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Abstract

The heartbeat of the medicinal leech is driven by direct contact between two arrays of motorneurons and two lateral
blood vessels. At any given time, motorneurons exhibit one of two alternating states so that, on one side of the animal, the
heart beats in a rear-to-front fashion (peristaltic), while on the other side the heart beats synchronously. Every 20 heartbeats,
approximately, the two sides switch modes. It is known that the heartbeat rhythm is generated through burst of oscillatory
activity produced by a central pattern generator (CPG) network of neurons. However, to the best of our knowledge, how
the CPG activity is translated into peristaltic and synchronous rhythms in the motorneurons is yet unknown. In this work,
we use symmetric systems of differential equations, accompanied with computational simulations, to investigate possible
mechanisms for generating the motorneuron activity that characterizes the heartbeat of leeches and in particular the switching
scenario.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Central pattern generators (CPGs) are networks of neurons, located in the central nervous system (CNS), whose
function is to generate the rhythmic activity for various physiological functions such as locomotion, mastication and
respiration [8,22]. To initiate a particular function, first the CNS translates the CPG rhythm into a coordinated pattern
of activity and then, it sends it to motorneurons innervating muscle fibers. In many cases, the coordinated pattern is
just a faithful image of the CPG rhythm. For instance, in many invertebrates and primitive vertebrates [14], it has
been established that the fictive locomotion produced by the CPG and the actual rhythmic motor output are similar.
This fact is often used as a modeling assumption for constructing realistic mathematical models for locomotor
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CPG [1]. Many of these models, in turn, have already provided useful insight into the biological mechanisms for
generating vertebrate locomotion [8]. Of particular interest to this work is the rhythmic activity of the heartbeat
of the medicinal leech, which is also generated and controlled by a CPG [7]. In this case, however, the activity of
the CPG does not translate, in a simple way, directly into the activity of the motorneurons that excite the muscles
of the blood vessels to produce the heartbeat rhythm [28–30]. Instead, the motorneurons exhibit two alternating
patterns of oscillations called synchronous and peristaltic. In the synchronous pattern, all motorneurons oscillate in
phase with each other, while in the peristaltic state a rear-to-front wave of rhythmic activity propagates among the
motorneurons. While on one side the motorneurons support a synchronous pattern, the motorneurons on the other
side fire in a peristaltic pattern and after about 20 cycles the motorneuron networks on each side switch activity to
the other pattern.

An important problem for theoretical and experimental biologists is to elucidate the properties that determine the
behavior of any given network of neurons [15]. These properties normally include: intrinsic dynamics of neurons,
network connectivity (i.e., which neurons communicate with each other), type of coupling between connected
neurons, and network dynamics [15]. In the particular case of the leech’s heartbeat, properties of the CPG have
been studied for many years, see [5–7,12,19,23,25]. However, there have been only a few attempts [10,28–30] at
understanding the properties of the motorneuron network and the interplay with the CPG dynamics. Golubitsky
and Stewart [10] address the problem of describing the motorneuron dynamics through a network of coupled cells
with Z2-symmetry, and with an architecture that resembles the CPG-motorneurons network. By introducing the
concept of “interior symmetries”, they are able to reproduce simultaneously (for the left and right subnetworks)
synchronous and peristaltic states as a unique periodic solution, called synchro-traveling, of the entire coupled cell
system. The problem of describing the periodic switching between synchro-traveling states, however, has not been
addressed yet.

In this paper, we also study the synchronous and peristaltic oscillations that characterize the dynamics of the
motorneurons that drive the heartbeat of the leech. However, we now propose an alternative approach to describe not
only synchronous and peristaltic states but also the periodic switching problem. Since synchronous and peristaltic
rhythms are common in systems of symmetrically coupled cells with symmetry group containing cyclic groups
[2,11,13], our approach is based on approximating the network of motorneurons by a coupled system ofn cells
with Dn-symmetry. We then consider the output from the CPG network as a forcing term acting on the motorneuron
network. The main contributions of our approach are model independent and they can be summarized as follows.
We assume that both oscillation patterns, synchronous and peristaltic, can be created via bifurcations of periodic
solutions that occur in the neighborhood of a Hopf/Hopf bifurcation in the coupled cell system or network with
Dn-symmetry. Under this assumption, each branch of periodic solution has its own natural frequency of oscillation,
independent of the frequency of other branches. Using numerical simulations, we then show the dependency of
the frequency of synchronous and peristaltic oscillations on the driving frequency of the CPG. More specifically,
we show how the output from the CPG can lead to frequency entrainment between synchronous and peristaltic
oscillations, which is consistent with experimental results. Finally, we also propose a mechanism through which
the inhibitory input from the CPG can induce periodic transitions between synchronous and peristaltic oscillations.

The paper is structured as follows. In Section 2 we present a detailed review of the structure and dynamics of
the leech’s heartbeat CPG and the oscillation patterns in the motorneurons. In Section 3 we explain the modeling
assumptions that lead us to consider arrays of coupled motorneurons withDn-symmetry. We model these arrays by
systems of coupled identical cells and explain the assumption that both states, synchronous and peristaltic, can arise
via Hopf/Hopf mode interaction from a trivial solution. To be more precise, the synchronous state via a standard
Hopf bifurcation and the peristaltic state via a symmetry-breaking Hopf bifurcation. In Section 4 we derive a system
of differential equations, in normal form, consistent with theDn-symmetry of the network. We use the normal
forms to study Hopf/Hopf mode interactions. More importantly, we argue that the frequency of synchronous and
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peristaltic oscillations can be entrained with the frequency of the periodic forcing output from the CPG. We then
present numerical simulations showing the in-phase and peristaltic states oscillating at the driving frequency of
the CPG. In Section 6, we illustrate how the CPG output can force the oscillators to switch activity between two
periodic solutions—one representing the synchronous state and one representing the peristaltic state. We conclude
with a discussion where we compare our work with other modeling approaches.

