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We develop a one-dimensional physical model of the crawling movement of
simple cells: The sperm of a nematode, Ascaris suum. The model is based on the
assumptions that polymerization and bundling of the cytoskeletal filaments
generate the force for extension at the front, and that energy stored in the gel
formed from the filament bundles is subsequently used to produce the contrac-
tion that pulls the rear of the cell forward. The model combines the mechanics
of protrusion and contraction with chemical control, and shows how their
coupling generates stable rapid migration, so that the cell length and velocity
regulate to constant values.

KEY WORDS: Cell movements; biophysical model; Brownian Ratchet; entropic
contraction.

1. INTRODUCTION

Understanding the mechanics of cell crawling has important implications
for cancer cell metastasis, skin fibroblast migration in wound healing, white
blood cell locomotion during tissue inflammation, and a host of other
medical and biological applications. It is fascinating to observe cells crawl-
ing in the laboratory, as they seem to glide effortlessly across a glass
surface, maintaining their overall shape. (1) Many cells accomplish this
smooth motion by developing a motile appendage (lamellipod) in front of
the cell body (Fig. 1). The cell body contains the nucleus and organelles,
while the lamellipod is filled with complex and dynamic protein networks.
Mechanically, the cell body is but a passive cargo, while the lamellipod



Fig. 1. Nematode sperm cell: (A) A schematic top view: Nucleus and mitochondria are at
the rear (left in the figure). Flat and wide lamellipod at the front is filled with bundles of MSP
filaments extending radially from the cell body. The bundles are connected with each other by
free MSP filaments; (B) A schematic side view for the crawling cell; (C) When external pH is
lowered to 6.7, the leading edge (solid arch) stops moving, while the cell body (shadowed
ellipsoid) continues to advance. Dashed parts of the figure show positions of the cell body and
lamellipodial lateral sides at a later time; (D) When external pH is lowered to 6.35, the
forward translocation of the cell body stops, but the leading edge of the MSP network is
pulled backward. The solid and dashed arches show the position of the cell front at earlier and
later time, respectively.

is the engine that moves the cell. (2) Chemically, the cell body plays an
important part in the regulation of these movements.

Roughly speaking, cell migration can be dissected into five consecutive
steps. (3) First, the lamellipodial protein network grows at the leading edge
forming a protrusion. Then, firm adhesion to the surface upon which the
cell crawls must take place at the front. Thirdly, contraction forces develop
within the lamellipod; then adhesion to the surface weakens in the vicinity
of the cell body and rear part of the lamellipod. Finally, the forces of con-
traction within the lamellipod pull the cell body forward. The prevalent
belief in cell biology is that there are three basic processes: protrusion at
the front, contraction at the rear, and graded adhesion, all acting in concert
to accomplish rapid and stable cell migration. (4)

In most crawling cells, the main mechanical ‘‘players’’ in the lamelli-
pod are the proteins actin and myosin. (4) Actin forms polar fibers that grow
at the front of the cell and shrink at the rear, and myosin molecular motors
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pull the cell body forward using polarized actin filaments as ‘‘tracks.’’ (5, 6)

Actin-myosin networks are very heterogeneous and anisotropic. They are
involved in many different aspects of cell behavior and require a host of
accessory proteins. This complexity has frustrated interpretation of many
experiments. Because of that, simple and specialized cells, like the sperm of
a nematode (Ascaris suum), have attracted the attention of experimentalists
working on cell motility. (7)

Nematode sperm cells crawl, rather than swim, like most other sperm
cells. The crawling cells, moving at tenths of microns per second, are tens
of microns long and wide and a few microns high; see Fig. 1. In these cells,
which appear to be dedicated solely to migration, the locomotion machi-
nery has been dramatically simplified. Nematode sperm cells discard actin
and most organelles (only the nucleus and mitochondria are left) after
meiosis. They move using a very basic mechanical engine based upon the
lamellipodial network consisting of major sperm protein (MSP). Impor-
tantly, these cells look and move much like similarly shaped actin based
cells. Understanding locomotion of the sperm cells will elucidate the
general principles of migration in actin based cells.

Major sperm protein forms symmetric, hydrophobic and basic dimers,
which diffuse freely in the cytoplasm. Dimers polymerize into helical sub-
filaments, which wind together to form larger filaments. (7–9) MSP polymers
can spontaneously assemble into higher-ordered fiber complexes or bundles.
The same interaction interfaces (hydrophobic patches) that are employed to
assemble sub-filaments into polymers are thought to be responsible for this
bundling. Twenty to thirty branched, densely packed bundles intertwined
with unbundled filaments span the lamellipod from the leading edge to the
rear where they join the cell body (see Fig. 1).

Filaments assemble and bundle into fiber complexes along the leading
edge and disassemble at the rear of the lamellipod. (7–9) This treadmilling
process (assembly at the front and disassembly at the rear create forward
translocation of the structure, though there is no movement in the middle)
is at the core of the cell migration phenomenon. Because of the symmetric
structure of MSP dimers, the polymers have no overall structural polarity,
so molecular motors are unlikely to be responsible for the movements.
Generally speaking, two questions are central for understanding the
mechanics of locomotion: what is the nature of the forces of protrusion and
contraction, and how these forces are regulated in space and time to
achieve steady, stable movement?

