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Integrating the Kuramoto-Sivashinsky equation in polar coordinates:
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An algorithm is presented to integrate nonlinear partial differential equations, which is particularly useful
when accurate estimation of spatial derivatives is required. It is based on an analytic approximation method,
referred to as distributed approximating functiond#\F’s), which can be used to estimate a function and a
finite number of derivatives with a specified accuracy. As an application, the Kuramoto-Sivasli®ky
equation is integrated in polar coordinates. Its integration requires accurate estimation of spatial derivatives,
particularly close to the origin. Several stationary and nonstationary solutions of the KS equation are presented,
and compared with analogous states observed in the combustion front of a circular burner. A two-ring,
nonuniform counter-rotating state has been obtained in a KS model simulation of such a burner.
[S1063-651%99)02409-3

PACS numbds): 02.70—c, 47.54+r

[. INTRODUCTION burner and categorized many complex states. The experi-
ments, which are mounted in a larger combustion chamber,
Recent studies of well-controlled experimental systemsnvolve the combustion of premixed air and fuel, providing
and extensive use of computing have provided impetus taniform conditions within the circular combustion frar].
significant developments in the study of pattern formationThe temperature outside this disk is significantly lower than
Even though the experimental systefesg., chemical sys- that of the flame front itself. For suitable control parameters,
tems[ 1], convecting fluid$2], flame frontq3]) are governed the flat uniform flame front undergoes spontaneous symme-
by complex nonlinear spatio-temporal dynamics, qualitativetry breaking, producing ordered patterns of brighter, hotter
aspects of pattern formation can be analyzed using simplifiedells separated by darker, cooler cusps and folds. On varying
models of the phenomend]. In particular, classification of control parameters, the system exhibits several types of non-
possible states of a system and determination of the interrestationary states including uniform rotatiof8, intermittent
lationships between various stationary and nonstationary patnotions[5], and chaotic dynamid$]. Qualitative aspects of
terns are amenable to such analyses. These interrelationshipise patterns and their dynamics are believed to be related to
though robust to some variations of the model, depend critithe symmetry of the system. For example, patterns consist of
cally on the symmetries of the underlying system. Thus, it is‘rings” of cells; the cells within a ring are very strongly
crucial to retain all relevant symmetries in integrating a coupled, while the rings themselves are weakly coupled to
model system. each other. For example, one ring of cells can remain sta-
Cellular flame patterns stabilized on a circular poroustionary while a second undergoes motion that can be as
plug burner exhibit a wide array of complex spatio-temporalsimple as uniform rotation or as complex as ratcheflg
states with novel features. In order to design and develop an The bifurcations leading to and from many of these com-
efficient burner system, these time dependences of the flampex states have not been analyzed primarily because the
front need to be suppressed. One of the auti®s—7 has  principal modes are unknown. Observations of analogous
carried out extensive experimental studies on a circulastates in a model system will allow the determination of the
principal modes and help the development of the relevant
normal form analyses. A phenomenological model for the

*Electronic address: dzhang@kitten.chem.uh.edu flame front that includes a modification of the Brussela&jr
TElectronic address: guowei@kitten.chem.uh.edu has also been used for this purp§Se-11].

*Electronic address: kouri@uh.edu The Kuramoto-Sivashinsk{KS) equation[12,13 is one
SElectronic address: hoffman@ameslab.gov of the simplest models describing the spatio-temporal evolu-
IElectronic address: gemunu@uh.edu tion of a flame fron{14]. It is derived by making a series of
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simplifying assumptions on a pair of diffusion equatidfts  the states based on a Fourier-Bessel expansion, and the im-
a single chemical species and temperatamupled to fluid plications of the results, are discussed in Sec. V while the
equations[15,16. At low driving, the solution to the KS concluding Sec. VI includes a brief discussion of our results.
equation is smooth, and can exhibit spatio-temporal chaos

for certain control parameters. The low-dimensional dynam- | pISTRIBUTED APPROXIMATING FUNCTIONALS

ics generated by the KS equation in one dimension and

square domains have been the subject of intense theoretical The theory of distributed approximating functionals
and computational studj12—-14,16-21 Of interest to us (DAF’s) has been extensively discusf@8-29. It was in-

are the structure and properties of cellular solutions of théroduced[23,24 as a means of fitting or approximating a

