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AbstratAmong the methods used to approximate solutions for seond-order di�erential equations,one of the oldest and least understood is the Liouville-Green. Liouville and Green �rstintrodued this tehnique in 1837, but their work was relatively unnotied until Je�reys andKramer redisovered it in the early 1920s. Muh has been written in reent years to add tothe atual theory, with a major ontribution in the area of error analysis in the 1960s. Sinethen, the Liouville-Green has been applied with greater on�dene to equations that annotbe solved in elementary terms. Rather than using the method to approximate solutions for amore diÆult equation, this paper looks spei�ally at the method, by applying it to solvableequations, so that results may be ompared graphially.Euler's equation and a speial ase for Bessel's equation are redued to forms neessaryfor approximation, and singularities are identi�ed. The oeÆient funtions are partitionedseveral times to produe both aeptable and unaeptable approximations in the neighbor-hood of singularities, as predited by the error ontrol funtion. An e�etive partition allowsthe Liouville-Green to return an asymptoti solution that is equivalent to the exat solutionfor Euler's equation when parameter values imply exponential or osillatory solutions. ForBessel's equation, partitions of the oeÆient funtion produe solutions that are appliablein distint regions of the domain, and a �nal approximation that is uniformly aeptable forall positive input.Key Words: Liouville-Green, JWKB, asymptotis, error analysis, Bessel's equation
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1 IntrodutionIn some irles of mathematis, asymptoti methods have a \bad" reputation. They areintrodued in upper level applied mathematis ourses, where rigorous exposition and do-mains of appliation may not be fully appreiated by the engineers and sientists who willultimately apply them [4℄. However, for pratial purposes, many partial and ordinary di�er-ential equations are intratable to losed-form solutions and ontain terms and parametersthat are themselves the result of asymptoti or limiting approximations. With inreasedavailability of high-speed omputers, numerial omputations have beome the norm, ratherthan the exeption, in resolving a large perentage of these equations. To those who workin the �eld of asymptotis, \this is like passing from [deadene to barbarism℄, without ex-periening ivilization" [in between℄ [4℄. Moreover, numerial methods experiene diÆultyin singular areas, and their error inreases with dimension. On the other hand, asymptotimethods are the result of rigorous analysis for simplifying assumptions that are well-de�nedduring exposition. With any method of mathematis, if asymptotis are applied outside theirdomain of de�nition, unreasonable solutions may be mistaken for those that are reasonable.When properly applied, asymptoti solutions are elegant in their own right, and they deliveromputer-generated data in a muh shorter period of time than diret numerial resolutionof the di�erential equation [1℄.This paper takes a lose look at the Lioville-Green approximation (LG) method forseond-order di�erention equations: What it is, how it works, its reliability, and its ability to\imitate" solutions requiring analyti or numeri approximation for pratial appliations.The importane of asymptotis to the theory of di�erential equations was reognized in theearly 1800s, but their appliation to problems in quantum mehanis, visous ows, elasti-ity, eletromagneti theory, eletronis, and astro-physis grew out of a need for numerialanalysis of omputer output in the last half of the 20th entury. Asymptotis help us un-derstand the nature of these equations and point the way to the struture of their solutions[2, 9℄.Liouville and Green �rst introdued this tehnique in 1837, but their work was relatively4