The following experimental observations give clues to the answers.
A proximal-distal pH gradient of 4 0.2 pH units is maintained in the stea-
dily moving cell: at the rear of the lamellipod pH 4 6.0, while at the front
pH 4 6.2. (10) The origin of this gradient is unknown, but it is probably
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a source of protons from the mitochondria in the cell body. When pH in
the external solution is lowered from 7 to 6.7, the protrusion at the leading
edge stops, while the cell body continues to advance. When the external pH
is lowered further to 6.35, the cell body stops advancing, and the leading
edge is pulled back (8) (Fig. 1). In vitro experiments confirm that MSP
assembly and filament bundling take place at higher pH, while un-bundling
and disassembly occur at lower pH. (9) Examination of crawling sperm by
interference reflection microscopy has revealed that the adhesive sites are
located primarily in the lamellipod, with few if any in the cell body. The
pattern of adhesion appears nearly constant across the front and middle of
the lamellipod to the transition region in the rear, so that the strength of
adhesion appears to be nearly a ‘‘step’’ function. The hypothesis is that the
pH regulates adhesion: attachment to the surface is firm at high pH and
weak at low pH.

These observations lead to the following qualitative ‘‘push-pull ’’
model: (7)

(i) The cell body maintains a pH gradient across the lamellipod.

(ii) Filament assembly and bundling take place predominantly in the
more basic environment of the distal region near the cell front, leading to
protrusion at the front.

(iii) Filament disassembly and un-bundling take place predominantly
in the more acidic environment of the proximal region near the cell body,
causing contraction at the rear.

(iv) The protrusion at the front and contraction at the rear are
separated spatially by firm adhesion at the front and middle of the
lamellipod, and weak or non-existent adhesion at the rear, leading to
forward translocation of the entire cell.

Without a physical model, the ‘‘push-pull’’ hypothesis remains a mere
cartoon. A quantitative model is required to examine whether the suggested
coupling of biophysical and regulation mechanisms can account for
observed dimensions and rates of motion of the cell. Bottino et al. (10) have
developed a quantitative, two dimensional model of the crawling cell which
considers the lamellipod as a flat, dynamic domain. Simulations using a
finite elements method produce stable moving shapes resembling those
of the motile cells. However, computer simulations of two-dimensional
models are time consuming, which prohibits simulation of the polymer
bundles. Rather, Bottino et al. modelled the lamellipodial network as an
isotropic elastic plate with moving boundaries.
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In this paper, we construct a ‘‘minimal,’’ one-dimensional physical
model of the sperm cell, using the same assumptions about the mechano-
chemistry of the lamellipod as Bottino et al. Essentially, this is the model of
one lamellipodial bundle running the length of the cell, from the rear to the
front. By simplifying the geometry in the model, simulations are relatively
fast and easy to perform, and the results are easier to interpret. This
enables us to consider the lamellipodial mechanics in greater detail, which
sheds light on basic physical processes in the moving cell.

In the next section we discuss the physical processes underlying the
phenomenon of locomotion. Based on this discussion, we derive conserva-
tion laws and constitutive relations governing lamellipodial mechanics in
Section 3. We present the results of model’s simulations in Section 4 and
discuss their biological implications in Section 5. Details of the analysis of
the model are reported in the Appendix.

2. PHYSICAL MODEL

The model describes explicitly only the lamellipod–cytoskeletal strip.
The cell body in the model is mechanically passive, though chemically it
plays an important role. The qualitative physical idea of the model is as
follows.

Protrusion. MSP polymerizes into filaments at the leading edge.
Consider a filament incorporated into the bundle. The filament’s tip is
growing at a rate Vp. Hydrophobic patches are located periodically at the
sides of the filament. Successive adhesive interactions between the growing
filament and other filaments in the bundle ‘‘lock’’ the growing filament in
an almost straight configuration. This spontaneous bundling forces the
filaments to assume an end-to-end distance, which is larger than it was in
solution. That is, the enthalpic part of the free energy of assembly domi-
nates the entropy loss accompanying lateral association, so that filaments
are held in a ’stretched’ configuration. Thus, each bundle of filaments
‘‘stores’’ the elastic energy of its constituent filaments, and is stiffer.

