interesting feature of a class of commonly used DA
is the so-called ‘‘well-tempered’’ property, which distin
guishes the DAF’s from many other numerical approac
~e.g., basis expansions, wavelets, splines, finite differen
finite elements, etc.!. There are no ‘‘special points’’ in the
well-tempered DAF approximation, i.e., the DAF approx
mation to a function yields a similar order of accuracy for t
function on or off the grid points. This is in contrast to in
terpolation, which yields exact results for the function on t
grid points, but often at the expense of giving poor results
the function off the grid points, leading to less accurate e
mation of derivatives. Another feature of the DAF is that
yields an integral representation of differential operators; i
it is basically an integral identity kernel. The ability of th
DAF to provide a controllably accurate analytical represe
tation of derivatives of the function on the grid points
crucial to its success in solving nonlinear partial different
equations~NPDE’s!. Other realizations of DAF’s have bee
proposed@23,30,31# for different applications. We limit the
discussion below to the Hermite DAF~HDAF!, and for sim-
plicity we present the discussion in one dimension. The m
tidimensional extensions are straightforward.

The Diracd function satisfies

f ~x!5E
2`

`

d~x2x8! f ~x8!dx8, ~2!

f ~ l !~x!5E
2`

`

d~ l !~x2x8! f ~x8!dx8, ~3!

where the superscriptl denotes thel th spatial derivative. Re-
lations~2! and~3! have no numerical utility becaused(x) is
not a function in the true sense and cannot be directly
proximated by quadrature. The form of the HDAF appro
mate identity integral kernel~or approximation to the Diracd
function! is constructed using the Hermite polynomialsH2n
as

I ~x2x8!5
1

s
exp~2z2! (

n50

M /2 S 2
1

4 D n 1

A2pn!
H2n~z!, ~4!

wherez5(x2x8)/s& while s andM are the DAF param-
eters. The behavior ofI (x2x8) is dominated by the Gauss
ian factor exp(2z2), which serves to control the effectiv
width of the function. In the limits ofM→` or s→0, the
HDAF approaches the Diracd function. In analogy to prop-
erties ofd(x), the approximation to a function is given b
the continuous DAF mapping
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f ~x!' f DAF~x!5E
2`

`

I ~x2x8! f ~x8!dx8. ~5!

Using the HDAF, approximations to linear transformatio
of the continuous function can also be performed; e.g.,
derivative to orderl is given by

f ~ l !~x!' f DAF
~ l ! 5E

2`

`

I ~ l !~x2x8! f ~x8!dx8, ~6!

where I ( l )(x2x8) is the l th derivative of I (x2x8) and is
given by

I ~ l !~x2x8!5
22 l /2

s l 11 exp~2z2!

3 (
n50

M /2 S 2
1

4 D n

~21! l
1

A2pn!
H2n1 l~z!.

~7!

In contrast to Eqs.~2! and ~3!, the HDAF approximation to
the function @Eq. ~5!# and its derivatives@Eq. ~6!# can be
discretized by quadrature~or by random sampling or Monte
Carlo integration!. From known values of the function on
set of discrete grid points, the HDAF approximation to t
function ~on or off the grid points! is given by

f ~x!' f DAF~x!5D(
j

I ~x2xj ! f ~xj !, ~8!

f ~ l !~x!' f DAF
~ l ! ~x!5D(

j
I ~ l !~x2xj ! f ~xj !, ~9!

where D is the uniform grid spacing. Significant contribu
tions to the summation come only from grid values at poi
close tox.

With a suitable choice of the DAF parametersM ands, it
is possible to estimate the function and a finite number
spatial derivatives to a desired accuracy@24,25#. This impor-
tant feature makes the DAF’s a powerful computational t
for solving linear and nonlinear PDE’s, such as Burge
equation in one and two dimensions@32,33#, the linear@34#
and nonlinear@35# Fokker-Planck equation in statistical m
chanics, the Sine-Gordon equation@36# ~for which previous
methods produced ‘‘artifical,’’ numerically induced cha
because of insufficient accuracy in approximating deri
tives!, the KdV equation@37# describing the dynamics o
solitons, and the Navier-Stokes equation@38# in fluid dynam-
ics.