KS equation in a circular domain. continuousl.? function using(possibly noisy values known
We consider a form of the KS equation that describes th@nly on a discrete set of points and estimating linear trans-
evolution of a fieldu(x,t) according to formations of the function, particularly its derivatives. The
most interesting feature of a class of commonly used DAF’s
Ju is the so-called “well-tempered” property, which distin-
i —eu—2V2u—V*u—(Vu)’- nu’, (1) guishes the DAF’s from many other numerical approaches

(e.g., basis expansions, wavelets, splines, finite differences,

: o finite elements, etg. There are no “special points” in the
wheree is a measure of the driving force and other param well-tempered DAF approximation, i.e., the DAF approxi-

eters have been eliminated by suitable rescaling of the vari- . . . -
ables. The cubic term, with a small coefficienthelps sta- mation to a function yields a similar order of accuracy for the

iz he numercl ngraton. The el modeis ne Lo on of of e 0 ponts T i contaet o v
perturbation of a planar flame front in the direction of propa- P ' y

gation grid points, but often at the expense of giving poor results for

The integration of the KS equatidwith fixed values ofe the function O.ff th_e grid points, leading to less accurate es_ti-
and ) is carried out in a circular domain whose radRés mation of derivatives. Another feature of the DAF is that it

used as the control parameter. Motivated by experiment ields an integral representation of differential operators; i.e.,

conditions, we require the field to be in the trivial sthte. It is basically an integral identity kernel. The gbility of the
u(x.t)=0] outside this domain. In order to preserve the DAF to provide a controllably accurate analytical represen-

0(2) symmetry(of the burney, it is necessary to carry out tation of c_ierlvatlves c_>f the _functlon_ on the grld points Is
the integration of the model in plane polar coordinatescruma_l to its success in solvmg npnllnear partial differential
equationgNPDE’s). Other realizations of DAF's have been

(r,®). The absence of periodic boundary conditions renders roposed23,30,31 for different applications. We limit the

spectral methqu l_m_swt.able for the integration, a!"d SuggeSP|scussion below to the Hermite DAIFIDAF), and for sim-
the use of an implicit grid method. In polar coordinates, the

Laplacian V2= (3, +2r g, +12d,,,) contains a(coordi- pllplty we present thg discussion in one dimension. The mul-
. . T : .. tidimensional extensions are straightforward.
nate singularity at the origin. Even though the singularity : . o

X 2 . . The Dirac 6 function satisfies
can be avoided by partitioning each diameter into an even
number of equally spaced lattice points, the presence of "
small denominators at grid points close to the origin makes f(x):f S(x—x")f(x")dx’, 2
integration of the model sensitive to the accuracy of the spa- e
tial derivatives. The nonseparable cross derivatives present
in the expansion of th& % term complicate the computation
further[22]. The inability of traditional methods to provide
sufficient accuracy to maintain numerical stability has pre-

vented the integration of the KS equation in polar coordi-yhere the superscriptdenotes théth spatial derivative. Re-
nates. These problems are exacerbated in the study of NORtions (2) and (3) have no numerical utility becaus#x) is
stationary pattemns. , _not a function in the true sense and cannot be directly ap-
In this paper we employ a method to obtain an analytiGyoximated by quadrature. The form of the HDAF approxi-
approximation to a function that is sampled on a discretgate identity integral kernébr approximation to the Diraé

grid. The basi_c tool_for di_scretizing the KS equatio_n i_n SPaC&ynctior) is constructed using the Hermite polynomi#ls;,
is an “approximate identity kernel” known as a “distributed 5¢

approximating functional’(DAF). Methods to estimate the

function and a finite number of derivatives to a specified 1 M/2 1 1
accuracyon and offthe discrete grid have been developed [(x—Xx")=—exp—2z2) >, | — _) ———Hon(2), (4)
[23-38. These methods are coupled with a semi-implicit o n=0 4] 27n!

algorithm to carry out our integrations.

The remainder of the paper is organized as follows. Secwherez=(x—x")/ov2 while o andM are the DAF param-
tion Il gives a brief description of the DAF formalism and eters. The behavior df(x—x") is dominated by the Gauss-
methods to obtain the analytic approximations. Section lllian factor exptZ), which serves to control the effective
describes the semi-implicit solution method and its applicawidth of the function. In the limits oM —« or ¢—0, the
tion to discretize the KS equation. In Sec. IV, we presentHDAF approaches the Diraé function. In analogy to prop-
several stationary and nonstationary cellular states obtainegtties of §(x), the approximation to a function is given by
by integrating the KS equation. A modal decomposition ofthe continuous DAF mapping

f(')(x)zjw SD(x—x")f(x")dx’, ®)
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% ) L merical stability, the DAF-based explicit method requires a
f(X)~fpar(x) = f_xl(X—X )f(x")dx". (5 time stepAt that approximately scales linearly with the grid
spacing. Thus, the smaller the grid spacing, the smaller the