At the same time, free filament tips ahead of the most advanced
hydrophobic patch are undulating thermally, so that the distance from the
most advanced hydrophobic patch to the cell membrane is generally
shorter than the length of the free filament tips. However, when a tip grows
so long that another hydrophobic patch appears at the front, that tip binds
to the bundle, causing leading edge extension (Fig. 2). Thus, the bundling
process ‘‘ratchets’’ forward the thermal bending of individual filaments. In
Appendix A, we show that this ‘‘bundling ratchet’’ is capable of generating
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Fig. 2. A side view of the physical 1-D model of the treadmilling MSP bundle. x=f(t) and
x=r(t) are the coordinates of the front and rear of the cell, respectively, in the laboratory
coordinate system. Shaded ellipsoids show ‘‘cytoskeletal nodes’’ that attach to the surface
through the effective sliding frictional elements, characterized by the effective drag coefficient
t(x). The nodes move with velocity v(x), which is a function of node position. The MSP
bundles (thick) between the nodes are in compression. Filaments unbundle with rate cb. Indi-
vidual filaments (thin) are under tension: they attempt to contract. They disassemble with
rate cp. Insert: MSP filaments grow at the rate Vp. Undulating tips bind to the bundled
filaments, straightening and generating the force of protrusion.

a protrusive force strong enough to maintain an effective growth rate of the
bundle that is equal to the polymerization velocity of individual filaments.

Contraction. At the rear of the cell, where the cytoplasm is more
acidic, hydrophobic adhesion weakens, (10) and the unbundling process
is triggered. As individual filaments disassociate from the bundle, they
attempt to contract entropically to their equilibrium end-to-end length,
acting effectively as springs in series (Fig. 2). We assume the existence of
‘‘cytoskeletal nodes’’: local aggregates of MSP fibers which adhere to the
surface. These nodes play an important mechanical role: the ends of local
bundles and individual filaments attach to these nodes.3 The free energy of

3 The structure of our model is analogous to a muscle sarcomere: Nodes play the role of
Z-discs, while MSP bundles function similarly to contracting actin-myosin bundles. (1)

bundling that was supplied to the system at the front is released, generating
a contractile stress. Following unbundling and subsequent entropic con-
traction, the filaments are depolymerized (both under the cell body, and
more rapidly at the rear end of the cell with the rate Vd), and MSP dimers
spread over the cytoplasm by diffusion.

Adhesion. We further propose (following ref. 10) that adhesion of
the lamellipodium to the substratum also decreases in the acidic environ-
ment at the rear of the cell. Thus the generated contractile stress pulls the
cell body forward, rather than pulling the leading edge back.
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Biochemical Regulation. The precise role played by pH in MSP
turnover, bundling and adhesion is yet to be established. In the model, we
use pH distribution as a marker for these processes. We assume that
protons constantly appear at the cell body, and that protons leak out from
the lamellipod, maintaining a gradient of proton concentration in the
lamellipod. We investigate this pH distribution quantitatively in Appendix B.
We introduce phenomenological pH dependencies of unbundling and
depolymerization rates, based upon observations that filaments disassociate
from each other and disassemble at low pH.

Adhesion of MSP filaments to the cell membrane, and adhesion of the
cell membrane to the surface seem to have an electrostatic character: Basic
MSP fibers carry a net positive charge. They are attracted to the inner
leaflet of the plasma membrane, which carries negatively charged lipids.
The lipid mobile positive charges on the outer membrane leaflet, in turn,
are attracted to the negatively charged glass coverslip. The physics of this
interaction is discussed in more detail in ref. 10. In the model, we assume
that adhesion between the cytoskeleton and the membrane is a function of
pH, such that lowering the pH disrupts adhesion. (8)

Two factors regulate the rate of MSP assembly at the front. First, this
rate is controlled by pH: MSP assembly is fast at high pH, and vanishes at
low pH. Second, a membrane protein acts in conjunction with at least two
soluble cytoplasmic proteins to facilitate local MSP polymerization. As the
cell becomes longer, the constant total amount of available membrane
protein must be dispersed over a larger lamellipodial surface. The resulting
decrease concentration of membrane protein slows down of the rate of
MSP assembly. Effectively, this assembly rate is a decreasing function of
cell length.

Note, that the model needs a biochemical ‘‘indicator’’ of distance from
the leading edge for control of cytoskeletal processes. Moreover, a feed-
back control loop through which the front is prevented from running away
from the back, or the back from catching up with the front, is needed. We
draft the pH gradient and depletion of membrane regulatory proteins to
play this role, because few experimental observations show that the pH
gradient exists, and that pH influences the processes of assembly, disas-
sembly, contraction and adhesion. However, there is no proof that the pH
gradient is the only regulator. Other factors, such as membrane tension and
turnover of MSP monomers, can play this role.