unnotied until Je�reys and Kramer redisovered it in the early 1920s [7℄ [8℄. In 1926,Brillouin, Wentzel and Kramer applied the method to Shrodinger's wave equation and,in their honor, the method is often referred to as the JWKB. It has also been alled the\phase integral" tehnique [5℄. The LG approximates solutions for equations of the formw"(x) = h(x)w(x), where x is real or omplex and h(x) is at least twie di�erentiable. Apartiular strength of the LG is its ability to approximate a solution in the neighborhood ofa singularity, where numerial methods frequently experiene instabilities.The method was widely ompared to numerial results prior to 1961, but still suspet withregard to error until Olver proved that onvergene of the error ontrol funtion establishes areliable measure for error (see [8℄ Ch 6.2). He then derived expliit error bounds that diretthe optimal partition of the oeÆient funtion [8℄. Sine then, the LG has been applied withgreater on�dene to equations whih annot be solved in elementary terms. More reently,Dunster, Lutz and Sh�afke formulated a onvergent LG expansion [3℄, and Geronimo andSmith developed a disrete analog of LG expansions for Riatti di�erene equations [6℄.Current work onsiders neessary and suÆient onditions for summability of LG solutions.However, those applying LG in the �elds of siene and engineering still believe the methodto be vague, partiularly with respet to transformation and partitioning.Rather than using the LG to approximate the solution for a more diÆult equation, thispaper looks spei�ally at the method by applying it to Euler's equation and a solvable asefor Bessel's equation, so that results may be ompared to exat solutions. The paper is or-ganized as follows: The Formulation setion transorms the general seond-order di�erentialequation to a form for LG approximation. In the setions onerning Euler and Bessel equa-tions, di�erent partitions of the oeÆient funtions are analyzed and results are omparedto exat solutions. The last setion is Disussion.
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2 FormulationThe LG method approximates a solution for seond order di�erential equations of the formd2wdx2 = h(x)w; (1)where x is a real or omplex variable and h(x) is a presribed funtion. Any homogeneous,seond-order, linear di�erential equation may be stated in this form by appropriately rede�n-ing the dependent variable. If h(x) is real, positive, and slowly varying, the general solutionfor w is expeted to be a linear ombination of two exponentials. If h(x) is negative, thesolution is expeted to be osillatory in nature.To apply the method for h(x) positive, the oeÆient funtion is partitioned ash(x) = f(x) + g(x); (2)where f(x) is positive, real, and twie ontinuously di�erentiable, and g(x) is a ontinuousreal or omplex funtion [7℄ Ch 6.2, [8℄ Ch 6.1. One an equation has been so de�ned, theLG approximates solutions asw1(x) = f�1=4(x)A exp�Z f 1=2(x) dx�(1 + �1(x)) (3)w2(x) = f�1=4(x)B exp�� Z f 1=2(x) dx�(1 + �2(x)); (4)where A and B are arbitrary onstants, dependent upon initial or boundary onditions. Theerror in this sheme is bounded byj�j(x)j � exp[12Vj(x)℄� 1; (5)where Vj(x) = Z xaj ����� 1f 1=4(t) d2dt2� 1f 1=4(t)�� g(t)f 1=2(t) ����� dt; (6)for j = 1; 2; ::: assigning a ounting number to the singularities, and aj representing the par-tiular point. With appropriate hoies for f and g, the LG provides reasonable asymptotirepresentations, even in the region of a singularity.6



To utilize the method for any given linear seond-order di�erential equation, one should�rst identify points of singularity, and then onvert the equation to the form of Eq. (1). Thegeneral linear seond-order di�erential equation may be expressed asP (x)d2ydx2 +Q(x)dydx +R(x)y = 0; (7)where P (x), Q(x) and R(x) are polynomials with no ommon fators. Points of singularityour when P (x) = 0: If the singularity is regular, the solution behaves algebraially nearby;solutions near irregular singularities behave exponentially. For details on lassi�ation ofsingularities, see [8℄.2.1 Rede�ning the variablesA moni seond-order linear di�erential equation takes the formy"(x) + p(x)y0(x) + q(x)y(x) = 0: (8)To reast the above into a form for LG approximation, one must eliminate the oeÆientfuntion for y0. For exponential or osillatory solutions, it is appropriate to seek a produtsolution, y(x) = �(x)w(x). If �(x) = exp�12 Z p(x) dx�; (9)then w" = �14p2 + 12p0 � q�w; (10)takes the form of a seond-order di�erential equation whose solution may be approximatedusing LG asymptotis.3 Euler's EquationConsider Euler's equation x2 d2zdx2 + �xdzdx + �z = 0; (11)7