2. Background on motorneuron and CPG dynamics

The heartbeat of the medicinal leech is composed of contractive rhythms executed by two muscular lateral blood
vessels, which together with ventral and dorsal vessels form the circulatory system of the animal [7]. The rhythms
of the blood vessels is driven by bursting activity from pairs of lateralheart motorneurons located in ganglia 3–18.
Motorneurons on one side burst either with a synchronous pattern or a peristaltic pattern [7,12,19]. In the former
case, all motorneurons burst in phase, and consequently, all blood vessels constrict simultaneously on all their
length. In the latter case, the burst is in a rear-to-front fashion, thus producing a traveling wave of contracting blood
vessels. These two types of myogenic rhythms are coordinated so that, while one side beats synchronously, the other
beats peristaltically. Every 20 heartbeats, approximately, the two sides switch coordination states. Moreover, both
types of oscillating patterns have the same frequency (Calabrese, personal communication).

Experiments conducted by Calabrese and collaborators [23,25] reveal that motorneurons behave as identical
oscillators. Each oscillator fires tonically when it is isolated. Bursting activity in the motorneurons is then induced
and controlled by cyclic inhibitory signals produced by a heartbeat CPG. The CPG consists of seven identified pairs
of heart interneurons located in the first seven segmental ganglia, see Fig. 1.

Fig. 1. Schematic diagram of networks of motorneurons and heart interneurons that generate the heartbeat of leeches. Motorneurons drive the
heart rhythm by direct contact with blood vessels. In turn, the activity of the motorneurons is controlled, via inhibitory synapses (filled circles)
by a CPG formed by heart interneurons. Shaded neurons fire synchronously with one another and out-of-phase with those not shaded.
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Following the notation in [7], we denote by HN(i) a heart interneuron in gangliai. Similarly, HE(i) denotes a
motorneuron in gangliai. The first four pairs of interneurons form a subnetwork, called thebeat timing network. The
two pairs of cells from the third and fourth ganglia, HN(3) and HN(4), drive the activity of this subnetwork. Each
pair is connected to each other by reciprocal inhibitory synapses which allow them to produce alternating bursts of
activity [6,7]. The other interneurons of the first and second ganglia act as coupling fibers connecting HN(3) and
HN(4). The function of the timing network is to reset and entrain the rhythm of the entire CPG as follows. First,
the timing network induces cells in the fifth ganglion into a high-frequency burst by interrupting their tonic action
potential with inhibitory postsynaptic bursting input from cells HN(3) and HN(4). At any given time, only one of the
HN(5) cells is active, while the other remains almost silent. Then, the active cell transfers, via inhibitory synapses,
the activity of its ipsilateral side of HN(3) and HN(4) to both interneurons of the sixth and seventh ganglia. As a
consequence, interneurons HN(6) and HN(7) oscillate in synchrony with each other, and with those cells HN(3)
and HN(4) that are ipsilateral to the active HN(5) cell. Furthermore, all cells oscillate with the same wave form and
with the same phase.

A critical experimental observation is the fact that the side of the body ipsilateral to the inactive HN(5) cell exhibits
the peristaltic bursting mode, while the side ipsilateral to the active HN(5) interneuron shows the synchronous
mode. When HN(5) switches activity state, the motorneurons switch their dynamics, see Fig. 2. For this reason, the
HN(5) cells have been calledswitching interneurons and have been attributed the function of controlling the two
coordination states. Now, since cells HN(3), HN(4), HN(6) and HN(7) are directly connected with the motorneurons,
their activity generates the rhythmic activity seen in the motorneurons. Thus, when the activity of cells HN(3) and
HN(4) is synchronized with that of cells HN(6) and HN(7), its ipsilateral side displays the synchronous mode,
while when they are out-of-phase the ipsilateral side exhibits the peristaltic mode. Consequently, a fundamental
problem is to understand how synchronous and out-of-phase rhythms in the CPG are translated into synchronous
and peristaltic activity in the motorneuron network.

We now focus our attention on the interaction between interneurons in the CPG and motorneurons. Although
the work by Thompson and Stent [28–30] and personal communication with Calabrese indicates that motorneurons

Fig. 2. Switching of activity by interneuron HN(5) induces a change of heart coordination state on each side of the leech.
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are not directly connected to one another, it is possible that they might communicate through the axons that carry
the inhibitory input from heart interneurons. Evidence of this type of communication is explained in the following
section. Even if our type of network does not reflect exactly the anatomical connections in the body of the leech,
we aim this work at gaining useful insight in the analysis of motorneuron switching patterns.

3. Modeling assumptions for network equations

The experimental works of Thompson and Stent [28–30] and Calabrese and coworkers [12] reveal a complex set
of connections between heart interneurons and motorneurons as is shown in Fig. 3. Although the diagram shows
no synaptic connections between motorneurons, it is possible for motorneurons to communicate viaantidromic
signals, or rectifying signals as they are described in the same work by Thompson and Stent. Next we explain
this biological issue in more detail. Early work in theoretical and computational neuroscience assumed that action
potential initiation in neurons of the CNS occurs primarily in the axon initial segment adjacent to the cell body
(soma); that such action potential travels only along output axons; that dendrites behaved as passive cables; and
that only dendrites and cell bodies could act as receptive areas for synaptic inputs [18]. Over the years, however,
many experimental studies have shown that neural cells are far more complicated and, as a result, some of these
assumptions had to be re-examined. For instance, it is now known that many dendrites of pyramidal cells are elec-
trically active with voltage-dependent membrane conductances [17]. More importantly, experiments in neocortical
pyramidal neurons have revealed that action potentials can also propagate backwards into the dendritic tree [26,27].
Furthermore, backward propagation has shown to be critical in explaining synaptic plasticity in Hebbian learning
[20,21]. Since then, forward propagation of action potentials has been referred to asorthodromic potentials, and
backward propagation asantidromic potentials or antidromic spike invasion.