3. MODEL EQUATIONS

Geometry of the Model. Model variables and parameters are listed
in Tables I and II, respectively. Effectively, we model one long bundle
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Table I. Model Variables

Symbol Definition Units

x Coordinate in the laboratory coordinate system [mm]
y Distance between cytoskeletal point and cell rear [mm]
t Time [s]
r(t) Coordinate of the cell rear [mm]
f(t) Coordinate of the cell front [mm]
b(x, t) Length density of bundled polymers [mm/mm]
p(x, t) Length density of free polymers [mm/mm]
c(x, t) Density of cytoskeletal nodes [1/mm]
v(x, t) Cytoskeletal velocity [mm/s]
cb(x, t) Rate of unbundling [1/s]
cp(x, t) Rate of disassembly [1/s]
t(x, t) Effective drag coefficient [pN · s/mm2]
Vp(t) Rate of polymerization at the front [mm/s]

stretching from the front to the rear of the cell, composed of many bundled
MSP filaments. Thus, the model is one-dimensional; x is the coordinate of
cytoskeletal elements in the laboratory coordinate system, and the x-axis is
oriented in the direction of cell migration. In this coordinate system, we
denote the dynamic positions of the cell front and rear as f(t) and r(t),
respectively (Fig. 2). We model the cell body by the segment of length
Lcb=10 mm and assume that the cell body ‘‘sits on top’’ of the bundle at

Table II. Model Parameters

Dimensional Dimensionless
Symbol Definition units units

Lcb Cell body length 10 mm 1
L Distance from the rear to the critical pH level 11 mm 1
cb Rate of unbundling 0.175/s 7.0
ap Rate of depolymerization 0.025/s 1.0
bp Rate of depolymerization 0.0225/s 0.9
at Drag coefficient 70 pN · s/mm2 17.5
bt Drag coefficient 50 pN · s/mm2 12.5
V0 Rate of MSP assembly 3.2 mm/s 12.8
g Rate of change in space 1/mm 10
r Rest length of the bundle 1 mm 0.1
o Effective spring constant of the free filament 1 pN/mm 1
K Effective spring constant of the bundled filament 1 pN/mm 1
b0 Leading edge density of the bundled filaments 500 mm/mm 500
Vd Rate of disassembly at the rear 1.25 mm/s 5
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the rear of the cell (unpublished observations, T. Roberts). Three densities—
cytoskeletal nodes density, c(x, t) [#/mm], and length densities of bundled
and free polymers (filaments), b(x, t) and p(x, t) [mm/mm], respecti-
vely—describe the dynamics of the cell.4

4 Polymer densities may be thought of as either the total length of polymers per unit length, or
as the number of polymers passing through a point.

Conservation Laws. The following conservation laws govern
lamellipodial dynamics:

“b
“t

= −
“

“x
(vb) − cb(y) b, (1)

“p
“t

= −
“

“x
(vp)+cb(y) b − cp(y) p, (2)

“c
“t

= −
“

“x
(vc). (3)

The first terms in the right-hand-sides of these equations describe cyto-
skeletal drift with rate v(x, t) (Fig. 2). The second terms in the right-hand-
sides of Eqs. (1) and (2) are responsible for unbundling of filaments with
rate cb(y), which is a function of distance from the rear of the cell,
y=x − r(t) (see Appendix B). The third term in the right-hand-side of
Eq. (2) describes the filament disassembly with rate cp(y).

Lamellipodial Mechanics. The distance between the ends of indi-
vidual filaments is equal to the distance between the neighboring cytoskel-
etal nodes, z(x) (Fig. 2). Flexible filament, the ends of which are separated
by distance z, acts as an effective linear spring. (11) The entropic force of
contraction pulling these ends together is equal to oz, where o is the effec-
tive spring constant of an individual filament. (We estimate the values of
model parameters in Appendix C and Table II.) The rest length of this
effective spring is equivalent to the equilibrium length of an individual
filament and is approximately equal to zero, if the filament’s persistence
length is much less, than its contour length (see Appendix).

Parts of the bundle located between neighboring cytoskeletal nodes are
also modeled as an effective linear spring, though the origin of this spring
force is elastic, rather than entropic, as in the case of an individual fila-
ment. Indeed, large numbers (hundreds) of bundled filaments make the
bundle rigid. The corresponding spring constant scales as the number of
bundled filaments (or as the crossectional area), (12) so that the force gener-
ated by a bundle spring is equal to Kb(z − r), where r is the corresponding
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rest length, which we assume to be constant. K is the corresponding
proportionality coefficient.

In one dimension, the total stress is computed as the sum of these two
spring forces. Taking into account the relation between inter-node distance
and node density, z(x)=1/c(x), we can write the expression for cytoskeletal
stress in the form:

s(x, t)=Kb(x, t) 1 1
c(x, t)

− r2+op(x, t)
1

c(x, t)
. (4)

In a continuous model, the force on cytoskeletal nodes is equal to the gra-
dient of the stress. We model adhesion with the sliding friction elements
associated with cytoskeletal nodes (Fig. 2), such that node velocity is pro-
portional to the force applied to the node. This implies a ‘‘fluid’’ interac-
tion with the surface. Alternatively, an elastic coupling of the cytoskeleton
to the surface is an option. Most likely, some visco-elastic coupling exists.
Here we chose the viscous-like adhesion for simplicity, and also because at
low rates of cytoskeletal movements relative to the surface (observed in
sperm cells) the viscous-like adhesion is very plausible. Thus, the cytoskeletal
velocity may be calculated as:

v(x, t)=
1

t(y)
“s

“x
. (5)

Here t(y) [pN · s/mm2] is the effective drag coefficient (see Appendix B).