where � and � are onstants.Euler's equation has exat solutions of the formzr = 1xr1 + 2xr2 ;where ri = 1� �+p(�� 1)2 � 4�2 (12)The nature of these solutions will be onsidered later, and ompared to the nature of LGapproximations, for di�erent values of the parameters � and �.Sine P (x) from Eq. (7) equals x2, it is lear that x = 0 is a singular point. To see thatx =1 is also singular, onsider the transformation x = 1=t: Then Eq. (11) may be writtenin terms of t as t2 d2zdx2 + t(2� �)dzdx + �z = 0: (13)The behavior of (13) at t = 0 determines the behavior of (11) at x =1: Sine P (t = 0) = 0,then x = 1 is also a point of singularity for (11). The solution behaves algebraially nearboth singularities, so that x = 0 and x =1 are regular singular points [8℄.For Euler's equation, the oeÆient funtions in (8) arep(x) = �xq(x) = �x2 ;so that Eq. (10) permits the following transformation to a form for the LG methodw" = �x2w;where � = 14��2 � 2�� 4��:In addition, the produt funtion is obtained from Eq. (9) as,�(x) = exp��� log jxj2 �8



so that for x > 0; the LG approximation for Euler's equation may be obtained from theprodut z(x) = x��=2w(x): (14)3.1 ResultsIn this setion, Euler's equation is approximated near the singularity at x = 0 for two distintpartitions of h(x) to ompare results to the exat solution. The initial partition produesan unaeptable error. Then analysis of the error ontrol funtion (6) leads to a seondpartition that uniformly approximates the solution for x > 0:Note that in Eq. (2)-(6), the role of g(x), in general, is to redue the funtional value forf(x), but g(x) beomes an \ative" partiipant in the error ontrol funtion. To approximatethe solution near zero, it seems natural to begin with a partition h(x) = f1(x) + g1(x) tominimize g1(x) for smaller input values. Letf1(x) = �x2g1(x) = 0:Then f�1=41 = ��1=4x1=2;and � = Z pf1 = �1=2 log(x):The fators of � may be absorbed into the arbitrary onstants in the LG approximation (3)to arrive at the asymptoti solution for x > 0w1(x) = x1=2�A exp(�) +B exp(��)�;negleting error terms. Identifying inverse funtions and utilizing Eq. (14) for the produtfuntion, the LG approximation beomesz1(x) = Ax(1��+2p�)=2 +Bx(1���2p�)=2: (15)9



However, this approximation does not ompare well to the exat solution. Figure 1a graphsthe exat solution, and Eq. (15) for � = �2 and � = �1, with values for A and B determinedby the funtional value and slope at x = 1: The approximation �ts the exat solution in asmall neighborhood of initial data, but quikly diverges in both diretions.To see why (15) does not give an adequate approximation, onsider the error ontrolfuntion for the above partition. For f1(x) and g1(x); Eq. (6) evaluates toV (x) = Z x0 ������14��1=4x1=2��1=4x�3=2�����dx = 14��1=2 log(x): (16)Sine log(x) is not bounded near zero or 1, V (x) does not onverge, and the partition failsto produe an aeptable approximation. One normally mathes oeÆients in the limit asx approahes a singularity. However, there are no oeÆients A;B that permit Eq. (15) toapproximate the exat solution as x! 0 or 1:For a seond attempt, onsider a partition that is direted by the error ontrol funtion.Let f2(x) = �� �x2 (17)g2(x) = �x2 ; (18)where � is a parameter to be identi�ed for onvergene. ThenVj(x) = Z x0 ����� �1 + 4�4(�� �)1=2t �����dt = ����� �1 + 4�4(�� �)1=2 ����� log(x); (19)for x > 0: Observe that V (x) is bounded if and only if 1 + 4� = 0: If � = �1=4, thenf2(x) = �+ 14x2 :Set ~� = (�+ 14)2;so that f�1=42 = ~��1=8x1=2;10



