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Abstract

Cycling behavior, in which solution trajectories linger around steady-states and
periodic solutions, is known to be a generic feature of continuous dynamical systems
with symmetry. This phenomenon is commonly found in models of coupled cell systems
of differential equations. In this type of systems, cycling behavior can even occur as a
feature of the global dynamics independently of the internal dynamics of each cell. This
conclusion has lead to the discovery of “cycling chaos”, in which solution trajectories
cycle around symmetrically related chaotic sets. In particular, Dellnitz et al. [4] have
demonstrated the existence of cycling chaos using Chua’s circuit equations and Lorenz
equations. In this work, we demonstrate that cycling behavior also occurs in discrete
dynamical systems. More specifically, we use the cubic map f(z, ) = Az — 23 to build
a coupled system of difference equations, and then prove the existence of structurally
stable cycles between fixed points of the dynamics of each cell. Moreover, we use
numerical simulations to illustrate that the resulting cycles persist independently of
the internal dynamics of each difference equation, as it happens in coupled cell systems
of differential equations. Then we demonstrate the existence of cycles involving periodic
orbits of the internal dynamics of each cell. Furthermore, we demonstrate that cycling
chaos can also occur in coupled systems of difference equations.

1 Introduction

In simple terms, a heteroclinic cycle is a collection of solution trajectories that connects se-
quences of equilibria and/or periodic solutions of continuous and discrete systems. As time
evolves, a typical nearby trajectory stays for increasingly longer periods near each solution
before it makes a rapid excursion to the next solution. For a more precise description of



heteroclinic cycles and their stability, see Melbourne et al. [11], Krupa and Melbourne [9],
the monograph by Field [6], and the survey article by Krupa [8]. We should emphasize that
although the overall behavior of a heteroclinic cycle is to switch between different forms
of solutions or orbits, the switching does not occur periodically. In this sense, heteroclinic
cycles and the more common use of the word cycle, which in difference equations is normally
associated with periodic orbits, are disntiguished. In what follows, however, we use the
word “cycles” to refer to heteroclinic cycles. The existence of structurally stable heteroclinic
cycles, i.e., cycles whose topology can not be changed by arbitrarily small perturbations, is
considered a highly degenerate feature of both types of systems, continuous and discrete. In
other words, typically they do not exist. In continuous systems, where the governing equa-
tions normally consist of systems of differential equations, it is well-known that the presence
of symmetry can, however, lead to structurally stable, asymptotically stable, cycles [5, 7].
First, symmetry forces certain subspaces of the phase-space to be invariant under the govern-
ing equations. Then, cycles are formed through saddle-sink connections between equilibria
and/or periodic solutions that lye on the invariant subspaces. As time evolves, a typical
nearby trajectory would stay for increasingly longer periods of time lingering around each
equilibrium or periodic solution. And since saddle-sink connections are structurally stable
so are the cycles.

For systems whose symmetries are described by the continuous group O(2), i.e. the
group of rotations and reflections on the plane, Armbruster et al. [1] show that heteroclinic
cycles between steady-states can occur stably, and Melbourne et al. [11] provide a method
for finding cycles that involve steady-states as well as periodic solutions. For systems with
discrete symmetries, in particular Dihedral D,, symmetry, Buono et al. [2] show that cycles
connecting steady-states and periodic solutions are also found stably in systems of coupled
identical cells. Regardless of the type of symmetry in the system, when a heteroclinic cycle
is also asymptotically stable, it can serve as a model for a certain kind of intermittency, since
nearby trajectories move quickly between solutions (equilibria and periodic solutions) and
stay for a relatively long time near each solution.

Similar structures of saddle-sink connections can also lead, in principle, to more complex
cycles. The only requirement is for the invariant subspace to contain more complicated
type of solutions. For instance, replacing the equilibria in the Guckenheimer-Holmes system
with chaotic attractors can lead to what Dellnitz et al. [4] call cycling chaos. They do this
as follows. First, Golubitsky et al. [4] show that the Guckenheimer-Holmes system can be
interpreted as a network of three identical coupled cells. Using an appropriate choice of
coupling function, they model the network by a system of differential equations of the form

dX;

P f(Xi) + Z@ijh(Xia X;), (1)
Jj—i
where X; = (z;1,...,24) € RF denotes the state variables of cell i, f governs the internal

dynamics of each cell, A is the coupling function between two cells, the summation is taken
over those cells 7 that are coupled to cell ¢, and «;; is a matrix of coupling strengths. Dellnitz
et al. [4] then made the critical observation that, under certain conditions, cycling behavior



is a feature of the global dynamics that can persist independently of the internal dynamics
of each cell. It follows that if the internal dynamics of the Guckenheimer-Holmes system is
replaced by a dynamical system set to produce a chaotic attractor, then the new coupled
system would produce cycling chaos. Dellnitz et al. demonstrate this conclusion using first
Chua’s circuit and then Lorenz equations.