Boundary Conditions. The rear cytoskeletal node moves with rate
v(r(t)), and the cytoskeletal strip at the rear depolymerizes with rate Vd.
The leading node moves with velocity v(f(t)), and the bundle in front of it
grows with rate Vp. Thus, the free boundaries of the cell are described by
the equations:

df
dt

=Vp(f(t))+v(f(t)), (6)

dr
dt

=Vd+v(r(t)). (7)

Extension at the leading edge does not touch the substratum as it expands.
(Eventually it establishes adhesion.) Thus, the leading branch of the bundle
is stress free. Similarly, we assume that the rear branch of the bundle does
not touch the surface (the rear node disassembles before the rearmost
filaments), and so there is also no stress at the rear of the cell. We assume

1178 Mogilner and Verzi



that all filaments at the leading edge spontaneously assemble into the
bundle. These arguments allow us to formulate the following boundary
conditions:

s(f(t))=s(r(t))=0, b(f(t))=b0, p(f(t))=0. (8)

Here b0=500 is the given number of bundled filaments at the front. At the
trailing edge, we impose no flux boundary conditions for the densities of
bundled and free fibers. Note, that Eqs. (1)–(3), complemented by formulae
(4) and (5), are second-order partial differential equations. The conditions
of no flux for densities of bundled and free fibers, together with the condi-
tions b(f )=b0 and p(f )=0, are the four boundary conditions necessary
to solve Eqs. (1) and (2). The zero stress conditions at the leading and
trailing edges implicitly give the boundary conditions for Eq. (3). Indeed,
Eq. (4) implies that c(f(t))=1/r, if s(f(t))=0, and p(f(t))=0.
Similarly, Eq. (4) prescribes the value of c at the rear, given the values of
b(r(t))and p(r(t)).

Constitutive Relations. As explained in Appendix B, the rate of
unbundling is assumed to be constant across the cell. The adhesion drag
coefficient is almost a step function: it is almost constant and small beneath
the cell body, and almost constant and large in the lamellipod, with a
narrow transition zone just in front of the cell body (Fig. 4(a)). We model
this quantitatively using function arctan:

t(y)=at+(2bt/p) · arctan(g(y − L)). (9)

Similarly, we use this trigonometric function to quantify the assumed
disassembly and protrusion rates. The rate of depolymerization is very
small in the lamellipod, and increases in the acidic environment of the cell
body:

cp(y)=ap − (2bp/p) · arctan(g(y − L)). (10)

The rate of MSP polymerization is given by the equation:

Vp=V0[0.5+(1/p) · arctan(g(y − L))]
L

f(t) − r(t)
. (11)

Here the factor in square brackets causes MSP assembly stop in the cell
body. The factor given by the ratio of the cell body length to the whole cell
length is due to the depletion of the membrane regulatory proteins in the
longer cell. This causes slower leading edge advancement of longer cells.
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Detailed explanation of these relations can be found in Appendix B. We
consider the rate of the cytoskeletal disassembly at the rear, Vd, to be
constant.

4. RESULTS

We solve the model equations numerically (see Appendix D) with the
following initial conditions:

b(x, 0)=b0, c(x, 0)=1/r, p(x, 0)=0

(Initially, there is homogeneous unstressed bundle across the cell and no
individual filaments.) We varied the initial length of the cell and perturbed
the initial conditions and model parameters in a number of ways. In all
simulations, a unique, asymptotically stable pattern of locomotion (Figs. 3–5)
evolved by the time the cell had moved a few body lengths (few tens
of microns, or few minutes). Figure 3 illustrates how the lamellipodial
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Fig. 3. Computed positions of the rear and front of the cell as functions of time. Solid and
dashed curves show the trajectories of the cell’s edges that evolve from different initial condi-
tions. Asymptotically stable cell shape of length 20 mm develops, traveling steadily with velocity
1.6 mm/s.
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length and migration velocity regulate to constant values. At the parameter
values given in Table II, both rear and front edges of the cell advance with
velocity 1.6 mm/s. (In both simulations, the same initial conditions, except
for the cell length, were used, see Appendix D.) The length of the cell
stabilizes at 20 mm, so that in our calculations, the length of the lamellipod
is equal to that of the cell body. This regulation stems from a negative
feedback loop: In a longer cell, the rate of protrusion is reduced, while in
shorter ones this rate increases, so that protrusion and retraction are
matched, corresponding to observations of living, crawling sperm. (7)

Velocity and size of the computational cell also compare favorably with
observations.