III. APPLICATION OF THE DISTRIBUTED
APPROXIMATING FUNCTIONAL TO THE

IMPLICIT METHOD

Two numerical approaches that have been used to
form the time integration are the explicit method and t
implicit method@39#. In some cases, the DAF-based expli
method~e.g., Taylor expansion method or the Runge-Ku
method! is robust, efficient, and gives accurate results. Ho
ever, like most explicit methods, in order to maintain n
e

s

f

l
’

-
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a
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merical stability, the DAF-based explicit method requires
time stepDt that approximately scales linearly with the gr
spacing. Thus, the smaller the grid spacing, the smaller
time step required to maintain stability. In contrast, impli
methods permit larger time steps and are typically m
stable than explicit methods. Computationally, implic
methods require the solution of simultaneous linear algeb
equations, which involves substantial CPU time when h
accuracy of spatial derivatives is required. The integration
the KS equation is done semi-implicitly@39# because stabil-
ity is crucial, regardless of the CPU cost. In order to avo
the need to solve nonlinear equations, each nonlinear ter
expanded up to first order indu5umn(t1dt)2umn(t), thus
linearizing the equations inumn(t1dt). The fieldsumn(t),
umn(t1dt), and their derivatives are evaluated according
Eq. ~9!. Givenumn(t), inverting the set ofNrNf linear equa-
tions gives the new grid valuesumn(t1dt) of the field,
whereNr is the number of radial andNf is the number of
angular grid points.

Consider a partial differential equation~PDE! describing
an initial value problem

ut[
]u

]t
5F~r¢,t,u,“u,¯ ! ~10!

subject to the initial conditionu(rW,0). Here,F is a functional
of u and its derivatives; e.g., the right-hand side of Eq.~1!.
The DAF-based implicit method converts the task of solvi
the PDE into one of solving a set of simultaneous line
algebraic equations

A~ t !u~ t1Dt !5B~ t !, ~11!

with A(t) being anN3N matrix ~N being the total number
of grid points!. The quantityu(t1Dt) is an N-dimensional
column vector solution of the discretized Eq.~10! at time t
1Dt andB(t) is anN-dimensional column vector inhomo
geneity. We outline the computation ofA(t) andB(t).

The left side of Eq.~10! is approximated using

]u

]t
'

u~ t1Dt !2u~ t !

Dt
. ~12!

Notice that it is usually more accurate to interpret the diff
ence approximation of the derivative to be midway betwe
t andt1Dt; i.e., att1 1

2 Dt. This suggests the approximatio
of u on the right side of Eq.~10! by the average ofu(t) and
u(t1Dt); i.e., u'@u(t)1u(t1Dt)#/2. We thus obtain

u~ t1Dt !2u~ t !

Dt
5FS x,t,

u~ t !1u~ t1Dt !

2
,

3
¹u~ t !1¹u~ t1Dt !

2
, . . . D . ~13!

WhenF includes nonlinear terms, we writeu(t1Dt)5u(t)
1du and expandF to linear order indu. For example,

Fu~ t !1u~ t1Dt !

2 Gn

'S 12
n

2 Du~ t !n1
n

2
u~ t !n21u~ t1Dt !,

~14!
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3356 PRE 60DE S. ZHANGet al.
Fux~ t !1ux~ t1Dt !

2 Gn

'S 12
n

2 Dux~ t !n1
n

2
ux~ t !n21

3ux~ t1Dt !. ~15!

An accurate estimation ofF requires a choice ofdt, which
gives a suitably small value fordu. Substituting these ex
pressions into Eq.~13!, and using the HDAF to represen
derivatives, we obtain the set of linear algebraic equation
u(t1Dt) which define the matrixA andB in Eq. ~11!.