Using the HDAF, approximations to linear transformationstime step requi_red to ma?ntain stability. In contrast, implicit
of the continuous function can also be performed; e.g., th&"€thods permit larger time steps and are typically more
derivative to ordet is given by stable than explicit methods. Computationally, implicit

methods require the solution of simultaneous linear algebraic
% equations, which involves substantial CPU time when high
FO)~fEae= f 1D(x=x")f(x")dx’, (6)  accuracy of spatial derivatives is required. The integration of
o the KS equation is done semi-implicit[39] because stabil-
ity is crucial, regardless of the CPU cost. In order to avoid

where 1)(x—x") is the Ith derivative ofl(x—x’) and is ; . : .
the need to solve nonlinear equations, each nonlinear term is

given by expanded up to first order ifu=u,,(t+ 6t) —uy(t), thus
—112 linearizing the equations in,,,(t+ 6t). The fieldsuy,.(t),
1D(x—x")= —rexp(— %) umn(t+ 6t), and their derivatives are evaluated according to
7 Eq.(9). Givenuy,(t), inverting the set oN,N 4 linear equa-
M/2 1\n 1 tions gives the new grid values,, (t+ 6t) of the field,
X >, (— —) (—1)'——Hyn. (2). whereN; is the number of radial antl, is the number of
=0\ 4 V2mn! angular grid points.
7) Consider a partial differential equatigRDE) describing

an initial value problem
In contrast to Eqs(2) and(3), the HDAF approximation to
the function[Eq. (5)] and its derivative§Eq. (6)] can be _du R
discretized by quadratur@r by random sampling or Monte u=—r =F(rLu,vu, ) (10
Carlo integration From known values of the function on a
set of discrete grid points, the HDAF approximation to thesubject to the initial condition(F,0). Here F is a functional
function (on or off the grid pointsis given by of u and its derivatives; e.g., the right-hand side of EL.
The DAF-based implicit method converts the task of solving
the PDE into one of solving a set of simultaneous linear
f(X)NfDAF(X):A; H=x)T0%5), ® algebraic equations ’
A(tu(t+At)=B(t), 11
FO(x) = FIA00) = A2 10(x=x))f(x;), (9) (Hut /=B D
j with A(t) being anNxN matrix (N being the total number
. . . . N . of grid pointg. The quantityu(t+ At) is an N-dimensional
l’i\/::;? OAH']Se tshlfml#:ggg: Cgorr':esgr?lc'?rgo'mS'%?éft;:lﬂzgc;:t”g;:{tscolumn vector solution of the discretized H40) at timet
close tox y 9 P + At .and B(t) is an N-dimensiona] column vector inhomo-
With a suitable choice of the DAF parametdsando, it ger_}iltyi Vf\t/elgutllr;%theigqmputatlon Af(tt)danq B(1).
is possible to estimate the function and a finite number of € left side of Eq(10) is approximated using
spatial derivatives to a desired accurf2¥,25. This impor- U u(t+At—u(t)
tant feature makes the DAF's a powerful computational tool ~—
for solving linear and nonlinear PDE’s, such as Burgers’
equation in one and two dimensiof&2,33, the linear[34]

gt At (12

and nonlineaf35] Fokker-Planck equation in statistical me- Notice that it. is u;ually more apcu_rate to inter_pret the differ-
chanics, the Sine-Gordon equatif88] (for which previous ence approximation of the derivative to be midway between
; tandt+At; i.e., att+ 3At. This suggests the approximation

methods produced “artifical,” numerically induced chaos : .
because of insufficient accuracy in approximating deriva®f U ©n the right side of Eq(10) by the average afi(t) and

tives), the KdV equation[37] describing the dynamics of u(t+At); i.e., u=[u(t)+u(t+At)]/2. We thus obtain
solitons, and the Navier-Stokes equatj88] in fluid dynam-

ics. u(t+At)—u(t):F it u(t)+u(t+At)
At 1% 2 1
Ill. APPLICATION OF THE DISTRIBUTED Vu(t)+ Vu(t+At)
APPROXIMATING FUNCTIONAL TO THE X 5 v (13