and � = Z pf2 = ~�1=4 log(x):When these funtions are inserted into the LG,w2(x) = Ax(1+2~�1=4)=2 +Bx(1�2~�1=4)=2;and Euler's equation is approximated asz2(x) = Ax(1��+2~�1=4)=2 +Bx(1���2~�1=4)=2: (20)Sine the error bound in (19) is exatly zero for � = �1=4, the asymptoti solution is notjust a good approximation near the singularity at zero, but equivalent to the exat solutionfor all x > 0:3.2 Nature of SolutionsWith suh positive results as those above, one wonders if Euler's equation may always be well-approximated, regardless of parameter values. The exat solution, Eq. (12), was obtainedby seeking a power solution of the form z = xrfor r > 0: Substitution yields an equation in x and r,r(r � 1)xr + �rxr + �xr = 0:Suppose the parameters � and � in (11) are real and x > 0. Then xr 6= 0 and the roots ofthe above indiial equation, r2 + (�� 1)r + � = 0; (21)desribe exponential powers for the general solution to Euler's equation.The disriminant for the above quadrati determines the nature of Euler's solutions. If(��1)2�4� > 0; the general solution is a sum of two linearly independent exponentials, with11



one dominating as x ! 0, and the other dominating as x ! 1. The LG approximationfor this ase will also be exponential, a linear ombination of two real powers in x, as inFig. 1. The partition for h(x) = f(x) + g(x) was found to have an aeptable error wheng(x) = �1=(4x2). Sine h(x) is assumed stritly positive, there is \room" in the partitionfor f(x) > 0: Reall from the Formulation setion that for bounded error in the asymptotisolution, f(x) must be real, positive and twie ontinuously di�erentiable for exponentialapproximations [8℄.Suppose, instead, that the parameters in Euler's equation ause (�� 1)2� 4� < 0. Thenthe general solution will be exponentials with omplex powers, ri = �+i�, giving the general(real) solution z = 1x� os(� log(x)) + 2x� sin(� log(x)):It has been shown above that the optimal LG ours when g(x) = �1=(4x2). If � < �1=4,the oeÆient funtion h(x) < �1=(4x2) < 0, and the partition requires f(x) < 0. In thissituation, the general LG solution takes the formw = �jf j�1=4(x)��A exp�i Z jf j1=2(x)�+B exp��i Z jf j1=2(x)��:The above exponentials are onsistent with those in (20), whih utilize the standard formof the LG. While Eq. (20) does not expliitly inlude imaginary omponents, it allows foromplex numbers in the square and fourth roots of f(x), and the asymptoti solution willlikewise produe omplex onjugates that may be onverted to an osillatory solution usingEuler's identity.Now suppose that the parameters are suh that (��1)2�4� = 0. Then r1 = r2 = (1��)=2is a double root for the indiial equation, yielding a power solution and a logarithmi solutionthat are linearly independent, so that the general solution takes the formzr = 1xr + 2xr log(x):However, this solution is neither exponential nor osillatory, and does not math the form forLG asymptotis. In the ase of repeated roots, Bessel funtions are required for asymptoti12



approximation (see [8℄ Ch 12.) If the disriminant for Euler's equation is zero, then � = �and f2 � 0 in (18), so that the partition breaks down. In the general linear seond-orderdi�erential equation, when limx!0x2h(x) = �1=4, a suitable partition annot be hosen foronvergene of the error ontrol funtion [8℄. For Euler's equation, this ours when theroots of (21) are equal.4 Bessel's EquationFor a seond example, onsider the modi�ed Bessel's equationx2y(x)" + xy(x)0 � (x2 � �2)y(x) = 0 (22)for x > 0, where � is onstant. The points of singularity our at x = 0 and 1, with x = 0a regular singularity. However, the solution for Bessel's equation behaves exponentially as xget large, so that in�nity is an irregular singular point [8℄.As a speial and solvable ase, let � = 3=2: Then Eq. (9)-(10) from the Formulationsetion reasts Eq. (22) into a form for LG approximation asw" = �1 + 2x2 �w; (23)where the solution for (22) takes the formy(x) = pxw(x):Sine h(x) = 1 + 2x2 > 0in (23), solutions will be a linear ombination of exponentials, with one dominating as x! 0,and the other dominating as x!1: Substitution on�rms that the general solution for w(x)takes the form w = 1�1� 1x� exp(x) + 2�1 + 1x� exp(�x):13