Figure 4 shows adhesion, stress and velocity distributions across the
cell. The stress is zero at the front: The bundle is not compressed, and free
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Fig. 4. Asymptotically stable stationary distributions of adhesion strength, stress, cytoskele-
tal velocity and drag force evolve in 10 s. Corresponding numerical solutions are shown as
functions of distance from the rear edge of the cell. Top: Effective adhesion drag coefficient is
almost step-like, large at the front of the lamellipod, and small at the cell body. Second from
the top: Stress increases away from the front due to growing entropic forces generated by the
increasing number of free filaments. Stress decreases from the middle to the rear of the cell,
due to contraction of the bundle. Third from the top: The cytoskeletal velocity is negative at
the front and positive at the rear due to effective filament contraction in the middle of the cell.
Bottom: The drag force is negative at the front and positive at the rear.
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Fig. 5. Asymptotically stable stationary distributions of cytoskeletal densities evolve in 10 s.
Corresponding numerical solutions are shown as functions of distance from the rear edge of
the cell. Top: Density of the bundled filaments decreases away from the front due to the
unbundling process. Middle: Density of the free filaments increases away from the front,
because unbundling is more rapid than disassembly. Bottom: Density of cytoskeletal nodes
increases under the cell body due to the contraction of the bundle. It is maximal in the middle
of the cell, where the contraction is maximal.

filaments are absent. As the unbundling process takes place across the
lamellipod, increasing numbers of free individual polymers in tension try to
contract. This increases the stress toward the middle of the cell and
compresses the bundle. The velocity of the cytoskeleton is low at the front
due to strong adhesion. In the middle of the cell, just ahead of the cell
body, where adhesion decreases rapidly, developing stress causes the veloc-
ity of cytoskeletal elements to increase. The cytoskeleton contracts, reliev-
ing the stress toward the rear of the cell. The contraction in the middle of
the cell pulls the cell body forward and moves the lamellipod backward.
Because of the graded character of adhesion, retrograde flow of the
lamellipod is slow ( − 0.15 mm/s), while the cell body advances at 1.6 mm/s.
The MSP filaments at the front assemble with rate 1.75 mm/s, so that the
rate of protrusion, (1.75–0.15 mm/s) is equal to the rate of depolymeriza-
tion plus the rate of retraction at the rear of the cell (1.25+0.35 mm/s).
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The magnitude of the drag force is maximal at the leading edge. This does
not agree with calculations in ref. 10. The reason is that in ref. 10 the
lamellipodial cytoskeleton was considered to be much less stiff, and that
the 2-D area of the lamellipod was much greater, than that of the cell body.
Note, that the total drag force integrated across the cell, which is just the
derivative of the stress, is equal to zero, because the stress is zero at both
edges.

Figure 5 shows stationary distributions of the cytoskeletal elements
involved. The density of bundled filaments decreases from the front to the
rear of the cell due to the unbundling process. Conversely, the density of
free individual filaments increases toward the rear, because unbundling
occurs more rapidly than disassembly of the polymers. At the given values
of the model parameters, a significant number of filaments are bundled
throughout the cell, and the overall bundle is sufficiently rigid everywhere.
Therefore, even though contractile stress developing in the middle of the
cell is significant, the actual contraction of the cytoskeleton is small. The
distance between cytoskeletal nodes decreases toward the rear (or equiva-
lently, node density increases) insignificantly.

Note, that in the evolved stationary state, the flux of the cytoskeletal
nodes has to be constant in the frame of the steadily moving cell:
(v(x − Vt) − V) c(x − Vt)=const. Here V is the equal rates of advancement
of the cell edges: V=Vd+v(r(t))=Vp+v(f(t)). Note, that from these two
expressions, the third one easily follows: Vdc(r(t))=Vpc(f(t)), which
means that the rate of the nodes assembly at the front is equal to their rate
of disassembly at the rear. Numerical solutions validate all these relations.
Implicitly, these relations determine the cell length and rate of movement in
a unique way.

5. DISCUSSION

We constructed a simple one-dimensional physical model of the MSP
fiber complex stretching in the anterior–posterior direction across the
motile cell. This complex consists of filaments that assemble and bundle at
the front, un-bundle and disassemble at the rear and adhere to the surface
at the front and middle. The resulting treadmilling process generates the
cell locomotion. The spatial separation of protrusion, contraction and
adhesion is maintained by the pH gradient, which develops from the source
of protons in the cell body and transmembrane leakage of protons.
A central feature of the model is the energy turnover pathway in the locomo-
tive cell. Flexible coiled MSP filaments assemble at the leading edge and
aggregate into a tight bundle. During this process, thermal writhing of the
filaments is ratcheted by the binding of the filaments to the bundle. This
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ratchet mechanism generates the force of protrusion, at the same time
locking filaments into an elongated configuration, and storing elastic
energy. This stored energy is subsequently released as filaments dissociate
from the bundle at the rear of the lamellipod, contracting from their
stretched configuration into their coiled state. The resulting entropic force
pulls the cell body forward.

The model accounts for the observed steady, stable movement of the
nematode sperm. The model could be used to analyze some future experi-
ments. An analysis of the traction forces is not likely to be very informative
because of the importance of the behavior at the lateral edges of the cell,
which our 1-D model ignores. However, the experiments with changing
external pH and subsequent disruption of the steady locomotion could be
compared with the corresponding model behavior. Also, sometime the
migrating cells get ‘‘tethered’’: one of the attachment sites get stabilized and
keeps the cell from moving away. In this situation, the cytoskeleton starts
to treadmill, while the cell shape changes. When more accurate measure-
ments of this phenomenon are available, one can simulate it by changing
the adhesion function t(y). In addition to providing a physical basis for
the amoeboid motility of the nematode sperm, our model also may be
useful in elucidating actin-based cell locomotion.