Although the existence and stability of heteroclinic cycles in continuous symmetric sys-
tems of differential equations has been fully explored, little is known, however, about the
existence of these cycles in symmetric systems of difference equations. In previous work [12]
we explored numerically the existence of cycling behavior in coupled systems of difference
equations. In this work, we now prove the existence of structurally stable heteroclinic cy-
cles between fixed points of a network of coupled cells, where the internal cell dynamics
is modeled by one-dimensional iterative maps. We demonstrate that systems of difference
equations can also exhibit a wide variety of cycles connecting fixed points with fixed points,
and periodic orbits (of arbitrary period) with periodic orbits. More importantly, we show
that cycling behavior can also exist independently of the internal dynamics of each cell,
as is the case of continuous systems. Consequently, cycling chaos in systems of difference
equations is also possible and we illustrate its occurrence with a few examples.

2 Background

2.1 Coupled Cell Systems of Difference Equations

In this work, we consider coupled cell systems similar to those used by Dellnitz et al. [4] in the
study of cycling chaos, except that now we assume the internal dynamics of each cell to be
governed by difference equations. In particular, we consider systems with NV identical cells,
where the internal dynamics of each cell is governed by a k-dimensional difference equation
of the form

Xin+1 = f(XZna )‘) (2)
where X; = (z4,,..,7;,) € RF denotes the state variable of cell i and A = (Ay,...,,) is
a vector of parameters. A network of cells is a collection of identical interconnected cells,
which in the case of N cells it can be modeled by a system of coupled difference equations
of the form

X’in+1 = f(XZn’ )‘) + Z a'ijh(Xiw Xjn)’ (3)
Jj—
where h is the coupling function between those cells j that are coupled to cell 7, 1 <7 < N,
and «;; represents the strength of the coupling. Observe that f is independent of ¢ because
the cells are assumed to be identical. Similarly, h is also independent of both ¢+ and j due to
identical coupling. Additionally, if we let X = (X1,..., Xx) denote the state variable of the
network, then we can write (3) in the simpler form

Xpi1 = F(X, V).



2.2 Local and Global Symmetries

Following Dellnitz et al. [4], we distinguish local symmetries from global symmetries. £ C
O(k) is the group of local or internal symmetries of individual cells if, for all | € £, we have

fX5) = 1f(X5).

While local symmetries are dictated by f, global symmetries are induced by the pattern
of coupling. More precisely, G C O(N) is the group of global symmetries of the network if,
for all o € G, we have

F(o X) =0oF(X).

Depending on the coupling function h, it is possible for the local symmetries [ to be also
symmetries of the network equations (3). In particular, when the action of [ on each cell
individually is a symmetry of (3), so that

h(l Xi, X;) = h(Xi, Xj),

for all [ € £, then the coupling is called wreath product coupling.

2.3 Case Study: A Network with Three Cells

For illustrative purposes, in the following sections we will consider systems of three identical
cells coupled in a directed ring, that is Cell 1 rightarrow Cell 2 rightarrow Cell 3 rightarrow
Cell 1. In this case Z3, the group of cyclic permutations of three objects, is the underlying
group of global symmetries of the network. The action of this group is generated by the
permutations

(z,y,2) = (2,2,y).

Also, we will restrict our analysis to cells whose internal dynamics is one-dimensional,
i.e. £ =1. We will assume wreath product coupling of identical strength given by a;; = —7,
where v > 0. Next we demonstrate that under these assumptions the corresponding network
equations can produce cycling behavior that would connect orbits of the internal dynamics
of each cell. Similar ideas can be applied to systems with larger number of cells and with
higher dimensional internal dynamics.