For a natural hoie of oeÆients, let 1 = 1 and 2 = 0. Thenwa = �1� 1x� exp(x)represents one spei� solution. For a seond solution, let 1 = 0, and 2 = 1. Thenwb = �1 + 1x� exp(x): (24)However, near the singularity at x = 0, a Taylor expansion on�rmswa(x) = �1x +O(x) (25)and wb(x) = 1x +O(x); (26)so that both funtions dominate as x! 0, and they do not form a numerially satisfatorypair.Instead, onsider a solution where 1 = 2 = 1=2. Thenw(x) = osh(x)� sinh(x)x (27)represents one spei� solution; for a seond solution, keep (24). Near the singularity atx = 0, a Taylor expansion on�rmsw(x) = 2x23 +O(x3) (28)so that w is reessive. Likewise, near the singularity at x =1,wb(x) = exp(�x)�1 +O�1x�� (29)and w(x) = exp(x)�12 +O� 12x��; (30)
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so that wb is reessive and w dominates. Further, the Wronskian on�rms that these so-lutions are linearly independent. Thus wb and w form a numerially satisfatory pair ofsolutions for (22), and the general form may be written asyr(x) = pxwr(x); (31)where wr(x) = �C1wb(x) + C2w(x)�: (32)4.1 ResultsIn this setion, Bessel's equation is approximated for distint partitions of h(x). An initialpartition produes an aeptable error near zero that diverges as x ! 1. The seondpartition produes an aeptable error for large values of x that diverges as x! 0: Finally,an analysis of the error ontrol funtion yields a partition to approximate the solution forall x > 0:To identify the optimal partition in a neighborhood of zero, letf1(x) = 2x2 + �x2g1(x) = 1� �x2 ;where � is, one again, a parameter to be identi�ed for onvergene of the error ontrolintegral. With this partition, the integrand in (6) is asymptoti toH(x) � xp2 + � + 4� + 14xp2 + � :For � = 1=4, Eq. (5)-(6) produe an error bound�1(x) � exp(x26 )� 1;onvergent near zero, but inreasing with x. Therefore, withf1(x) = 94x215



and g1(x) = 1� 14x2 ;an aeptable LG approximation may be omputed from (3) asw1(x) = Ax2 + Bx :The �rst term ompares well to (27) near zero, when A = 1=3: However, the funtionsdiverge as x gets large. Fig. 2a graphs the error bound (�1) against the relative errorjw � Ax2j=w, omparing the analyti and asymptoti solutions reessive near zero. Whilethe above LG is asymptoti to the exat solution near zero, the approximation breaks downas x inreases.To �nd an aeptable approximation for large values of x; onsider a partition thatminimizes the magnitude of g(x) as x! 0. Letf2(x) = 1and g2(x) = 2x2 :This time, the \natural" hoie for a partition is appropriate sine (5)-(6) produe an errorbound �2(x) � exp(1x)� 1;onvergent as x!1, so that the LG approximation takes the formw2(x) = A exp(x) +B exp(�x):The seond term ompares well to (24) for large values of x when B = 1; but the funtions di-verge as x! 0: Fig. 2b graphs the error bound against the relative error j(wb�exp(�x)j=wb,omparing analyti and asymptoti solutions reessive as x ! 1: The above LG approx-imates the solution to (23) for large values of x, but the approximation breaks down asx! 0: 16