In principle, it is then possible that the axons that carry the inhibitory inputs from heart interneurons to motorneu-
rons also carry antidromic signals from one motorneuron to a neighboring one. Evidence of this type of connections
in the mastication system of rabbits can be found in the work of Westberg et al. [32].
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Fig. 3. Pattern of connections between heart interneurons and motorneurons for each side of the body of the leech.
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In view of a first attempt to investigate the interaction between CPG and motorneurons, we adopt the simplifying
assumption that motorneurons form linear arrays with synaptic connections among nearest neighbors. Since mo-
torneurons behave as identical oscillators, it is then reasonable that we model each array on each side of the body
by systems of coupled identical cells. We restrict the modeling of the CPG and motorneurons to one side of the
network since the network is bilaterally symmetric and the activity of the CPG is periodic with one side of the CPG
network half a period out-of-phase with the other side. In particular, the activity of HN(5) on the left is half a period
out-of-phase with HN(5) on the right.

Epstein and Golubitsky [9] observed that the steady-states and periodic solutions in linear arrays can be studied
by embedding the linear array into a circular array with twice the number of cells and with dihedral symmetry. Thus,
we consider arrays ofn motorneurons with dihedralDn-symmetry. We then model an interconnected network ofn

motorneurons by a coupled system ofDn-symmetric differential equations of the form

dXi

dt
= f(Xi, ν, µ) +

∑
j→i

αijh(Xi,Xj), (1)

whereXi = (xi1, . . . , xik) ∈ Rk denotes the state variables of celli, f is smooth and independent ofi (since the
cells are assumed to be identical),ν = (ν1, ν2) are the principal bifurcation parameters andµ = (µ1, . . . , µp) is
a vector of parameters for the internal dynamics of each cell,h the coupling function between two cells, andαij a
matrix of coupling strengths. We write the network equations in a more compact form

dX

dt
= F(X, ν, µ, α), (2)

whereF : RN → RN , X = (X1(t), X2(t), . . . , Xn(t)). Note thatN = kn for a network ofn cells with k state
variables in each cell. In theX variable, the synchronous mode corresponds to a periodic solution of (2) of the form

Xs(t) = (X1(t), X1(t), . . . , X1(t)),

so that alln cells fire in phase and with the same wave form. Similarly, we can write the peristaltic state as a periodic
solution of the form

Xp(t) = (X1(t), X1(t − φ),X1(t − 2φ), . . . , X1(t − (n − 1)φ)),

in which consecutive cells now fire out-of-phase by a constant amountφ, though the wave form is the same. In general,
periodic solutions exhibit either purely spatial symmetries, which fix a solution at any time, or spatio-temporal
symmetries, which fix a solution after a phase shift. In the synchronous mode, all symmetries are purely spatial.
Since any element ofDn leavesXs unchanged, thenDn is the underlying group of spatial symmetries ofXs. In
contrast, in the peristaltic mode any cyclic permutation of the cells must be coupled with an equal phase shift in
time to leaveXp unchanged. We then identifỹZn, the group of cyclic rotations of the plane through 0, φ, . . . ,

(n− 1)φ, coupled with temporal shifts by the same amount, as the underlying group of spatio-temporal symmetries
of Xp.

We assume that both patterns arise, via Hopf bifurcations, when a trivial solutionX = 0 with Dn-symmetry
loses stability at(ν1, ν2) = (0,0). This implies that(dxF)000 has two pairs of complex eigenvalues crossing the
imaginary axis with nonzero speed—one pair for each mode. Under the presence ofDn-symmetry, these eigenvalues
are either simple (standard Hopf bifurcation) or double (symmetry-breaking Hopf bifurcation). In the synchronous
mode, we expect the eigenvalues to be simple since there is no change of symmetry in the bifurcating branch. In
the peristaltic mode, however, we expect the eigenvalues to be double due to a symmetry-breaking bifurcation from
theDn-symmetric trivial solution to thẽZn-symmetric peristaltic state. Since the pairs of imaginary eigenvalues,



298 P.-L. Buono, A. Palacios / Physica D 188 (2004) 292–313

±ω1i, for the standard Hopf, and±ω2i, for the symmetry-breaking Hopf, have eigenspaces with different group
actions, a necessary condition for a Hopf/Hopf mode interaction of this type is that the dimension of the cells must
be at least 2.

Thus, at the codimension two point(ν1, ν2) = 0 we have a mode interaction between two branches of periodic
solutions—one with synchronous oscillations and one with peristaltic oscillations. The parameters(ν1, ν2) are then
called the unfolding parameters of the mode interaction in the network equations. In the following section we discuss
this mode interaction inDn-symmetric systems of differential equations in normal form.

4. Mode interaction in normal forms

Under the previous assumptions,(dxF)000 has eigenvalues±ω1i, ±ω2i and ±ω2i, whereω1 andω2 are the
frequencies of oscillations at the onset of the synchronous and peristaltic states, respectively. After performing a
center manifold reduction on (2), we arrive at a truncated reduced system of ODEs

dz

dt
= g(z, λ1(ν, µ, α), λ2(ν, µ, α)), (3)

wherez = (z0, z1, z2) ∈ C3, (λ1, λ2) are now the unfolding parameters in the normal forms, andg(0, λ1, λ2) = 0.
The eigenvalues of(dzg)0,0,0 are the critical eigenvalues of(dxF)0,0,0 on the imaginary axis. By an appropriate
change of coordinates we can also assume that (3) is in Poincaré–Birkhoff normal form up to any finite order. This
introduces an extraS1 symmetry in the bifurcation of each motor pattern, so thatg is now Dn × T2-equivariant
(T2 = S1 × S1). We can then choose coordinatesz = (z0, z1, z2) such that theDn × T2-action onC3 takes the
following form:

γ(z0, z1, z2) = (z0,eγ iz1,e−γ iz2), κ(z0, z1, z2) = (z0, z2, z1),

θ(z0, z1, z2) = (eθ1iz0,eθ2iz1,eθ2iz2), (4)

whereγ = 2π/n ∈ Zn, κ is a fixed element inDn ∼ Zn, and(θ1, θ2) ∈ T2 [13]. It follows thatDn × T2 acts
trivially on (z0,0,0), so that the synchronous mode now corresponds to a periodic solution of (3) lying in the
invariant subspace(z0,0,0). Similarly, and depending on the direction of the shift, we can identify the peristaltic
state as a periodic solution in either subspace(0, z1,0) or (0,0, z2). Next we deriveDn-invariant functions and
Dn-equivariant mappings.