Mathematically, the questions about existence (in certain space) and
uniqueness of the stationary solutions of the model equations, as well as
about stability of these stationary states, remain open. In this paper, we
restrict ourselves to the numerical analysis that demonstrates that the same
profiles of densities, velocities and forces evolve on the domain of the same
length moving with the same rate when number of different initial condi-
tions are used. More rigorous analysis is prohibitive due to complex nature
of our nonlinear free boundary problem. There are no general stability
techniques applicable to our model (like those for travelling wave solutions
on the real line, i.e., Kolmogoroff analysis of Fisher equation). (13) A math-
ematically similar, yet simpler, model of autophobic spreading of drops
was treated at higher level of mathematical sophistication, than that in our
paper. (14) Neither stability, nor uniqueness of the stationary solutions were
proved there.

The model has significant limitations. Due to its one-dimensional
character, it cannot capture important processes at the lateral sides of the
cell which stabilize cell shape. (10) The model also ignores complex physical
effects that stem from the fact that MSP gel and lamellipodial cytoplasm
are polyelectrolytes. For simplicity, movement of aqueous parts of the
lamellipodial cytoplasm were not considered in this paper. Corresponding
phenomena will be treated elsewhere. (15) In general, the ‘‘push-pull’’ model,
even treated quantitatively, is only a very plausible explanation of the
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biological phenomenon. First, a partial explanation for the apparent sim-
plicity of the nematode sperm cytoskeleton is that the amount of research
on the actin cytoskeleton is much greater than that spent studying MSP
based cytoskeletons. Second, the picture of the cytoskeleton as a stable,
well organized scaffold, which the model is based on, is oversimplified.
Some polymerization and depolymerization take place across the whole
lamellipod, as well as more complex processes of severing and annealing of
MSP filaments. Also, angular order in the cytoskeleton has not been
studied. The orderliness of the cytoskeleton is an assumption of the model,
which will have to be tested in the future. More experimental and theoreti-
cal research will be required to validate our theory. Since current knowl-
edge regarding the molecular biology of the nematode sperm cell is limited,
some model assumptions and parameter values cannot be linked directly to
experimental data. Because of these limitations, the model provides only
conceptual conclusions about cell motility, rather than making specific
testable predictions. Nevertheless, the strength of this model is that, like the
experimental studies, it helps to dissect the complex phenomenon of cell
migration.

APPENDIX A: PROTRUSION

Thermal motion of the growing filament tip is equivalent to a biased
random walk. (11) The tip is ‘‘locked’’ every time its length increases on d,
where d is the distance between neighboring adhesive patches. This process
is equivalent to the polymerization ratchet. (16) According to the general
theory of the polymerization ratchet, this mechanism generates a force of
the order of kBT/d. The reasonable estimate is d ’ 10 − 40 nm. Then, one
filament generates a force ’ 0.1 − 0.4 pN. There are ’ 500 filaments in the
bundle. Assuming that protrusion forces are additive, (17) the total force is
’ 100 pN. There is no direct data about the sperm cell membrane tension.
Using scarce data related to the lipid bilayer (17) (tens of pN per mm at the
leading edge), and taking into account that there is one bundle per mm at
the leading edge, we conclude that the force of the ‘‘bundling ratchet’’ is
sufficient to drive protrusion. In the model, we assume that the membrane
resistance is much less than the stall force of the ratchet, and that bundle
growth at the leading edge is load-free.

Two factors determine the velocity of protrusion, Vp: The rate of the
bundling ratchet, and the polymerization velocity. The order of magnitude
of the former is D/d, where D ’ 107 nm2/s is the effective diffusion coeffi-
cient describing thermal writhing of a filament tip ’ 10 − 40 nm long. (18)

The corresponding velocity, ’ 103 mm/s, cannot limit the observed, much
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smaller, protrusion rate. Thus, in the model we assume that the polymeri-
zation velocity of MSP filaments, Vp, is the rate of advancement of the
leading edge.

APPENDIX B: PH DISTRIBUTION

We model the proton distribution on the 1-D lamellipodial domain by
the reaction-diffusion equation:

“h
“t

=D
“

2h
“x2 − l(h − hext), r(t)+Lcb < x < f(t).