The previous two partitions produe aeptable approximations for Bessel's equationnear distint singular points. However, a more powerful approah would be to produe apartition that delivers a LG uniformly aeptable for all x > 0: Let us, again, take an analytiapproah to identify suh a partition. Letf3(x) = 1 + 2x2 + �x2 (33)and g3(x) = ��x2 ;where � is a parameter to be indenti�ed so that the error is bounded near both singularities.This time (6) produes the error ontrol funtion:Vj(x) = Z xaj jH(t)j dt: (34)where the integrandH(x) = 4�x4 � 12x2 + 10�x2 + 8�2x2 + 12� � 4 + 15�2 + 4�34x(x2 + 2 + �)5=2 :Fortunately, it is enough for H(x) to be bounded near the points of singularity to assumethat the error is bounded. For x near zero, a Taylor expansion yieldsH(x) � 4� � 14xp2 + � +O(x):Likewise, near the singularity at x =1;H(x) � �x2 +O� 1x4�:Therefore, if � = 1=4, then H(x) = 8x(x� 3)(x+ 3)(4x2 + 9)5=2 (35)is bounded and the integral in (34) onverges at both singular endpoints. Then from (33),f3(x) = 1 + 94x217



and g3(x) = �14x2 :Hene the exponential powers in the asymptoti solution are omputed from� = Z xaj f 1=2 dx = p4x2 + 92 � 32 log 3 +p4x2 + 9x !:For the asymptoti solution, exp(�) an be leaned up by identifying inverse funtions andabsorbing onstants, so that the solution for Eq. (23) is approximated by a linear ombinationof the LG solutionsw3a = Ax2(4x2 + 9)1=4(3 +p4x2 + 9)3=2 exp�p4x2 + 92 � (36)w3b = B(3 +p4x2 + 9)x(4x2 + 9)1=4 exp��p4x2 + 92 �: (37)Fig. 3a graphs the predited bound for the relative error from Eq. (5) against the relativeexat error (jw � w3aj=w), omparing exat and asymptoti solutions reessive near zero.The onstant A in (37) is obtained here by mathing w in the limit as x ! 0: LikewiseFig. 3b graphs the predited error bound for w3b against relative exat error (jwb�w3bj=wb),omparing solutions reessive near in�nity. This time, the onstant B in (37) is obtained bymathing wb in the limit as x!1: It is important to note that the error is truly boundedat x = 0, and not just asymptoti to the vertial axis. Observe that in both situations, therelative error is less than 10%, and the predited upper bound is fairly sharp for all x.Finally, for the ase � = 3=2, the asymptoti solution for the modi�ed Bessel equation(22) is formulated from (31) as y3 = px(Aw3a + Bw3b): (38)Figure 3 graphs log(y3(x)) against log(yr(x)) for 0 < x < 40; with onstants in the asymp-toti solution mathing limiting values for reessive solutions near zero and in�nity. The LGuniformly aptures the nature and magnitude of the exat solution, as predited by the errorfuntions in Figs. 3a and 3b. 18



Without argument, the urrent partition produes a messier funtion than in the previoustwo formulations. However, the square and fourth roots of f3 are still real and omputable,and deliver a powerful approximation to the solution for all x > 0, even near the singularitiesat both zero and in�nity!5 DisussionThe LG is a powerful tool for approximating solutions to seond-order di�erential equationsin the viinity of both ordinary and singular points, and an even return asymptotis thatare equivalent to the exat solution, as observed in Euler's equation. With a proper partitionof the oeÆient funtion, it is apable of losely approximating exponential and osillatoryfuntions and provides reliable numeris in the neighborhood of irregular or regular singular-ities, as witnessed in Bessel's equation. However, it annot approximate solutions that areneither exponential nor osillatory in nature, suh as the logarithmi funtions that resultfrom Euler's equation with repeated roots.While the equations studied in this paper are solvable in elementary terms, using them toexamine the LG failitates a areful observation of how the asymptotis \imitate" a solution.The method was �rst applied to Euler's equation with what seemed to be a reasonablepartition, obtaining a solution that also seemed reasonable. However, divergene of theerror ontrol funtion warned us that the approximation was unaeptable. Sine Euler'sequation is solvable in elementary terms, this result ould be on�rmed by omparison.Analysis of the error ontrol for h(x) led to the optimal partition, produing an error boundof zero. Likewise, with Bessel's equation, analysis of the error ontrol integral failitatedsolutions that are suitable for partiular appliations. Three di�erent partitions produedapproximations aeptable in distint regions of the domain. Thus the error ontrol funtionboth direts and evaluates the asymptoti proess.Equations that our in engineering and sienti� appliations are often not solvablein elementary terms and require numerial or asymptoti solutions near singular points.Numerial methods experiene instabilities in singular regions, inreasing both error and19