With u5u(t) andu85u(t1Dt), the KS equation in po-
lar coordinates reads

1
2 urrrr8 1

1

r
urrr8 1 1

2 S 22
1

r 2 Durr8 1
1

2 S 1

r 3 1
2

r Dur81urur8

1
1

2r 4 uffff8 1S 2

r 4 1
1

r 2 Duff8 1
1

r 2 ufuf8 1
1

r 2 urr ff8

2
1

r 3 urff8 1S 1

Dt
1

e

2
1

3

2
hu2Du8

52 1
2 urrrr 2

1

r
urrr 2

1

2 S 22
1

r 2 Durr

2
1

2 S 1

r 3 1
2

r Dur2
1

2r 4 uffff

2S 2

r 4 1
1

r 2 Duff2
1

r 2 urr ff1
1

r 3 urff

1S 1

Dt
2

e

2 Du1 1
2 hu3. ~16!

The right side of the expression can be evaluated from
field u(x,t) while the left side includes the~unknown! vector
u85u(t1Dt). By using the HDAF to approximate the de
rivatives on both sides, we finally obtain the matrixA and
vectorB in Eq. ~11!. The partial derivatives with respect t
one spatial variable~r or f! are obtained with the other var
able fixed, using Eq.~9!. The mixed partial derivatives ar
computed using

] l 1ku~r ,f!

]r l]fk 5D rDf(
i

(
j

I r
~ l !~r 2r i !I f

~k!~f2f j !u~r i ,f j !,

~17!

whereD r andDf are the uniform grid spacing andI r andI f
are the continuous HDAF’s inr andf coordinates. We note
that Eq. ~17! satisfies the fundamental symmetry of mix
partial derivatives,

] l 1ku~r ,f!

]r l]fk [
] l 1ku~r ,f!

]fk]r l . ~18!
of

e

IV. MODAL DECOMPOSITION

The mechanisms generating a given cellular state of
KS equation, and the nature of its instabilities, can be
duced by using the normal form theory@40#. Moreover, such
aspects of pattern formation are expected to be model in
pendent, and hence conclusions based on the KS equ
are likely to apply to cellular states of the flame front. T
derivation of the normal form theory appropriate to a giv
state requires a modal decomposition to a basis that refl
the symmetries underlying the physical system. In particu
a smooth fieldu(r ,f,t), which vanishes on the boundary o
a circular domain of radiusR, can be expanded in a Fourie
Bessel series as

u~r ,f,t !5(
n,m

znm~ t !Cnm~r ,f!1c.c., ~19!

where Cnm(r ,f)5Jn(anmr /R)einf (m>0 and n.0) and
c.c. denotes the complex conjugate@41#. Here Jn(r ) is the
nth-order Bessel function of the first kind andanm is its mth
nontrivial zero. Theznm are complex coefficients, save fo
z0m , which are real. The orthonormality and completeness
$Cnm :n>0, m>1% imply that

znm~ t !5bE
0

2pE
0

R

ru~r ,f,t !C̄nm~r ,f!df dr, ~20!

where b5(12dn0/2)/pR2Jn11
2 (anm). Notice that the

Fourier-Bessel functionCnm is an eigenfunction of“2 with
eigenvalueknm[anm

2 /R2; thus the linear stability analysis o
the trivial stateu(x,t)50 of Eq. ~1! is considerably simpli-
fied @10#. By examining the magnitude and the phase of
expansion coefficientsznm , we can determine the principa
modes that play important roles in determining the geome
and dynamics of the fieldu(r ,f,t). Furthermore, once the
principal modes for a given state have been determined,
spatio-temporal evolution of the field can be reduced to a
of ordinary differential equations that govern the dynam
of the znm’s.

V. EXAMPLES

In order to avoid having a grid point at the origin~which
would lead to divergences due to the singularity of“

2 in
polar coordinates!, each diameter is partitioned into the 2Nr
lattice points (r m ,fn)5„(m11/2)D r ,nDf…, where the lat-
tice spacings areD r5R/(Nr11/2) andDf52p/Nf . Here
Nf is the number of evenly spaced radial lines indexed
azimuthal angle.

The calculations reported here were carried out using g
parametersNr532 and Nf564, and with M554 and
s r /D r5sf /Df52.36, which are ‘‘well-tempered’’ DAF
parameters known to provide sufficient accuracy for evalu
ing the required spatial derivatives@24,25#. The initial state
was chosen such that its amplitude was a fraction of tha
the final state. We now present several examples of stat
ary and nonstationary solutions observed in the integratio
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the KS equation on the circular domain. The results p
sented here are obtained by integrating the KS equation
fixed values ofe ~50.7! andv ~50.03!. The radiusR of the
circular domain is used as the control parameter.