Here, h(x, t) is the proton concentration, D is the proton diffusion coeffi-
cient in the cytoplasm, l is the proton leakage rate across the cell mem-
brane, and hext is the proton concentration outside the cell. We assume that
the proton concentration across the cell body is constant: h(x)=h0 at
r(t) < x < r(t)+Lcb. We impose the no flux boundary condition at x=
f(t), assuming that the proton leakage through the thin leading edge is
negligible in comparison with that through the broad and flat lamellipodial
membrane. The diffusion of protons is very fast, and proton concentration
relaxes to its steady state rapidly relative to the time scale of cell motion.
This allows us to scale-out temporal dynamics of the proton distribution
and to describe proton concentration by the Helmholtz equation:

D
d2h
dx2 − l(h − hext)=0, h(r+Lcb)=h0,

dh
dx
:
x=f

=0.

Solution of this equation can be found analytically:

h(x)=hext+A cosh(l̃(x − f )), A=
h0 − hext

cosh(l̃(f − r − Lcb))
, l̃=`l/D .

In the zeroth approximation, proton distribution decreases exponentially in
the forward direction:

h(x) 4 hext+(h0 − hext) exp[ − l̃(x − r − Lcb)]. (12)

Equivalently, pH distribution increases linearly with distance from the cell
body.

We assume that assembly rate, depolymerization rate and adhesion
strength are functions of pH, proportional to the expression arctan(g̃(pH(x)
− pH c), where g̃ and pH c are constants. This means that the corresponding
rates change when pH 4 pH c; Parameter g̃ determines a pH interval,
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wherein changes take place. According to Eqs. (9)–(11), this is equivalent
to the statement that the assembly rate, depolymerization rate and adhe-
sion strength are functions of spatial coordinate, proportional to the
expression arctan(g(y − L)), where y=x − r, and L and g are model
parameters. L − Lcb is the distance from the cell body to where pH drops to
its critical value pH c. We assume that L − Lcb=1 mm, so L=11 mm, and
that g=1/mm.

Specific forms of the assembly rate, depolymerization rate and adhe-
sion strength are given by Eqs. (9)–(11). We assume that the rate of
unbundling is constant and independent of pH. Finally, the MSP assembly
rate, besides pH, is limited by the concentration of membrane protein,
which activates MSP dimers and makes them able to polymerize. If the
total number of such proteins is constant, then their concentration is
inversely proportional to cell length, assuming that these proteins diffuse
rapidly throughout the membrane. This explains the last factor in (11).

APPENDIX C: ESTIMATES OF THE MODEL PARAMETERS

AND SCALES

Values for model parameters are given in Table II. The order of mag-
nitude of cell body length, Lcb and MSP assembly rate, V0, are available
from observations. We choose the values of L and g based on the observa-
tion that disassembly and adhesion change their patterns 1–2 mm in front
of the cell body, and that this change occurs over a zone in mm range. The
rate of unbundling, cb, is chosen to reflect observations that the thickness
of MSP fiber complexes changes significantly, but not orders of magnitude,
over the cell length. Rates of depolymerization, unavailable from experi-
ment, are adjusted so that the number of free filaments is comparable with
that of the bundled filaments, and so that the polymers do not pile up at
the rear of the cell. The order of magnitude of the adhesion drag coefficient
is also unknown; we use the estimate of ref. 10 adjusted to a one-dimen-
sional situation.

Without loss of generality, we assume that the distance between cyto-
skeletal nodes at the front, and thus the rest length of the effective spring
associated with the bundle, r=1 mm. Furthermore, we use the characteris-
tic spring constant of a globular protein, ’ 1 pN/nm, to describe an MSP
dimer. Assuming that a bundled filament of length 1 mm is equivalent
to ’ 1000 springs in series (the size of the MSP dimer is in nm range),
the spring constant per one bundled filament can be estimated as K=1
pN/mm. The effective spring constant corresponding to an unbundled
individual filament is equal to o=(3kBT)/(lpl), (11) where lp is the persis-
tence length of MSP filaments, and l is their average contour length.
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Filaments are very flexible, and we assume that their persistence length,
lp ’ 0.01 mm, is much less, than their contour length, l ’ 1 mm. Then, o ’ 1
pN/mm.

We non-dimensionalize the model using the time scale T̄=40 s, the
characteristic time interval for the cell to travel few cell lengths, and the
spatial scale L̄=10 mm, the length of the cell body. We also use F̄=10 pN,
the characteristic magnitude of contractile stress, as the scale of force. All
parameters are given in physical and dimensionless units in Table II.
Dimensionless parameters were used in numerical simulations.

APPENDIX D: NUMERICAL ANALYSIS

Equations (1)–(5) and (8)–(11) were integrated using Lax–Friedrich
finite difference scheme (19) on a constant grid with the spatial step equal to
0.025 (0.25 mm). We chose the time step small enough to maintain stability,
but not too small (close to the stability limit) in order not to introduce
large errors. In the simulations shown here, the initial conditions reported
in Section 4 were used. To investigate the stability of the evolving solutions,
we added small random components to these initial conditions. Equations (6)
and (7) were integrated using forward Euler method. At each step, we
identified the discrete cell boundary as grid points closest to respective
continuous solutions of Eqs. (6) and (7). The numerical simulations were
performed on a PC using Matlab. Computations necessary to simulate the
cell for 4-5 time units (160–200 s) took a few hours.
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