3 A Network with Local Z; Symmetry

In this Section we consider a network of three cells, where the internal dynamics of an
individual cell is governed by the Zjy-symmetric cubic map

flz,N) =Xz — 2% X>0, (4)

where Zy = {1, —1}. The bifurcation diagram of Figure 1 shows that this map exhibits a wide
range of complex behavior that includes period-doubling cascades and chaotic attractors. In



fact, the bifurcations in (4) are reminiscent of those found in the logistic map [13], except
that now local Zy-symmetry forces two nontrivial fixed points (one with z > 0 and one
with < 0) to bifurcate from the trivial solution z = 0 at A = 1. Each fixed point, in
turn, undergoes a period-doubling cascade leading to a pair of chaotic attractors. Local Zg
symmetry again forces the cascades to occur at the same parameter values for each fixed
point [3]. For A < A, = 31/3/2, the attractors are confined to opposite sides of the z = 0
axis and each attractor has its own basin of attraction. At A = \., the basins of attraction
collide and the two attractors merge into a single one. Rogers and Whitley [14] provide a
more comprehensive analysis of a similar map f(z,a) = az® + (1 —a)z, 0 <a < 4.
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Figure 1: Bifurcation diagram for a cell with internal dynamics f(z,\) = Az — .

To form the interconnected network equations (3), we consider a wreath product coupling
function of the form

where 0 < m < 1. Observe that, as expected, h is equivariant under the Z, action. The
three-cells network, which possesses local Z,-symmetry and global Z3-symmetry, then takes
the form

Tn = AT, — 23 —ly|™z,
Yo = Nn—Yp — Y|2"Yn (6)
Zn = Azp— 22— ylz|™z,

The value of the coupling strength v and the parameter m are critical for the creation of
cycling behavior because they control the global dynamics away from the internal dynamics
of an individual cell. More specifically, the fact that 0 < m < 1 prevents the global dynamics
from escaping to infinity and controls the rate at which the excursions from the dynamics
of one cell to the next one occur. As m decreases, a typical orbit near a cycle spends longer
time lingering around the dynamics of an active cell before it makes an excursion to the
dynamics of the next cell.



3.1 Existence of Structurally Stable Cycles

To demonstrate the existence of heteroclinic cycles, we assume v and m to be fixed, and
view (6) as a bifurcation problem in A\. We first restrict our attention to the parameter
interval 1 < A < 2, where the internal dynamics of each cell is determined by the nonzero
fixed point v/ A — 1. We then seek conditions that can guarantee the existence of structurally
stable saddle-sink connections between these fixed points, which are those of the coupled
system (6) lying on the orthogonal axes. That is, E;(+v A — 1,0,0), E5(0, £\ — 1,0), and
E3(0,0,++/X —1). Structurally stability will then guarantee that the cycle can persist to
small perturbations so long as the symmetry of the network is preserved.

Now, let Py, P,,, and P,,, denote the orthogonal planes zy, zz, and yz, respectively.
Direct calculations of the Jacobian matrix yields the eigenvalues of each fixed point. For
each fixed point, the eigenvalues along the tangent directions, i.e. the orthogonal axes, are
6, = 3—2), while on the orthogonal planes the eigenvalues are , = A and &3 = A—y(A—1)™/2,
see Table 1 for a detailed list. The fact that the spectrum of eigenvalues is the same at each
fixed point, is a consequence of F, E5, and Ej3, being symmetrically related under the action
of Zs, i.e. Z3- F1 = E5, Z3- Es = E3, and Z3 - E3 = E. These results are needed to assert
the existence of a cycle.

Fixed Point P,, P, P,
E, A A—y(A—1)m/2
E, A=y —1)™/2 A
E; A—y(A=1)m/2 A

Table 1: Eigenvalues of fixed points of (6) along the orthogonal z, y and z axes.

Theorem 3.1 Consider the coupled cell system (6). For 1 < X\ < 2, there exists a branch
of robust heteroclinic cycles connecting the fized points (in the same order of appearance)
Ey(£VA —=1,0,0) with Ey(0, £v/X — 1,0) with E3(0,0,£v/X —1) if (A= 1)™?2 < v < \/f*,
where f* = sup{\x — 23} on 1 < A\ < 2. The actual sign of the fized point that the cycle
wisits depends on the initial conditions of the internal dynamics of each cell.

Proof:  Observe that A > 0 implies that the trivial fixed point (0,0, 0) is subcritically
asymptotically stable, while the nontrivial fixed points E;, Es, and Ej, are supercritical. In
order to prove the existence of a cycle of the form F; — F, — FEj5, we must show that in
each orthogonal plane three conditions are satisfied.