4.1. Dn-invariants and Dn-equivariants

In this section, we calculateDn-invariant functions andDn-equivariant mappings. The results depend on the
parity ofn. Thus, we define

m =
{
n if n is odd,
1
2n if n is even.

Proposition 4.1. Every real-valued Dn × T2-invariant germ is a function of ρ, N, P , S and T, where

ρ = |z0|2, N = |z1|2 + |z2|2, P = |z1|2|z2|2,
S = (z1z̄2)

m + (z̄1z2)
m, T = i(|z1|2 − |z2|2)((z1z̄2)

m − (z̄1z2)
m).
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Proof. We derive theDn×T2-invariants by starting with theT2-invariants. SinceT2 acts onC3 by θ · (z0, z1, z2) =
(eθ1iz0,eθ2iz1 eθ2iz2) the complex-valuedT2-invariants are generated by

ρ = |z0|2, u1 = z1z̄1, u2 = z2z̄2, v = z1z̄2, v̄ (5)

with the relationu1u2 = vv̄. The next step would be to compute generators for theDn invariants—first in the
(ρ, u1, u2, v) space and eventually in the(z0, z1, z2) space. Observe, however, that sinceDn acts trivially onz0,
and by its standard action on(z1, z2), the generators for theDn invariants are the same as in a problem of Hopf
bifurcation withDn-symmetry. It follows from Golubitsky et al. [13] thatN,P, S andT , together withρ, constitute
a complete set of generators for theDn × T2-invariants. �

Proposition 4.2. The Dn × T2-equivariant germs f : C3 → C3 are generated over the Dn × T2-invariants by the
following mappings:

V 1 = (z0,0,0), V 2 = (0, z1, z2), V 3 = (0, z2
1z̄1, z

2
2z̄2),

V 4 = (0, z̄m−1
1 zm2 , z

m
1 z̄

m−1
2 ), V 5 = (0, zm+1

1 z̄m2 , z̄
m
1 z

m+1
2 ).

Proof. Let g(z) = (g0(z), g1(z), g2(z)) be aDn × T2-equivariant mappingC3 �→ C3, wherez = (z0, z1, z2).
Commutativity ofg with κ implies thatg2(z0, z1, z2) = g1(z0, z2, z1). Next we determine the mappingsg0, g1 :
C3 �→ C. TheT2-equivariant maps have the form

g0(z0, z1, z2) = p(ρ, u, v)z0, g1(z0, z1, z2) = q(ρ, u, v)z1 + r(ρ, u, v)z2,

whereρ ∈ R, u = (u1, u2) ∈ R2, andv ∈ C are defined as in (5). Again, sinceZn acts trivially onz0 it follows
from Golubitsky et al. [13] that theZn × T2-equivariants forg1 are given by four generators

z1, z2
1z̄1, z̄m−1

1 zm2 , zm+1
1 z̄m2 .

Finally, since commutativity ofg with κ implies thatg2(z0, z1, z2) = g1(z0, z2, z1) we arrive at theDn × T2

equivariant mapsV 1, . . . , V 5. �

4.2. Branching equations

It follows from Propositions 4.1 and 4.2 that the generalDn × T2-equivariant mappingg(z, λ1, λ2) ∈ C × C2

has the form

g = A



z0

0

0


+ B




0

z1

z2


+ C




0

z2
1z̄1

z2
2z̄2


+ D




0

z̄m−1
1 zm2

zm1 z̄
m−1
2


+ E




0

zm+1
1 z̄m2

z̄m1 z
m+1
2


 , (6)

whereA, B, C, D, andE are complex-valuedDn × T2-invariant functions depending on two parametersλ1 and
λ2. Additionally, the eigenvalue structure ofg leads toA(0) = ω1i andB(0) = ω2i. Solving g = 0 and using
polar coordinatesz0 = r0 eiθ0, z1 = r1 eiθ1, andz2 = r2 eiθ2, we find periodic solutions that bifurcate from the
trivial solutionz = 0 at the codimension two point(λ1, λ2) = (0,0). These solutions are listed in Table 1, where
all coefficients are evaluated at zero,λ1 is held fixed, anda1 = ReA, b1 = ReB, c1 = ReC, d1 = ReD, and
e1 = ReE. Observe that symmetry forces the existence of two conjugate peristaltic states. One lies in the subspace
(0, z1,0) and one in(0,0, z2). In physical space, the two peristaltic states correspond to the two possible directions
of oscillations of the motorneurons, rear-to-front and front-to-rear. From the mathematical point of view, however,
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Table 1
Branches of solutions forDn Hopf/Hopf mode interaction

Solution Isotropy subgroup Orbit representative Branching equations

Trivial Dn × T2 (0,0,0) z = 0

Synchronous mode Dn × S1 (r0,0,0) λ1 = −
(
a1
ρ

a1
λ1

)
r2
0

Peristaltic mode 1 Z̃n × S1 (0, r1,0) λ1 = −
(
b1
N + c1

b1
λ1

)
r2
1

Peristaltic mode 2 Z̃n × S1 (0,0, r2) λ1 = −
(
b1
N + c1

b1
λ1

)
r2
2

these two cases are equivalent. Thus, without loss of generality, in what follows we choose to work with the peristaltic
state that lies in the invariant subspace(0,0, z2).