IMPLICIT METHOD

Two numerical approaches that have been used to pelhenF includes nonlinear terms, we writgt+ At) = u(t)
form the time integration are the explicit method and the+ du and expand- to linear order indu. For example,
implicit method[39]. In some cases, the DAF-based explicit
method (e.g., Taylor expansion method or the Runge-Kutta [U(t) +u(t+At)|" 1= Mo D uom s At
method is robust, efficient, and gives accurate results. How- 2 - 2 u(t) 2 u®™u( )
ever, like most explicit methods, in order to maintain nu- (14)
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IV. MODAL DECOMPOSITION

> ~

ux(t)+ux(t+At)y~

n n
1— 5 [ud)"+ s u ()"t
2) () 2 () The mechanisms generating a given cellular state of the

KS equation, and the nature of its instabilities, can be de-
duced by using the normal form thedd0]. Moreover, such
aspects of pattern formation are expected to be model inde-
An accurate estimation df requires a choice obt, which  pendent, and hence conclusions based on the KS equation
gives a suitably small value fofu. Substituting these ex- are likely to apply to cellular states of the flame front. The
pressions into Eq(13), and using the HDAF to represent derivation of the normal form theory appropriate to a given
derivatives, we obtain the set of linear algebraic equations dftate requires a modal decomposition to a basis that reflects

X Uy (t+At). (15)

u(t+At) which define the matribA andB in Eqg. (11). the symmetries underlying the physical system. In particular,
With u=u(t) andu’=u(t+At), the KS equation in po- a smooth fieldu(r,¢,t), which vanishes on the boundary of
lar coordinates reads a circular domain of radiuR, can be expanded in a Fourier-

Bessel series as

1,,/ + 1 ’ + 1 2 1 ’ 4 1 1 + 2 r+ ’
A DT AU AVE RS UG D= Zun(OWan(r @) +Cc, (19
n,m
! 2 ! ’ ’
T oraUssssT| ATz [UseT 12U T ZUss  where W, (1, ¢) =J,(ay,f/R)EM (m=0 andn>0) and
c.c. denotes the complex conjugqtl]. Here J,(r) is the
1 1 € 3 .\, nth-order Bessel function of the first kind angl,,, is its mth
T 3Urge T Rr T T U U nontrivial zero. Thez,,, are complex coefficients, save for
Zom, Which are real. The orthonormality and completeness of
1 1 1 {¥m:n=0, m=1} imply that
:_%urrrr_Furrr_ E(Z_r_z)urr
27 (R I
1/1 2 1 an(t)Zﬁf f ru(r,¢,)Won(r,¢)dedr, (20
0 0
T2 BT A Yesss
where B=(1—6,0/2)/wmR?J%, ;(anm). Notice that the
2 1 1 1 . ; . . . S
—| 5+ % |Upo— ZUngot —3Urpe F_ouner-BesseI furzlctloﬂfnm is an glgenfunctl_qn ov WI'Fh
r.r r r eigenvaluek, = a5 /R?; thus the linear stability analysis of
the trivial stateu(x,t)=0 of Eq. (1) is considerably simpli-
+ i_ € U+t 03 16 fied [10]. By examining the magnitude and the phase of the
3 u”. (16) - . . L
At 2 expansion coefficientg,,,, we can determine the principal

modes that play important roles in determining the geometry

and dynamics of the field(r,#,t). Furthermore, once the
The right side of the expression can be evaluated from thgrincipal modes for a given state have been determined, the
field u(x,t) while the left side includes th@nknown vector  spatio-temporal evolution of the field can be reduced to a set

u’=u(t+At). By using the HDAF to approximate the de- of ordinary differential equations that govern the dynamics
rivatives on both sides, we finally obtain the matAxand  of the z,,’s.

vectorB in Eq. (11). The partial derivatives with respect to
one spatial variablé or ¢) are obtained with the other vari-
able fixed, using Eq(9). The mixed partial derivatives are V. EXAMPLES
computed using
In order to avoid having a grid point at the origiwhich
A u(r ) woluld Iea((jj_to gisvergin(cj:_es due 'go the_sfingu(;al_ritny:‘;lr:2
) Wyp o1 (K polar coordinates each diameter is partitioned into t
arlagk _AFA¢Z‘ 2,: =l (6= ¢)ulri )y agiice points p,én)=((M+1/2)A,,nA,), where the lat-
(170  tice spacings aré,=R/(N,+1/2) andA ,=2m/N,. Here
N, is the number of evenly spaced radial lines indexed by
azimuthal angle.
whereA; andA , are the uniform grid spacing andandl , The calculations reported here were carried out using grid
are the continuous HDAF's inand ¢ coordinates. We note parametersN,=32 and N,=64, and with M=54 and
that Eq.(17) satisfies the fundamental symmetry of mixed o /A =04/A4,=2.36, which are “well-tempered” DAF
partial derivatives, parameters known to provide sufficient accuracy for evaluat-
ing the required spatial derivativg24,25. The initial state
was chosen such that its amplitude was a fraction of that of
the final state. We now present several examples of station-
(18 ar X . ; : )
y and nonstationary solutions observed in the integration of