1. Orbits of (6) are invariant.

2. One fixed point is a saddle and the other a sink. Specifically, F; is a saddle and E5 a
sink in P,,; E» is a saddle and Ej3 a sink in P,,; E3 is a saddle and E; a sink in P,,.
A cycle in the reverse direction can also be constructed by interchanging saddles and

sinks.



3. There are no other fixed points.
4. Orbits are bounded near the origin.

Part 1 follows from direct substitution of z = 0, y = 0, and z = 0 into (6). We verify

part 2 as follows. Consider the transition E; ﬂ) FE>. Since 1 < A < 2, it follows that
61| < 1, 8] > 1. Also, from the assumption (A — 1)™? < v < A/f* and the fact that
5 =2y8/27 > 1, we get (A\—1)™2 < v < A\/f* < XA < A(A—1)"2. Direct work on
this last inequality leads to 0 < A — (A — 1)™2 < 1, so that |03| < 1. Then it follows from
Table 1 that, inside P,,, E) is a saddle while Fj is a sink. Z3 symmetry forces the spectrum
of eigenvalues to be the same on each plane. This fact and the rest of the entries in Table 1
complete part 2. We now verify part 3. On the P, plane, the only other fixed point is
Equy(£y/Z1, +/71), where z; = A — 1 — y(A —1)™?2 and y; = A — 1. But we just showed
that 0 < A — (A — 1)™2 < 1, which now implies that z; < 0 so that no other fixed point
exists on P,,. By Z3 symmetry, this conclusion applies also to the other two planes. We now
verify part 4. Consider again the plane P, and initial conditions within a circle of radius 1.
Observe that on the P, plane the dynamics of the y cell is independent of the z cell. That
is, the coupled system has a skew product structure

Tp = )\xn_ 2_’7|yn|mxn
Yn = Ay — U,

Since the y cell behaves freely, we then know (see Figure 1) that if 1 < A < 2 and |yo| < 1
then |y,| converges to the fixed point v/ A — 1. We write the dynamics of the x cell in the
form 2,11 = (A — |yn|™)x, — 23 and interpret y, as a varying auxiliary parameter so that
the principal parameter is now A, = A — v|y,|™, i.e. a translation of A by ~|y,|™. The
assumptions ¥ < A/f*and 1 < A < 2imply 0 < A — ffvy < A -7y < A, < A < 2.
Consequently, 0 < A\, < 2 and if |zg| < 1 then z, converges to /A, if 1 < )\, < 2, or it
converges to 0if 0 < )\, < 1. But |y,| — v/A — 1 implies that A, — A—~v(A—1)"™2 and since
0 < A—~vy(A—1)"2 < 1, we then conclude that x, must converge to 0 and, consequently,
(%, yn) remains bounded near the origin. Hence, when 1 < A < 2, 1-4 show the existence of
a structurally stable heteroclinic cycle.

[ R

A similar procedure but now applied to F’* can be used to prove the existence of cycles
between periodic orbits and chaotic sets. We leave this task for future work. Next, we
show results of simulations that include a cycle between fixed points, as is predicted by
Theorem 3.1, as well as other type of cycles in which switching between conjugate orbits can
occur.

3.2 Results of Simulations

We now verify the existence of a heteroclinic cycle between fixed points, which is guaranteed
by Theorem 3.1, through numerical simulations of (6). Additionally, we explore numerically



the implications of the theorem towards the existence of more complicated cycles involving
periodic and chaotic orbits. Following the assumptions of Theorem 3.1, we consider first the
interval 1 < A < 2 and coupling strength v < A/f*. Using initial conditions (zo, yo, 20) =
(—0.01,0.03,0.02) and parameter values A = 1.5, v = 1.0, m = 1/2, simulations of the
coupled system (6) reveal the cycle predicted by Theorem 3.1, see Figure 2(a). Observe that
when a cell becomes active that cell always selects the same of the two conjugate fixed points
of its internal dynamics, either positive or negative. The actual sign of the fixed point that
is selected depends on the initial conditions of the active cell.
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Figure 2: Two types of cycles connecting fixed points of f(z,\) = Az —2* at A = 1.5. Initial
conditions (xg, %o, 20) = (—0.01,0.03,0.02). (a) Under weak coupling, v = 1.0, an active cell
always shows the same of two conjugate solutions. (b) With strong coupling, v = 2.795,
however, an active cell can switch between two conjugate solutions.