4.3. Stability analysis

We now determine the stability properties of each motor pattern through the eigenvalues of(dzg). We do this by
considering the isotypic decomposition ofC3 into a direct sum ofΣ-irreducible subspaces

C3 = V0 ⊕ V1 ⊕ V2.

In Table 2, we show the isotypic decomposition by each of the isotropy subgroups of solutions. Note that Fix(Σ) =
V0, for each subgroupΣ. Furthermore, observe that(Dn × T2)/Σ forces one eigenvalue ofdg to be zero. The
corresponding null vector is also listed in Table 2. In each case, the stability of solutions with maximal isotropy is
determined by tr(dg|Vj). We compute the Jacobiandg in complex coordinates

(dg)(ζ) = gz0ζ0 + gz̄0 ζ̄0 + gz1ζ1 + gz̄1 ζ̄1 + gz2ζ2 + gz̄2 ζ̄2,

whereζ = (ζ0, ζ1, ζ2), g = (g0, g1, g2) andgzj = (g0
zj
, g1

zj
, g2

zj
). The sign of the eigenvalues ofdg are also listed

in Table 2.
Let σ1 andσ2 denote the eigenvalues of(dzg)|V2 along the synchronous and peristaltic branch, respectively.

Using the branching equations from Table 1, we can write these eigenvalues in terms ofλ1. Direct calculations yield

σ1 = δ1λ1, δ1 = b1
λ1

− b1
ρa

1
λ1

a1
ρ

, σ2 = δ2λ1, δ2 = a1
λ1

− a1
Nb

1
λ1

b1
N + c1

.

Table 2
Isotypic decomposition by isotropy subgroups ofDn × T2-symmetric normal forms

Solution Isotypic component Null vectors Sign of eigenvalues

Synchronous mode V0 = (z,0,0) (i,0,0) V0: 0, a1
ρ

V1 = (0, z,0) V1: b1 (twice)

V2 = (0,0, z) V2: b1 (twice)

Peristaltic mode V0 = (0,0, z) (0,0, i) V0: 0, b1
N + c1

V1 = (0, z,0) V1: −c1 (twice)

V2 = (z,0,0) V2: a1 (twice)
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It follows that the synchronous mode is asymptotically stable ifa1
ρ < 0 andσ1 < 0. Similarly, the peristaltic mode

is asymptotically stable whenb1
N + c1 < 0, c1 > 0, andσ2 < 0. Each branch bifurcates supercritically (λ1 > 0) if

a1
λ1

> 0 andb1
λ1

> 0, respectively, and subcritically (λ1 < 0) otherwise.

5. Transitions in motorneuron dynamics

The stability results of the previous section suggest two possible approaches that can lead to transitions between
synchronous and peristaltic behavior. In the first approach, we assume that both branches of oscillatory solutions
bifurcate supercritically and that all eigenvalues, except forσ1 and σ2, are negative. We also assume that the
coefficients are such that sgn(δ1) = −sgn(δ2). Then a periodic change in the signs ofδ1 andδ2, while holding
λ1 fixed, would periodically change the stability properties of each branch. At any given time, the network would
exhibit one periodic solution only, eitherXs or Xp. But as time evolves the network would execute periodic
excursions between these two solutions. From the biological point of view, changingδ1 andδ2 would probably
require changing numerous parameters in the intrinsic dynamics of each neuron and in the network architecture.
An alternative approach is the following.

Assume thatb1
λ1

> 0,a1
λ1

> 0, and sgn(p1
λ1
) = −sgn(a1

λ1
), so that one branch bifurcates supercritically while the

other bifurcates subcritically. Ifδ1 > 0 (<0) andδ2 < 0 (>0), then the peristaltic pattern bifurcates supercritically
(subcritically) while the synchronous state bifurcates subcritically (supercritically). In contrast to the previous
approach, observe that now both branches of solutions are simultaneously stable. Under these assumptions, it is
now the bifurcation parameterλ1 that needs to change periodically for the network dynamics to alternate periodically
between the two motor patterns of solutions (Fig. 4).

5.1. Network properties

We now investigate the network properties that would have to be involved to realize the transition between
synchronous and peristaltic oscillations as described in the second approach. We start by assuming the coupling
functionh to be linear (nonlinear coupling will be considered as well) so that the second term in (1) can be written
in the formL(α)X, whereX = (X1(t), X2(t), . . . , Xn(t)), α = (α11, . . . , αn1, . . . , α1n, . . . , αnn), andL is an
n × k matrix that is defined by the coupling strengthsα. Next we split the internal dynamics of each cell into its
linear part (with respect toX andν), M(µ)X, and nonlinear part,T(ν)X+ f̂ (X). Since the cells are identical, both
M andT are block diagonal matrices. We can then write the network equations in the form

dX

dt
= [M(µ) + L(α,µ)]X + T(ν)X + f̂ (X). (7)

In this new form, it is easier to see that for some fixed values ofαij andµk, the critical eigenvalues ofM + L are
the critical eigenvalues of(dxF)000 on the imaginary axis (see Eq. (2)), which lead to a mode interaction between a
standard Hopf bifurcation and a symmetry-breaking Hopf bifurcation atX = 0 and(ν1, ν2) = (0,0).

Xp Xs

Fig. 4. Switching scenario: one branch bifurcates supercritically and one subcritically. A periodic change in the bifurcation parameterλ1 would
induce the network to switch periodically between solutions of each branch.
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We assume that in order to obtain the appropriate conditions for the mode interaction described above,µ, ν,
and some values ofαij’s must be fixed at the bifurcation point. The remainingαij’s can be used as unfolding
parameters so thatλ1 = λ1(αij), for somei, j. This suggests that changes in the coupling strength can be the
source of changes inλ1. For a nonlinear coupling function, theαij’s that are not fixed in its nonlinear part can
be combined with the otherαij’s. Together, all nonfixedαij’s can serve as unfolding parameters andλ1 would
remain a function that depends on coupling strengths. In practical terms, it is more likely that the CPG output can
change the coupling strength as opposed to changing various auxiliary parameters. Consequently, we pursue this
approach.