Figure 1 shows six stationary cellular states; patte
shown in Figs. 1~a!, 1~b!, and 1~c! have a single ring of cells
while those of Figs. 1~d!, 1~e!, and 1~f! have two rings of
cells. Figure 2 shows the variations of the intensity for tw
of these stationary cellular states. The cells in these stat
ary states have ‘‘chiral symmetry’’; i.e., the cells are sy
metric under reflection about a suitable axis. Each ring of

FIG. 1. Several stationary cellular solutions generated in the
equation@Eq. ~1!#. e50.7 andh50.03 are fixed while the radiusR
of the domain is used as the control parameter. Structures show
generated with~a! R55.95, ~b! R56.5, ~c! R57.5, ~d! R59.5, ~e!
R510.0, and~f ! R511.6. Note that individual cells of each sta
are chirally symmetric.

FIG. 2. Intensities of~a! pattern with three cells@Fig. 1~b!# and
~b! two rings of one and six cells@Fig. 1~e!#.
-
ith

s

n-
-
e

patterns exhibits a dihedral symmetryDn , n being the num-
ber of cells in the ring. Furthermore, the number of ce
contained in a ring increases with its ‘‘radius.’’

Results from the Fourier-Bessel decomposition of th
two states are shown in Fig. 3. The principal modes of
stationary state with a single ring of three cells@Fig. 3~a!# are
C01, C02, and C31. The first two modes make circularl
symmetric contributions and the last provides the obser
threefold symmetry of the pattern. In addition, ‘‘harmonics
C6m of smaller amplitude, whose presence is a conseque
of the nonlinear gradient terms in the KS equation@10#, are
observed. Each Fourier-Bessel coefficientz3m and z6m has
the same phase, resulting in the observed chiral symmetr
the cells. The Fourier-Bessel decomposition of the two-r
state, shown in Fig. 2~b!, is presented in Fig. 3~b!. The prin-
cipal modes of the state are of the formC0m and C6m ,
which represent the inner ring~of a single cell! and the outer
ring ~of six cells!. As before, the phases of allz6m’s are the
same, leading to chiral symmetry of the cells. A normal fo
analysis of this two-ring state will involve the interaction
two modes withD0 andD6 symmetries@10#.

We next present two non-stationary solutions of t
model and conclusions that follow from their Fourier-Bes
decompositions. Figure 4 shows several snapshots during
formation of a uniformly rotating two-cell state from a ran
dom initial state. Unlike in stationary states, the cells of t
rotating ring are not chirally symmetric. The sense of t
geometrical asymmetry depends on the initial state an

S

are

FIG. 3. Magnitudes of the relevant Fourier-Bessel coefficie
of the stationary states shown in Figs. 1~b! and 1~e!. The Fourier-
Bessel coefficientsznm of each stationary state have the same pha
implying the observed chiral symmetry of the cells.
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related to the direction of motion of the cells. This is elab
rated in Fig. 5 and compared with corresponding states f
the experimental flame front.

The magnitudes of the Fourier-Bessel coefficients~Fig. 6!
show that the principal modes are of the typeC0m , C2m ,
andC4m . The magnitudes ofz21 andz41 are fixed in time,
while their phases increase uniformly~Fig. 7!. Furthermore,
there is a nonzero phase difference between the two mo
which results in the chiral asymmetry of the cells. Norm
form analysis of the coupling ofC21 andC41 reveals that the
motion of the cells~i.e., the increase of the phases of t
zmn’s) is a consequence of the asymmetry of the cells~i.e.,
phase difference between the coefficients! @10#.