omputation time. Under these irumstanes, the LG may produe an elegant and moredesirable solution. In this paper, we observed the power of Olver's error bound (see [8℄Ch 6.2) for equations that ould be solved analytially. When the LG is used to approxi-mate a solution that annot be obtained analytially, the error ontrol funtion beomes aninvaluable tool for assessing the relability of the approximation.Many texts are still not lear in their exposition of the LG, partiularly with respet toits ability to approximate funtional values with preditable error in the neighborhood ofsingularities. Heading omments that \vagueness must be aepted as one of the inherentweaknesses of the [Liouville-Green℄ tehnique" [5℄. By taking a look at the method in detail,I hope this paper has eliminated some of this "vagueness." In partiular, the algorithm forobtaining the optimal partition, and resulting hanges in the error bound should be usefulfor those applying the method.ACKNOWLEDGEMENTS: The author gratefully aknowledges TM Dunster of SanDiego State University for mentoring and helpful disussions. This researh was ondutedwith support from the MNair Sholars Program, funded by the United States Departmentof Eduation, and faulty grant-in-aid Number 242122 from San Diego State University.
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Fig. 1 LG approximates an exponential solution for Euler's equation only whenthe error ontrol funtion is onvergent. The exat and asymptoti solutions forx2z"(x) � 2z0(x) � z(x) = 0 are graphed for x > 0. Initial partition of the oeÆientfuntion produes an unaeptable solution (15) away from initial onditions given at x = 1.Divergene of the integral in Eq. (16) predits unbounded error for both large and smallvalues of input.Fig. 2 Two di�erent LG partitions produe bounded error in distint regions ofthe domain for Bessel's equation The modi�ed Bessel equation x2y"+xy0�(x2�9=4)y =0 is onverted to y(x) = �(x)w(x); where w" = (1 + 2=x2)w. Two di�erent partitions ofthe oeÆient funtion produe aeptable asymptotis near one of the singularities, withunbounded error elsewhere. (a) The partition f1(x) = 94x2 and g1(x) = 1 � 14x2 produesbounded error near x = 0 that inreases with x. The error bound �1 is graphed against rel-ative error jw � Ax2j=w, omparing analyti and asymptoti solutions reessive near zero.(b) The partition f2(x) = 1 and g2(x) = 2x2 produes an aeptable solution for large valuesof x, but unbounded error near zero. The error bound �2 is graphed against relative errorjwb � exp(�x)j=wb, omparing analyti and asymptoti solutions reessive as x!1:Fig. 3 A omparison of predited error bound and exat error validates Olver'serror ontrol funtion [8℄ for a �nal partition of Bessel's equation. The modi-�ed Bessel equation x2y" + xy0 � (x2 � 9=4)y = 0 is onverted y(x) = �(x)w(x); wherew" = (1 + 2=x2)w. A �nal partition of the oeÆient funtion produes two linearly inde-pendent asymptoti solutions, with one reessive at zero and the other reessive at in�nity,to uniformly approximate the exat solution for all x > 0: (a) The predited bound forrelative error (5) is ompared to relative exat error for solutions reessive at zero, Eqs. (27)and (37). (b) Likewise, the predited error bound and relative error are ompared forsolutions reessive at in�nity, Eqs. (24) and (37). () The analyti solution for Bessel'sequation (31) is well approximated by the �nal LG asymptoti solution (38), as observed inthe natural log of eah funtion over the interval (0; 40):22
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