5.2. Frequency entrainment via CPG dynamics

In this section, we argue that the dynamics of the CPG plays a second role in addition to the previously discussed
role of driving the motorneuron activity. More specifically, we argue that the CPG output acts also as a time periodic
forcing, which causes the synchronous and peristaltic periodic solutions to oscillate at a common frequency, i.e.,
frequency entrainment.

Suppose that the parameters are such that the peristaltic mode is asymptotically stable. Consider the system of
equations of the motorneurons dynamics as

dX

dt
= F(X) + εp(t), (8)

whereX andf are as in Eq. (2),p is a timeT -periodic map, andε a parameter. One can show that in a neighborhood
of a periodic solution, in this case the peristaltic pattern, the dynamics of the phaseφ is given by the equation

dφ

dt
= ω0 + εQ(φ, t),

whereQ is a smoothT -periodic function oft, see for instance [24]. Thus, the phase space is a torus, 0≤ φ ≤ 2π,
0 ≤ t ≤ T . By taking a section of the torus, we define a Poincaré mapping

φn+1 = φn + η + εP(φn), (9)

whereP is some smooth function. This map, which is also a circle map, describes the dynamics ofφ on the torus
phase space, whereη = ω0T = 2πT/T0. It is well known that ifT ∼ T0 and forε large enough the circle map (9)
lies in the 1:1 Arnold tongue. Thus the periodic solution and the periodic forcing are synchronized.

Hence, it is possible to entrain the synchronous and peristaltic solutions to oscillate at the same frequency as that
of the forcing. In the next section, we show numerical simulations verifying this assertion.

6. Computer simulations

In this section, we consider the second switching scenario and discuss a method that would explain how the
CPG output can be used to force the eigenvalueλ1 to periodically change sign. We then carry out computer
simulations with the normal form equations (6) and with a model of heart interneurons to demonstrate the results
of the interaction between the CPG and the array of motorneurons. We finish this section with a description of a
technique for visualizing the patterns of oscillations in the coupled cell system. The advantage of this technique is
that it does not require computer simulations of the actual network equations.
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6.1. A model for heart interneurons

We simulate the inhibitory input from the CPG through numerical simulations of a model for heart interneurons
HN(3) and HN(4). The model, developed by Calabrese et al. [7,23], incorporates the escape mechanism of Wang
and Rinzel [31] for generating alternating bursting activity. Each neuron is modeled as an isopotential compartment
with Hodgkin and Huxley [16] intrinsic dynamics and synaptic conductances through

−C
dV

dt
=
(∑

ion

Iion

)
+ IL + ISynG+ ISynS− IApplied, (10)

whereIion represents a fast Na+ current that mediates spikes, two low-threshold Ca2+ currents, three outward
K+ currents, a hyperpolarization activated inward current, and a low-threshold persistent Na+ current,IL the leak
current,ISynG a graded synaptic current,ISynS the spike-mediated synaptic current from all presynaptic sources,
and IApplied the injected current. Computer simulations of this model, shown in Fig. 5, have been validated by
experimental results.
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Fig. 5. Simulated rhythmic activity of two reciprocally inhibitory heart interneurons.
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6.2. Blending of inhibitory input from CPG

LetVHN(i) denote the voltage output of interneuroni, calculated according to Eq. (10). As we mentioned earlier,
whether the heart beats synchronously or peristaltic depends mainly on whether the voltage outputVHN(3) and
VHN(4) is in-phase or out-of-phase with the voltage outputVHN(6) andVHN(7), respectively. This conclusion leads
us to conjecture the existence of aswitching function for λ of the form

λ1(VHN(i)) =
{
λ+

1 > 0 if CPG output is in-phase,

λ−
1 < 0 if CPG output is out-of-phase,

wherei = 3,4,6,7. Considering the second switching scenario of Section 5, whenλ1 = λ+
1 the motorneurons

would tend to oscillate synchronously, whileλ1 = λ−
1 would induce them to oscillate in a peristaltic wave. In the

present work, we do not attempt to investigate the exact bio-mathematical expression of such switching function. We
propose, however, a phenomenological expression that can provide insight into the role of the CPG output. We derive
such an expression as follows. We first use the fact that the CPG output can be described as an in-phase/out-of-phase
state that mimics an on/off state of a switch through the following voltage blending function:

VCPG = |VHN(3) + VHN(4) − VHN(6) − VHN(7)|, (11)

whereVCPG = 0 if the CPG output is in-phase, otherwiseVCPG = 2|VHN(3)| if it is out-of-phase. Observe that,
according to the experimental description of the heartbeat,VCPGwould alternate periodically (approximately every
20 heartbeats) between these two values. Then a periodic switching betweenλ+

1 andλ−
1 can be realized through a

reverse sigmoid function of the form

λ1(VCPG) = s1 − s2

1 + exp[(VCPG− VT)/sT]
, (12)

whereVT is a threshold value,s1, s2 andsT are scaling parameters. In particular,s1 = λ+
1 ands1 − s2 = λ−

1 . Note
thatλ1 → s1 if VCPG → ∞, while λ1 → s1 − s2 if VCPG → −∞. In other words, the sigmoid shape of (12)
accompanied with the periodic changes inVCPG, would induceλ1 to alternate periodically betweenλ+

1 andλ−
1 .