0—,I+ku(r,¢) B 0I+ku(r,¢)
alagk  —  agkar




PRE 60 INTEGRATING THE KURAMOTO-SIVASHINSKY . . . 3357

(a)
3.1

w

[0.1) (0,2)

[z}
)

(@ (d

G2 (33 34

(n,m)

(b)
6.1)

[zl

04) 62 @3

©.,5)
08 07) (08 6.4)

(n.m)
© ®

FIG. 3. Magnitudes of the relevant Fourier-Bessel coefficients

FIG. 1. Several stationary cellular solutions generated in the K®f the stationary states shown in Figgbjland Xe). The Fourier-
equationEq. (1)]. e=0.7 andy=0.03 are fixed while the radil® Bessel coefficients,,,, of each stationary state have the same phase,
of the domain is used as the control parameter. Structures shown aif@plying the observed chiral symmetry of the cells.
generated witlfa) R=5.95, (b) R=6.5, (c) R=7.5, (d) R=9.5, (¢)

R=10.0, and(f) R=11.6. Note that individual cells of each state

are chirally symmetric. patterns exhibits a dihedral symmefy,, n being the num-
ber of cells in the ring. Furthermore, the number of cells
contained in a ring increases with its “radius.”

the KS equation on the circular domain. The results pre- Results from the Fourier-Bessel decomposition of these

sented here are obtained by integrating the KS equation wittwo states are shown in Fig. 3. The principal modes of the

fixed values ofe (=0.7) andv (=0.03. The radiusR of the  stationary state with a single ring of three c¢fsg. 3@)] are

circular domain is used as the control parameter. Vo1, Vop, andV¥s;. The first two modes make circularly

Figure 1 shows six stationary cellular states; pattern$ymmetric contributions and the last provides the observed
shown in Figs. a), 1(b), and 1c) have a single ring of cells, threefold symmetry of the pattern. In addition, “harmonics”
while those of Figs. @), 1(e), and 1f) have two rings of Wy Of smaller amplitude, whose presence is a consequence
cells. Figure 2 shows the variations of the intensity for twoof the nonlinear gradient terms in the KS equatiaf], are
of these stationary cellular states. The cells in these statiorpbserved. Each Fourier-Bessel coefficiegt, and zg,, has
ary states have “chiral symmetry”; i.e., the cells are sym-the same phase, resulting in the observed chiral symmetry of
metric under reflection about a suitable axis. Each ring of théhe cells. The Fourier-Bessel decomposition of the two-ring
state, shown in Fig.(®), is presented in Fig.(8). The prin-
cipal modes of the state are of the fonl,,, and Vg,
which represent the inner ringf a single cell and the outer
ring (of six cells. As before, the phases of aj,,’s are the
same, leading to chiral symmetry of the cells. A normal form
analysis of this two-ring state will involve the interaction of
two modes withD, andDg symmetrieq 10].

We next present two non-stationary solutions of the
model and conclusions that follow from their Fourier-Bessel
decompositions. Figure 4 shows several snapshots during the
formation of a uniformly rotating two-cell state from a ran-
dom initial state. Unlike in stationary states, the cells of the

FIG. 2. Intensities ofa) pattern with three cellfFig. 1(b)] and  rotating ring are not chirally symmetric. The sense of the
(b) two rings of one and six cellg=ig. 1(e)]. geometrical asymmetry depends on the initial state and is
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FIG. 5. The(a) intensity andb) contours of clockwiségleft) and
counterclockwiséright) rotating two-cell solutions of the KS equa-
tion. (c) shows analogous states observed in the experimental flame
(d) (h) front. The sense of geometrical asymmetry of a cell is related to the
) o direction of motion of the ring which contains the cell.
FIG. 4. Snapshots from the evolution of a random initial state

under the KS equation at a radigs=6.2 where a uniformly rotat- . .\vise direction with a larger angular speed. Figuiis 8
ing two-cell state is observed. The sense of the geometrical asym:-

oT > shows a snapshot of an analogous cellular state from the
metry depends on the initial state. The patterns are shown at tim