As the coupling strength is gradually increased, a typical orbit near the cycle spends
longer time lingering around each fixed point. When 7 is increased passed the threshold value
A/ f* the cycle finally disappears. If 7y is further increased, however, a second region appears
in which cycling behavior is also observed. For instance, Figure 2(b) shows simulation
results of a cycle found at v = 2.75, all other parameters and initial conditions are the
same. Observe that now each cell switches intermittently between conjugate fixed points.
In order to get insight into the development of this second type of cycle, we construct two
bifurcation diagrams for the coupled cell system (6). In the first diagram, we hold A fixed
while the coupling strength ~ varies, and plot the x,, orbit. In particular, we use the same
value of A, i.e. A = 1.5, that was used to create the cycles of Figure 2. We also set xy < 0.
The resulting diagram, shown in Figure 3(a), confirms the existence of heteroclinic cycles as
predicted by Theorem 3.1. That is, within the region 0.84 &~ (A — 1)™? < v < \/f* ~ 1.38,
we observe through the dynamics of the x cell that orbits of the coupled system cycle around



2 = 0 and the nonzero fixed point z = —1/1.5 — 1. In every one of these cycles, when the
x cell becomes active that cell always selects the same fixed point. For larger values of the
coupling strength, such as A > 2.5, the diagram reveals the appearance of the second type
of cycling behavior that was depicted in Figure 2(b), so that when a cell becomes active,
that cell has the ability to switch between conjugate fixed points without changing its initial
conditions. To construct the second bifurcation diagram, we hold ~ fixed and vary A\. We set
v = 2.75 so that we can get insight into the cycles that appear when the coupling is strong.
The diagram, see Figure 3(b), reveals that for a fixed value of A\, within the approximate
interval 1.3 < A < 3, the activity of the = cell can switch between conjugate orbits of its
local dynamics, as is determined by the value of A in (4).

Figure 3: Bifurcation diagrams of the coupled cell system (6). (a) For weak coupling (0.84 <
v < 1.38), at A = 1.5 the orbit around an active x cell always exhibits the same fixed point.
With significantly stronger coupling, however, the orbit can switch between conjugate fixed
points. (b) For 1.3 < A < 3 and v = 2.795, the global dynamics makes repeated excursions
between zero and the two conjugate orbits of the local dynamics of the x cell.

For Ain 2 < A < A, the internal dynamics of each cell in (6) undergoes a period-doubling
cascade leading to a pair of chaotic attractors as was shown in Figure 1. Under a suitable
selection of values for the other parameters, we also find trajectories that cycle around the
orbits generated by the internal dynamics of each cell. That is, if at a specific value of A
the internal dynamics of each cell produces a periodic orbit, then we expect to find a cycle
connecting those periodic orbits. In a similar fashion, we can expect to find cycles that make
repeated excursions between chaotic attractors, so long as the main bifurcation parameter
is set to yield a chaotic orbit for the internal dynamics of each cell. A typical trajectory in
any of these cycles produces a pattern in which, at any given time, one of the cells is active
(in a fixed point, periodic orbit or chaotic orbit) while the remaining two are quiescent.
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Depending on the coupling strength, two types of cycling patterns are also observed. With
relatively weak coupling, an active cell always visits the same of two conjugate orbits, as in
Figure 2. With strong coupling, we find again a second type of cycle in which the active
cell can switch intermittently between conjugate orbits. For instance, Figure 4 illustrates a
cycle of the former type (same conjugate orbit) involving period-two orbits. These orbits
are found near the period-doubling bifurcation of the nonzero fixed point, i.e. near A = 2.
To aid in the visualization of the cycle, continuous lines are superimposed over the discrete
orbits. As the period-doubling cascade in the internal dynamics of each cell evolves, cycles
involving periodic orbits of higher period also occur robustly. A representative example with
random switching between conjugate period-4 orbits is shown in Figure 5.
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Figure 4: Heteroclinic cycle connecting period-two orbits of f(z,\) = Az — z®. Parameters
are: A = 2.2, coupling strength v = 1.7, and m = 1/2. Initial conditions (x¢,yo,20) =
(—0.01,0.03,0.02).