6.3. Integration of normal form equations

Next we carry out computer simulations of the normal form equations (6), withλ1 varying according to (12). For
illustrative purposes, we consider a network ofn = 4 motorneurons withD4 symmetry—the symmetry group of a
square. In order to simulate the output from the CPG, we add a periodic perturbation to the normal forms through
a term of the formε( sin(wdt) + cos(wdt)i), whereωd is the frequency of the driving force or perturbation. Then
the actual equations that we integrate are shown below

ż0 = Az0 + ε( sin(wdt) + cos(wdt)i), ż1 = Bz1 + Cz2
1z̄1 + Dz̄1z

2
2 + Ez3

1z̄
2
2,

ż2 = Bz2 + Cz2
2z̄2 + Dz2

1z̄2 + Ez̄2
1z

3
2 + ε( sin(wdt) + cos(wdt)i). (13)

Parameter values are:ωIP = 1.37, which is the frequency of the in-phase solution,ωTW = 0.97, which is the
frequency of the traveling wave, andωd = 8.0, which is the frequency of the driving periodic force from the CPG.
The main coefficients are defined below

A = a1 + a2i, a1 = 10λ − 4.0ρ + 2.9N, a2 = ωIP,

B = b1 + b2i, b1 = −10.0λ + 3.9ρ − 4N, b2 = ωTW, C = 1.0, D = 1.0, E = 1.0,
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and all other coefficients are set to zero. Results of the numerical integration of (13) withε = 0, i.e., the CPG
output is only used for switching purposes, are shown in Fig. 6. Observe that, in agreement with the experimental
work, the synchronous mode appears when the CPG output is in phase, while the peristaltic state appears when the
CPG output is out-of-phase. Observe also that, in agreement with the normal form derivation and with the fact that
ε = 0, the frequencies of oscillations of these two states are not equal. Now we consider the second role of the CPG
as a periodic forcing on the motorneuron dynamics and setε > 0. Upon gradually increasing the value ofε, the
simulations reveal a threshold value, approximatelyε = 7.0, which marks the onset of frequency entrainment, see
Figs. 7 and 8. We do not attempt to measure the size of this region but rather, we wish to interpret the results as a
suggestion that the CPG output might be playing a double role in the heartbeat dynamics. In one role, it serves as
a switching function between two modes of oscillations through periodic changes inλ1, which can be associated
with coupling strengths. In the other role, the CPG output can act as a periodic forcing that leads to frequency
entrainment between in-phase and peristaltic oscillations.

6.4. Visualization of oscillations in network equations

In order to visualize the actual oscillations at the cell level of the motorneurons, further simulations of the cell
system equations (2) would be needed. Performing these simulations, however, is more complicated than the normal
form simulations because they require that we find, in the cell system, a center eigenspace of the same dimension
as the normal forms. Additionally, we would also have to find parameter values of the cell system that match those
of the normal form equations. One way of finding these parameter values is through acenter manifold reduction
from the ring of cells to the normal form equations. A term-by-term comparison of the reduced equations with the
normal forms would then lead to the desired parameter values. For visualization purposes, however, it is possible
to map the solutions of the normal forms to solutions of the cell system without performing the center manifold
reduction. We now illustrate the ideas using previous normal form simulations from a network withn = 4 cells.

Recall first that the previous normal form simulations took place onR6. Then theDn-symmetric cell system
must have a six-dimensional real center eigenspace with a Hopf/Hopf mode interaction, one standard and one
symmetry-breaking. For the standard Hopf branch, the linearization of the network equations (2) must have a pair
of complex eigenvalues with eigenspace invariant under the trivial action ofDn. For the symmetry-breaking branch,
we also need a pair of complex eigenvalues but with eigenspace invariant under the standard action ofDn. We set the
size of the cells to bek = 2, so that the ring of four cells is eight-dimensional. Next, we use the fact that the smooth
mapping from aD4-symmetric cell system, with Hopf/Hopf (standard and symmetry-breaking) mode interaction, to
theD4×T2-equivariant normal form is onto. This map is given by the composition of the center manifold reduction
with the Poincaré–Birkhoff normal form transformations. Here we assume that all possible forms of cell coupling,
linear and nonlinear, are allowed.

Let z = (z1(t), z2(t), z3(t)) denote the simulations of the normal form equations (6). Define vectorsV1(t) = z

andV2(t) to be the solution of a system of ODEs of the form

dV2

dt
= −rI2V2,

wherer is a real-valued scaling factor, andI2 a 2× 2 identity matrix. Observe thatV1 ∈ R6 andV2 ∈ R2. Next, we
embed the cycle inR8 by defining

V(t) = [V1, V2].

It follows thatV1 is asymptotically stable insideR8 and the flow restricted to the center eigenspace is exactlyV1. We
then mapV to a vector solutionX of the coupled cell system (2) by applying the transformationX = PQV, whereP
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Fig. 6. (a) Out-of-phase inhibitory rhythmic input from the CPG (λ1 < 0) induces (b) peristaltic oscillations in the(0,0, x2) subspace of the
normal form simulations. On the contrary, when the input from the CPG is in-phase (λ1 > 0), a switch to the synchronous mode(x0,0,0)
occurs. Observe that the frequency of oscillation in each mode is different.
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Fig. 7. Periodic perturbation of the normal forms can lead to frequency entrainment between peristaltic and in-phase oscillations in the simulations
of Fig. 6.
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Fig. 8. Enlargement of peristaltic and in-phase oscillatory states of Fig. 7 further confirms the occurrence of frequency entrainment in the normal
form simulations.

is a diagonalization matrix whose columns are the eigenvectors of the action ofD4 onC3k, andQ defines a second
linear transformation so that theD4-action on the center eigenspace of the cell system is the same as the action
(4) on the normal forms. Before we apply the transformations, we need to break theT2-symmetry of the normal
forms sinceT2 is not a symmetry of the coupled cell system. We do this usingD4-equivariant terms. The choice of
a D4-equivariant term is arbitrary—some choices are better than others. We now perform the transformation with
V(t) as defined above and withr = 1. The results are shown in Figs. 9 and 10, where a plot of the CPG input is
included to aid the visualization of the switching times.