(in terms of arbitrary units(a) t=0, (b) t=20, (¢) t=50, (d) t Frame front with counter-rotating rings of cells. The number
—80, (6) t=150, (f ) t=190, (g) t=250 and(h) t=300. of cells in the outer ring is differer(six) for the experimen-

3

21)

related to the direction of motion of the cells. This is elabo-
rated in Fig. 5 and compared with corresponding states from

the experimental flame front. 2
The magnitudes of the Fourier-Bessel coefficidfig. 6) .
show that the principal modes are of the twWg,,, Vo, N

andV¥,,,. The magnitudes of,; and z4; are fixed in time,
while their phases increase uniform(lyig. 7). Furthermore,
there is a nonzero phase difference between the two modes,
which results in the chiral asymmetry of the cells. Normal
form analysis of the coupling o¥ ,; and V¥ 4, reveals that the 0
motion of the cells(i.e., the increase of the phases of the
Zmn'S) IS a consequence of the asymmetry of the cgélés,
phase difference between the coefficignt]. FIG. 6. Magnitudes of the relevant Fourier-Bessel coefficients
Figure 8a) shows a cellular state that exhibits more com-of a uniformly rotating two-cell state. The magnitudes of #g's
plex dynamics. The outer ring of eight cells rotates clock-remain fixed in time. The phaseszf, andz,; are different, leading
wise, while the inner ring of two cells rotates in a counter-to the observed chiral asymmetry of the cells.

04)(05) (g g

(n,m)
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FIG. 7. Time evolution of the phase of the Fourier-Bessel coef- FIG. 9. Magnitudes of the relevant Fourier-Bessel coefficients
ficientsz,, (solid line) andz,, (dashed ling The angular velocity of ~ for the cellular state with two counter-rotating rings. These magni-
the ring is seen to be constant. tudes vary periodically in time, resulting in periodic modulations of

the cell shape.

tal state. The stability of such complex states depends sensi-

tively on the control parameters chosen for the model. With

the approximations that have gone into the derivation of the

KS equation and our arbitrary choice efandv, we do not VI. CONCLUSIONS AND DISCUSSION

expect, necessarily, to obtain the exact states observed in the \ye have carried out a successful numerical integration of

experiment. However, that we are able to obtain patternghe Kuramoto-Sivashinsky equation in a circular domain.

with the similar qualitative features is significant; they can berhjs was made possible by the use of distributed approximat-
used to develop a modal decomposition of these states and gy functionals, which allowed accurate estimations of the
develop an understanding of the mechanisms generating

them.

As seen from Fig. 9, the principal modes of the counter- @
rotating state ar&,; andWg,;, which correspond to the two
rings of cells. Smaller componentsot shown of ¥,; and 2
W61 Which are not in phase with the principal modes pro-
duce the asymmetry of the cells and their motion. Fourier- «
Bessel analysis of the state reveals that the rotation of the he
cells is periodic rather that uniforiisee Fig. 10 It can also
be checked that the magnitudes of the Fourier-Bessel coeffi
cients, and hence the shape of the cells, are periodic in time
It would be virtually impossible to glean such information by
direct observation of the spatio-temporal dynamics. To the

'
N
T

0 200 400 600 800

best of our knowledge, complex, nonuniform motion of this .
type has never been observed before in model systems witl
circular symmetry. .
)
2}
g o
2 B
-4
@ ®) 0 200 490 600 800

FIG. 8. (a) A solution of the KS equation with two counter- FIG. 10. Time evolution of the phases @) z,; and (b) zg;
rotating rings of cells. The inner ring of two cells moves counter-confirm the sense of rotation of each ring of Figa)8and indicate
clockwise while the outer ring moves clockwise with a smaller that the angular velocity of each ring is periodic in time. The peri-
angular velocity. This solution is generated witk 0.7, =0.02, odicity of the angular velocity is identical to that of the modulations
andR=12.0.(b) An analogous state on the flame front. in the cell shape.
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spatial derivatives from values of the field given on a polarcoefficients of the states confirmed that cells in stationary
grid. A semi-implicit method, complemented by the use ofrings are chirally symmetric, while those in rotating rings are

DAF’s introduced here, provided the ability to take largenot. The analysis also allows us to deduce the nature of ro-
time steps in the computations. The methods discussed caation of the rings.

be used to integrate other nonlinear partial differential equa-
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