Figure 8~a! shows a cellular state that exhibits more co
plex dynamics. The outer ring of eight cells rotates cloc
wise, while the inner ring of two cells rotates in a counte

FIG. 4. Snapshots from the evolution of a random initial st
under the KS equation at a radiusR56.2 where a uniformly rotat-
ing two-cell state is observed. The sense of the geometrical as
metry depends on the initial state. The patterns are shown at t
~in terms of arbitrary units! ~a! t50, ~b! t520, ~c! t550, ~d! t
580, ~e! t5150, ~f ! t5190, ~g! t5250, and~h! t5300.
-
m

es,
l

-
-
-

clockwise direction with a larger angular speed. Figure 8~b!
shows a snapshot of an analogous cellular state from
flame front with counter-rotating rings of cells. The numb
of cells in the outer ring is different~six! for the experimen-

e

m-
es

FIG. 5. The~a! intensity and~b! contours of clockwise~left! and
counterclockwise~right! rotating two-cell solutions of the KS equa
tion. ~c! shows analogous states observed in the experimental fl
front. The sense of geometrical asymmetry of a cell is related to
direction of motion of the ring which contains the cell.

FIG. 6. Magnitudes of the relevant Fourier-Bessel coefficie
of a uniformly rotating two-cell state. The magnitudes of theznm’s
remain fixed in time. The phases ofz21 andz41 are different, leading
to the observed chiral asymmetry of the cells.
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tal state. The stability of such complex states depends se
tively on the control parameters chosen for the model. W
the approximations that have gone into the derivation of
KS equation and our arbitrary choice ofe andv, we do not
expect, necessarily, to obtain the exact states observed i
experiment. However, that we are able to obtain patte
with the similar qualitative features is significant; they can
used to develop a modal decomposition of these states a
develop an understanding of the mechanisms genera
them.

As seen from Fig. 9, the principal modes of the count
rotating state areC23 andC81, which correspond to the two
rings of cells. Smaller components~not shown! of C41 and
C16,1 which are not in phase with the principal modes p
duce the asymmetry of the cells and their motion. Four
Bessel analysis of the state reveals that the rotation of
cells is periodic rather that uniform~see Fig. 10!. It can also
be checked that the magnitudes of the Fourier-Bessel co
cients, and hence the shape of the cells, are periodic in t
It would be virtually impossible to glean such information b
direct observation of the spatio-temporal dynamics. To
best of our knowledge, complex, nonuniform motion of th
type has never been observed before in model systems
circular symmetry.

FIG. 8. ~a! A solution of the KS equation with two counter
rotating rings of cells. The inner ring of two cells moves count
clockwise while the outer ring moves clockwise with a smal
angular velocity. This solution is generated withe50.7, h50.02,
andR512.0. ~b! An analogous state on the flame front.

FIG. 7. Time evolution of the phase of the Fourier-Bessel co
ficientsz21 ~solid line! andz11 ~dashed line!. The angular velocity of
the ring is seen to be constant.
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VI. CONCLUSIONS AND DISCUSSION

We have carried out a successful numerical integration
the Kuramoto-Sivashinsky equation in a circular doma
This was made possible by the use of distributed approxim
ing functionals, which allowed accurate estimations of t

-
r

FIG. 9. Magnitudes of the relevant Fourier-Bessel coefficie
for the cellular state with two counter-rotating rings. These mag
tudes vary periodically in time, resulting in periodic modulations
the cell shape.

FIG. 10. Time evolution of the phases of~a! z23 and ~b! z81

confirm the sense of rotation of each ring of Fig. 8~a! and indicate
that the angular velocity of each ring is periodic in time. The pe
odicity of the angular velocity is identical to that of the modulatio
in the cell shape.

f-
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spatial derivatives from values of the field given on a po
grid. A semi-implicit method, complemented by the use
DAF’s introduced here, provided the ability to take lar
time steps in the computations. The methods discussed
be used to integrate other nonlinear partial differential eq
tions and are expected to be most useful when accurate
mations of spatial derivatives are required.

We presented several stationary and nonstationary s
tions of the KS equation and carried out a modal decom
sition using the Fourier-Bessel functions. The decomposi
helps identify the principal modes that are contained in e
state and suggest methods to recognize the onset of
states. The normal form analysis appropriate to study
coupling of these modes provides information about the
stabilities of each state. An analysis of the Fourier-Bes
-
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th
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coefficients of the states confirmed that cells in station
rings are chirally symmetric, while those in rotating rings a
not. The analysis also allows us to deduce the nature of
tation of the rings.
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