7. Discussion

The intricate dynamics of the motorneurons that produces the heartbeat of the leech is interesting in both its
biological and mathematical aspects. In this paper, we have focused our attention on studying the biological as-
pects, through nonlinear dynamics techniques, for the generation of synchronous and peristaltic periodic states. In
particular, we have provided a possible mathematical framework for producing synchronous and peristaltic states
in a network model of motorneuron dynamics. More importantly, we have studied the role that the CPG plays in the
switching mechanism and frequency entrainment of these periodic states, and have described a possible scenario
for the CPG output to trigger a change of activity from one state to the other.

In our approach, we have tried to use as much biological information of the system under study. Some sim-
plifying assumptions, however, have been made. For instance, we have assumed an approximateDn-symmetry
in the motorneurons network. Also, we have made some underlying assumptions about connections between the
motorneurons, and about the exact nature of in-phase and traveling wave patterns, even though the experimental
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Fig. 9. Conversion of oscillatory behavior from the normal forms (see Fig. 7) into oscillations of the coupled cell system (2). Similar to the
normal form simulations, when the CPG perturbations are in-phase, all cells oscillate synchronously. In contrast, when the perturbations are
out-of-phase, the oscillations switch to the peristaltic mode.
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Fig. 10. Enlargement of (a) in-phase and (b) peristaltic oscillatory states of Fig. 9 further reveal frequency entrainment in simulations of (2).

measurements do not show exact peristaltic and synchronous periodic activity. That is, in the rear part of the network,
the experimental peristaltic wave appears to be slower, while the synchronous wave shows also some deviations.
Nevertheless, we believe that our underlying assumptions have sufficient advantages to justify their use. Mainly, they
enable us to produce periodic states with dynamics close to the experimentally observed dynamics. Another point
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of consideration to justify our approach is the well-documented fact that small symmetry-breaking perturbations
from symmetric states retain approximate symmetries. This fact could explain the nonexact symmetries that are
observed during experiments.

Preceding this work, another approach to study the motorneuron activity in leeches was proposed by Golubitsky
and Stewart [10]. Their approach uses a more abstract setting, and has lead to new mathematical questions about
the dynamics of coupled cell systems in general. Viewing the motorneurons and CPG as a combined network with
left–right Z2-symmetry, but with interiorDn-symmetries in the motorneurons subnetworks, the authors show the
existence of a periodic state calledsynchro-traveling. In such a state, cells in a subset oscillate periodically and in
synchrony while cells in a disjoint subset oscillate in an approximate discrete traveling wave. A consequence of this
approach is that both synchronous and peristaltic states have the same frequency. Moreover, the phase shifts of the
peristaltic state vary along the array of motorneurons, as is the case of the actual system. Although the authors do
not include a switching mechanism in the model, they suggest some ways to induce periodic transitions from one
synchro-traveling state to a symmetric synchro-traveling wave. Another significant difference between their work
and ours, is that in [10] the CPG plays an almost passive role in the generation of the motorneuron rhythms.

In this paper, we have adopted the fundamental assumption that the cells that model the array of motorneurons are
coupled in some predetermined fashion. Since the experimental evidence that is available so far has not confirmed the
existence of such connections, we would like to discuss, for completeness, some alternative methods of obtaining
peristaltic and synchronous waves in uncoupled arrays of cells. We start by briefly reviewing related work by
Thompson and Stent.

Thompson and Stent [29] present a mechanism to produce the two types of waves seen in the motorneuron
networks. Their analysis is based, primarily, on timing the blending of the inhibitory postsynaptic potentials (IPSP)
from the interneurons of the CPG, which keep the activity of the motorneurons below their action potential threshold.
More precisely, by looking at the time lag between the arrival of the IPSPs to neighboring motorneurons along the
array, they estimate the phase relations that an interneuron HN maintains relative to the overall beat cycle. This
information is incorporated into a model which consists of a periodic functionaij for the amplitude of the periodic
inhibitory input from HN(i) to HE(j). Using the phase relations estimated experimentally inaij and obtaining an
expression for the sum of theaij’s, they obtained relatively good agreement with the observed phase lags in the
motorneuron array.

An alternative approach to the one proposed in [29] is to model the CPG and motorneuron array using a
skew-product system of differential equations. Since the cells that model the motorneurons are assumed not to
be coupled together, then the CPG-motorneurons system would consist of the CPG driving each motorneuron in-
dependently. Thus, for each motorneuron, the model would be written as a skew-product system of differential
equations. However, the coupling between the various interneurons of the CPG and each motorneuron would be
dependent on a delay argument modeling the time lag caused by the conduction time of the action potential in
the axons. So the blending of the CPG output as well as the delays in conduction would be crucial to obtaining
the peristaltic and synchronous waves. Modeling the different components of the system could be achieved using
various types of well-known equations. For instance, the output of the CPG could be modeled using equations
developed by Calabrese et al. [7,23] as is done in our numerical simulations, see Section 6, while the motorneuron
dynamic would be described by a simple differential equation model for tonic firing. Now, such a model could only
be analyzed using numerical simulations. It might be wise to consider simpler models, or toy models, to get insight
into the dynamical behavior produced by variations of the blending and the delays in the input from the CPG to the
motorneuron.

The dynamics of the motorneurons activity in the leech’s heartbeat is an example of nontrivial periodic dynamics
in a biological system. Experimental studies have significantly contributed to identifying the role of each interneuron
in the CPG and their connections with the motorneurons. This paper, on the other hand, is one of the first attempts
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at integrating the CPG and motorneurons dynamics into a single model, which can also account for a possible
mechanism for periodic transitions between two motorneuron rhythms. It is our hope that this work will stimulate
further research in related biological systems, and increase the interaction between experimentalists and applied
mathematicians. In fact, also recently, symmetry methods have been attracting more interest in modeling biological
systems. For instance, in modeling the behavior of CPG dynamics for quadrupedal locomotion [1,11], in modeling
pattern formation in the primary visual cortex [4], and in networks of pulse coupled oscillators [3].
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