Cycling behavior also occurs at values of the bifurcation parameter (within 1 < X < \,)
where the attractor is a chaotic orbit. For instance, at A\ = 2.44 calculations of Lyapunov
exponents (not shown for brevity) confirm the existence of an asymmetric chaotic attractor
filling parts of the interval [0,2]. Local Z, symmetry in the internal dynamics of each cell
forces the existence of a conjugate chaotic attractor within [-2,0]. Depending on the coupling
strength, we find two types of cycles connecting chaotic orbits. With v = 2.7, for instance,
we observe through Figure 6 cycling chaos that is qualitatively similar to the one found by
Dellnitz et al. [4] using Chua’s continuous circuit model. That is, an active cell switches
randomly between two conjugate chaotic orbits. With a different value of coupling strength
v = 1.9, the cycling chaos persists but active cells can no longer switch between conjugate
chaotic orbits. This latter type of cycle (not shown for brevity) does not seem to appear in
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Figure 5: (a) Heteroclinic cycle connecting period-four orbits of f(z,\) = Az —z3 at A = 2.3
and coupling strength v = 2.91. Initial conditions (xg, yo, 20) = (—0.01,0.03,0.02). Observe
that when a cell becomes active that cell can switch between two conjugate period-4 orbits.
(b) Magnification of cycle shown in (a).

Dellnitz et al. [4].

At A = )., the basins of attraction of the two chaotic attractors collide and the two
attractors merge into one. For values of \ slightly greater than \., Manneville[10] shows
that the internal dynamics of each map, in the uncoupled system, produces an intermittent
orbit that switches between the remnants of the two attractors. When the cells are coupled,
we obtain a third type of cycling chaos (see Figure 7) in which switching between the two
remnants of the attractors occurs during the interval of activity of each cell.

4 A Network with Local Trivial Symmetry

In our second example, we assume that the internal dynamics of each cell is governed by the
standard logistic map

flz, ) = Az(1 —2), (7)

where 0 < A < 4. The local symmetry is now determined by the identity group 1. We also
employ a wreath product coupling function of the form

h(zi, z;) = |zj|™ s (8)
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Figure 6: (a) Cycling chaos connecting chaotic attractors of the coupled cell system (6).
Parameters are: A = 2.44, coupling strength v = 2.71, m = 1/2. Initial conditions
(.T(), Yo, Z()) = (—001, 003,002)

where 0 < m < 1. Similar to our previous example, the network equations acquire the form

Tn = Arp(l—z,) —v]y|™z,
Yn = MNn(1—Yn) —72"Yn 9)
Zn = Azp(1— z) — v|z|™2p.

Different combinations of parameters values for m, A, and coupling strength ~, yield
cycling behavior between orbits of the internal dynamics of each cell. The wide variety of
orbits in the logistic map, which now governs the internal dynamics of individual cells, also
leads to a full range of cycles connecting fixed points with fixed points, periodic orbits with
periodic orbits, and chaotic attractors with chaotic attractors. However, due to the lack
of conjugate orbits, there is only one type of cycle in which the same orbit of each cell is
always visited by the cycle. For brevity purposes, we illustrate through Figure 8 cycling
chaos obtained at two different values of A where the logistic map is known to yield chaotic
orbits. Observe that when A = 3.8, cell oscillations are confined to a subinterval of the
interval [0, 1], while when A = 4.0, the oscillations fill the entire unit interval [0,1]. This
behavior is consistent with the chaotic attractors of the logistic map.

5 Conclusions and Future Directions

We have proved that cycling behavior between fixed points of coupled cell systems of dif-
ference equations can occur robustly. More importantly, we have shown that, under certain
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Figure 7: Intermittent cycling chaos in the coupled cell system (6). Initial conditions
(%0, Y0, 20) = (—0.01,0.03,0.02) (a) Near \., with coupling strength v = 2.1, switching
between remnants of two chaotic attractors occurs frequently. (b) Away from A, with cou-
pling strength v = 2.2, cycling chaos persists and the mergence of the two attractors is more
uniform over [0,2].

conditions, when the internal dynamics of individual cells is replaced by periodic orbits, or
even chaotic attractors, the cycles persist. Thus, cycling behavior in difference equations, as
is the case in their continuous version, can be a global phenomenon that persists indepen-
dently of the local dynamics of individual cells. Although this assertions has been verified
for networks of identical cells, it is still unknown (to the best of my knowledge) whether the
cycling phenomenon can persist even if the cells are not exactly identical. To answer this
question, the next natural step is to consider networks with near identical cells. Cycling
behavior in these latter type of networks, if it exists, could involve excursions between a
wider variety of orbits. For instance, we could speculate the existence of a cycle visiting
fixed points, periodic orbits, and chaotic attractors, all in one single trajectory of the global
dynamics. We anticipate to continue future work in this direction.
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